首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
保护性耕作对土壤物理特性及玉米产量的影响   总被引:38,自引:13,他引:25       下载免费PDF全文
保护性耕作措施是干旱区农田提高作物产量的新型耕作技术。为了探讨其区域适应性,在2004~2007年期间,以毛乌素沙地南缘的靖边县北部风沙区农田为研究对象,选用了免耕、秸秆覆盖、覆膜和传统翻耕(CK)4种措施,采用完全随机试验设计进行了田间定位试验研究。结果表明,秸秆覆盖和免耕地的地温在春播初期略比传统翻耕低0.1℃,但随后迅速回升,覆膜在玉米生长期都高于其他措施。耕作措施对播种前土壤容重没有显著影响,而对收获后土壤容重影响显著,与传统翻耕相比,免耕降低了表层土壤容重1.65%,但次层20~40 cm容重增加了1.8%。3种保护性耕作措施均增加了土壤含水量,顺序依次为秸秆覆盖>覆膜>免耕>翻耕,且在作物需水关键期免耕和秸秆覆盖下的土壤含水量相对稳定,保证作物需水,提高水分利用率,分别为8%、22.0%和13.3%。使作物分别增产4.44%、13.14%和19.26%。因此,保护性耕作在风沙区有利于改善农田土壤物理条件,提高作物产量,适于在风沙区推广。  相似文献   

2.
玉米-小麦一年两熟保护性耕作体系试验研究   总被引:46,自引:18,他引:46  
采用将夏玉米、冬小麦两季作物作为整体来研究适合华北一年两熟地区保护性耕作技术体系,确定了耕作和覆盖两个因素,包括免耕、深松、耙地、翻耕4种耕作方法,以及100%秸秆覆盖,50%秸秆覆盖和0覆盖3种秸秆覆盖水平。筛选设计了8种保护性耕作和2种传统翻耕共10种体系的试验方案。试验中测定了土壤含水量、容重、地温等参数和根系、产量等作物指标。试验结果表明,我国华北地区实施保护性耕作有利于节约用水,提高水分利用效率,增加作物产量。试验得出最适合的两种保护性耕作体系是:玉米-小麦全程免耕100%秸秆覆盖体系、玉米深松100%秸秆覆盖+小麦免耕100%秸秆覆盖体系。  相似文献   

3.
保护性耕作是防治农田土壤风蚀起尘的重要技术方法之一,对于从源头上控制颗粒物污染有重要作用。为了综合评价保护性耕作技术的生态环境效益、社会效益和经济效益,该研究构建了一个包含3个一级评价指标、8个二级评价指标、19个三级评价指标的综合效益评价指标体系,并以天津市大港区苏家园村为例,对传统耕作、免耕覆盖、深松耕3种耕作方式下的生态、经济、社会及综合效益进行评价,以验证评价指标体系的可行性。结果表明:从生态环境效益方面来看,传统耕作免耕覆盖深松耕,其指标值分别为0.182、0.540、0.875;从综合效益来看,传统耕作深松耕免耕覆盖,其指标值分别为0.279、0.435、0.584。保护性耕作比传统耕作具有更高的生态环境和综合效益。该研究可为合理地评价保护性耕作综合效益提供参考,对发展保护性耕作起到良好的导向作用。  相似文献   

4.
渭北旱原土层深厚,土壤蓄水能力强,采取留茬免耕秸秆全程覆盖保护性耕作技术,能使自然降水就地拦蓄入渗,减少蒸发,增加养分,使资源得到高效利用,促进农业持续发展。介绍了渭北旱原保护性耕作技术的实施背景、实施方法和技术推广中的组织管理措施,分析了该技术的效益及市场风险。  相似文献   

5.
中国特色保护性耕作技术   总被引:130,自引:34,他引:130  
国外多年的保护性耕作实践表明,旱地保护性耕作能减少土壤风蚀水蚀,抑制沙尘暴。项目研究目的是检验保护性耕作技术在我国的适应性、应采取的工艺体系及机具。从1991年开始,中国农业大学和山西省农机局等合作,开始农艺农机结合的保护性耕作系统试验,10年试验表明,保护性耕作不仅减少水土流失,而且增产增收。通过改进保护性耕作工艺,开发研制中小型保护性耕作机具,形成了中国特色的保护性耕作技术。主要特色在于用小型机具在小地块上实现保护性耕作、以及能在贫瘠的土地上获得较高产量,从而满足我国既要保护环境又要提高产量的要求。研究表明,我国北方自然条件、种植制度、经济水平等差别较大,在保护性耕作推广中需要分区采用不同的技术体系。  相似文献   

6.
保护性耕作是一项对农田免耕、少耕、深松耕技术,是一项稳产增产、节本增效、节能环保的关键技术,是将经济、社会和生态三个方面效益兼顾。因此,实施保护性耕作是实现农业增产增收的重要举措,也是推进农业可持续发展,建设生态农业的有效途径。  相似文献   

7.
在分析寒地黑土区农业生态环境存在问题基础上,介绍了保护性耕作技术的内涵及其在国内外的发展概况,揭示了保护性耕作的增产原理,论证了寒地黑土区实施保护性耕作的科学性。  相似文献   

8.
保护性耕作适应性试验及关键技术研究   总被引:47,自引:15,他引:47  
国内外围绕旱地农业的可持续发展,进行了长期的研究和试验,我国于1991年引进澳大利亚先进模式——保护性耕作法,在山西省布点试验。试验表明:保护性耕作具有保水改土、增产增收、改善生态环境的综合效益。但播种质量不高,一度使试验受挫,虽然靠改进机具在一定程度上可以提高其适应性,但当秸秆产量达到80%的覆盖率时,又出现秸秆越冬防风防火难、春季地温回升缓慢,清除长在秸秆中的杂草难等一系列问题。通过进一步试验,增加浅旋或浅耙表土作业,可解决问题。秸秆覆盖,表土浅耕和硬茬播种构成保护性耕作法成熟的技术体系。  相似文献   

9.
中国北方保护性耕作条件下深松效应与经济效益研究   总被引:53,自引:19,他引:53  
保护性耕作技术是适应中国北方农业发展的一种新型耕作技术,它可以通过深松作业来消除因多年免耕出现的土壤变硬问题。目前对保护性耕作条件下深松的效应和经济效益缺乏深入的研究,在玉米深松过程中还出现的伤苗,功耗大和经济效益低等问题。该文试验研究了在中国北方保护性耕作示范基地上,从1993年开始,通过10多年的时间对保护性耕作条件下的深松效应,测定了传统耕作、深松覆盖和免耕覆盖3种不同耕作方式下的土壤容重、含水率,水分利用率和产量等数据,试验结果表明,在保护性耕作条件下,每4年对土壤深松一次可以解决土壤变硬问题,持续保持作物高的水分利用率和产量,并不需要年年深松。相对深松覆盖(年年深松),4年免耕覆盖+1年深松的耕作方式能提高25%左右的经济效益。同时,针对玉米深松过程中的问题,提出了玉米免耕播种和深松联合作业的方案,试验表明,玉米免耕播种和深松联合作业能有效解决玉米深松过程中出现的一系列问题,促进玉米生长,提高玉米产量,建议在中国北方玉米产区推广这一联合作业技术。  相似文献   

10.
保护性耕作及其对土壤有机碳的影响   总被引:23,自引:1,他引:22       下载免费PDF全文
本文把保护性耕作的发展划分为3个阶段,系统总结了保护性耕作技术发展的历程与趋势,并结合我国实际情况,论述了我国保护性耕作研究与应用存在的不足及其与国外的差距,进一步探讨了保护性耕作对土壤有机碳的影响。指出我国在该领域的研究应侧重以下几方面:加强研究保护性耕作对生态环境的作用,寻求有效的固碳途径和管理措施;探讨农田土壤保护性耕作系统能流-碳流循环过程及其动态响应,实现农田系统碳汇/源科学管理调控;采用GIS技术结合土壤有机碳动态模拟模型,评价保护性耕作区域尺度生态效益。  相似文献   

11.
通过设置在甘肃省定西市李家堡镇的保护性耕作措施长期定位试验,共设4个处理(T:传统耕作;NT:免耕无覆盖;TS:传统耕作+秸秆还田;NTS:免耕+秸秆覆盖),采用春小麦豌豆双序列轮作(即小麦→豌豆→小麦和豌豆→小麦→豌豆,本文中所指春小麦地、豌豆地分别指2008年种植春小麦、豌豆的轮作次序),于2008年3月中旬对春小麦、豌豆双序列轮作下的土壤有机碳、全氮、土壤微生物量碳及土壤微生物量氮含量进行了采样测定。结果表明,经过7a的轮作后,两种轮作次序下,0-30cm土层中土壤有机碳、全氮、土壤微生物量碳、土壤微生物量氮含量均有在免耕+秸秆覆盖、传统耕作+秸秆还田处理较免耕不覆盖、传统耕作处理高的趋势,且其含量均随着土壤深度的增加而降低。其中,土壤微生物量碳含量在两种轮作次序下的排序均为:免耕+秸秆覆盖(NTS)〉传统耕作+秸秆还田(TS)〉免耕不覆盖(NT)〉传统耕作(T);而土壤微生物量氮含量在春小麦地和豌豆地的排序则分别表现为:免耕+秸秆覆盖(NTS)〉传统耕作+秸秆还田(TS)〉传统耕作(T)〉免耕不覆盖(NT)和免耕+秸秆覆盖(NTS)〉传统耕作+秸秆还田(TS)〉免耕不覆盖(NT)〉传统耕作(T)。同时,微生物量碳、微生物量氮与有机碳和全氮均呈显著正相关,说明提高土壤有机质、全氮含量的保护性耕作模式有利于土壤微生物量碳与氮的积累。  相似文献   

12.
Soil degradation is the single most important threat to global food production and security. Wind and water erosion are the main forms of this degradation, and conservation tillage represents an effective method for controlling this problem. The objective of this study was to quantify the effects of three tillage methods [zero (ZT), minimum (MT) and conventional (CT)] and three four-year crop sequences [spring wheat (Triticum aestivum L.)–spring wheat–winter wheat–fallow; spring wheat–spring wheat–flax (Linum usitatissimum L.)–winter wheat; spring wheat–flax–winter wheat–field pea (Pisum sativum L.] on crop establishment, plant height, seed weight, soil water storage, crop water use, crop water use efficiency and grain yield over a 12-year period under Canadian growing conditions. Plant establishment was not adversely affected by tillage systems or crop sequences except for flax, where a small reduction was observed with ZT and MT. Conservation tillage showed a yield benefit over CT of 7%, 12.5% and 7.4% for field pea, flax and spring wheat grown on cereal stubble, respectively over the 12 years of the study. Much of the yield increase was due to an increase in soil water in the 0–30 cm soil layer with ZT and MT. However, tillage systems had no effect on grain yield for spring wheat grown on fallow and field pea stubble due to a lack of differences in spring soil water content. Flax grown in sequence with cereals only yielded higher than when it was grown in the sequence which included field pea, even though flax was seeded on spring wheat stubble in both cases. Winter wheat yielded higher when grown on flax stubble than on spring wheat stubble. The results indicate that a one-year non-cereal break crop was enough to alleviate the negative effects of consecutive cereal crops on winter wheat. Spring wheat grown on field pea stubble always yielded more than when grown on cereal stubble. A 10% increase in water use efficiency was observed with flax grown with ZT and MT management. Crop sequence improved water use efficiency in flax and spring wheat. Growing spring wheat on field pea stubble as opposed to growing it on cereal stubble resulted in a 10% increase in water use efficiency. Overall, rainfall accounted for 73%, 72%, 67% and 65% of total water used by field pea, flax, winter wheat and spring wheat, respectively. This explains the large year effect as a result of variation in growing (May–August) season precipitation. The non-significant tillage system by year interaction implies that the positive benefits of ZT and MT occur over a wide range of growing conditions, while the absence of a tillage system by crop sequence interaction suggests that knowledge developed under CT management also applies to ZT and MT. The results of this study support the large shifts towards in conservation tillage being observed in the Canadian prairies.  相似文献   

13.
The concept and some definitions of sustainable agriculture are reviewed. Most of these definitions include economic, environmental and sociological aspects. The finite area of land emphasizes the need for consideration of soil conservation and of soil quality in relation to sustainability. An important element of soil quality is rooting depth. Therefore loss of soil by erosion is a dominant factor in long-term sustainability. The effects of tillage on soil parameters in minimum data sets that have been proposed to describe soil quality are reviewed. Soil organic matter may be one of the most important soil quality characteristics in relation to tillage because of its influence on other soil physical, chemical and biological properties. Conservation tillage practices can increase the organic matter content, aggregate stability and cation exchange capacity (CEC) of the topsoil. However, bulk density and penetrometer resistance are also increased, especially with zero tillage. Although such soil quality parameters may form a basis for describing some of the consequences of particular tillage practices, they do not provide a basis for predicting the outcome in terms of crop growth and yield. This is both because critical values of soil quality parameters have not been defined and because in some soils biopore formation in zero or minimally tilled land can modify the soil for water movement and for root growth and function.

The effects of tillage on crop growth and yield in long-term experiments are reviewed. The review only includes experiments in North America, Europe and New Zealand that have lasted 10 years or more to allow for seasonal variation in weather, possible progressive changes in soil conditions and the learning phase often experienced when new tillage methods are used. While there is a good deal of variation in the results of these tillage experiments some patterns have emerged. In long-term experiments, yields of maize in Europe and the US and soybeans in the US have been similar after ploughing and no-tillage, especially on well-drained soils. In Europe, yields of winter cereals have also been similar after traditional and simplified tillage but yields of spring cereals have sometimes been less after direct drilling than ploughing.

Trends in tillage practices are reviewed. Conservation tillage in the US is increasing and is used on about 30% of cropland, including no-till on about 10% of cropland. This increase in use of conservation tillage is mainly attributed to the legal requirement for farmers who are in government price support programs to adopt conservation plans which may involve conservation tillage. However, the allowable rates of erosion in these plans are likely to be in excess of rates of erosion for long-term sustainability. Survey information on tillage practices needs to be considered in relation to predictions on suitability of conservation tillage based on experimental results. In the semi-arid prairies of Canada there is a trend toward fewer cultivation operations, but in eastern Canada the mouldboard plough is still the dominant tillage method. In Europe although erosion is less obvious it is believed to be increasing, but minimum tillage is not widely used. This is because of the need to remove at least some straw for successful minimum tillage in sequential winter wheat and barley crops, but there are few economic uses for straw, and burning is illegal in many countries. In the more moist cooler conditions of Europe grass weed proliferation is another constraint, at least with present technology. So far, the overall success of conservation tillage has not been limited by the growing problem of genetic resistance of weeds to herbicides. Societal attitudes to the continued use of herbicides may pose longer-term problems for some conservation tillage practices.  相似文献   


14.
Improved nitrogen use efficiency would be beneficial to agroecosystem sustainability in the northern Great Plains of the USA. The most common rotation in the northern Great Plains is fallow–spring wheat. Tillage during fallow periods controls weeds, which otherwise would use substantial amounts of water and available nitrogen, decreasing the efficiency of fallow. Chemical fallow and zero tillage systems improve soil water conservation, and may improve nitrogen availability to subsequent crops. We conducted a field trial from 1998 through 2003 comparing nitrogen uptake and nitrogen use efficiency of crops in nine rotations under two tillage systems, conventional and no-till. All rotations included spring wheat, two rotations included field pea, while lentil, chickpea, yellow mustard, sunflower, and safflower were present in single rotations with wheat. Growing season precipitation was below average in 3 of 4 years, resulting in substantial drought stress to crops not following fallow. In general, rotation had a greater influence on spring wheat nitrogen accumulation and use efficiency than did tillage system. Spring wheat following fallow had substantially higher N accumulation in seed and biomass, N harvest index, and superior nitrogen use efficiency than wheat following pea, lentil, chickpea, yellow mustard, or wheat. Preplant nitrate-N varied widely among years and rotations, but overall, conventional tillage resulted in 9 kg ha−1 more nitrate-N (0–60 cm) for spring wheat than did zero tillage. However, zero tillage spring wheat averaged 11 kg ha−1 more N in biomass than wheat in conventional tillage. Nitrogen accumulation in pea seed, 45 kg ha−1, was superior to that of all alternate crops and spring wheat, 17 and 23 kg ha−1, respectively. Chickpea, lentil, yellow mustard, safflower, and sunflower did not perform well and were not adapted to this region during periods of below average precipitation. During periods of drought, field pea and wheat following fallow had greater nitrogen use efficiency than recropped wheat or other pulse and oilseed crops.  相似文献   

15.
陇中黄土高原旱农区降水有限、水分利用效率低下是导致该区作物生产力水平低而不稳的主要原因。发展保护性耕作是保护水土资源、提高水分利用效率的重要途径。为揭示耕作措施影响水分利用效率的机制,2015—2016年在陇中黄土高原旱农区研究了不同耕作措施对土壤棵间蒸发、农田耗水量、作物蒸腾量、棵间蒸发与蒸散的比例、产量及水分利用效率的影响。试验设置传统耕作(T)、免耕秸秆覆盖(NTS)、免耕(NT)、传统耕作+秸秆翻入(TS)、传统耕作+覆膜(TP)、免耕覆膜(NTP)6个处理,春小麦和豌豆年间轮作。结果表明:(1)春小麦和豌豆全生育期棵间蒸发量NTS、TP、NTP比T显著减少6.52%~50.81%,NTS降低棵间蒸发量的作用主要在小麦开花后和豌豆结荚后,地膜覆盖在各个生育时期基本上都显著减少了棵间蒸发。(2)NTS对全生育期耗水量无显著影响,NTP的耗水量只在小麦地显著高于T。相比T,NTS显著提高了小麦开花-收获和豌豆结荚-收获期间的阶段耗水量及其占总耗水的比例。(3)NTS、TP、NTP均显著提高了春小麦和豌豆的蒸腾量,降低了田间的蒸发占蒸散的比例,降低了水分的无效损耗。(4)各年份春小麦和豌豆的产量NTS、TP、NTP比T提高了7.64%~62.79%,水分利用效率比T提高了0.43%~50.88%。因此,在陇中黄土高原旱农区,免耕秸秆覆盖、地膜覆盖等保护性耕作措施均能提高水分利用效率及小麦和豌豆的产量。免耕秸秆覆盖通过降低作物生长后期棵间蒸发量,提高作物生长后期耗水量,降低蒸发与蒸散的比例,从而提高春小麦和豌豆的水分利用效率及产量。而地膜覆盖处理主要是通过减少全生育期棵间蒸发量,增加作物全生育期蒸腾量,降低蒸发与蒸散的比例,从而实现作物水分高效利用,提高作物产量。  相似文献   

16.
There has been a trend toward increased cropping intensity and decreased tillage intensity in the semiarid region of the Canadian prairies. The impact of these changes on sequestration of atmospheric CO2 in soil organic carbon (C) is uncertain. Our objective was to quantify the changes in total, mineralizable and light fraction organic C and nitrogen (N) due to the adoption of continuous cropping and conservation tillage practices. We sampled three individual long-term experiments at Lethbridge, Alberta, in September 1992: a spring wheat (Triticum aestivum L.)-fallow tillage study, a continuous spring wheat tillage study and a winter wheat rotation-tillage study. Treatments had been in place for 3–16 years. In the spring wheat-fallow study, different intensities (one-way disc > heavy-duty cultivator > blade cultivator) of conventional tillage (CT) were compared with minimum tillage (MT) and zero tillage (ZT). After 16 years, total organic C was 2.2 Mg ha−1 lower in more intensively worked CT treatments (one-way disc, heavy-duty cultivator) than in the least-intensive CT treatment (blade cultivator). The CT with the blade cultivator and ZT treatments had similar levels of organic C. The CT treatments with the one-way disc and heavy-duty cultivator had light fraction C and N and mineralizable N amounts that were about 13–18% lower than the CT with the blade cultivator, MT or ZT treatments. In the continuous spring wheat study, 8 years of ZT increased total organic C by 2 Mg ha−1, and increased mineralizable and light fraction C and N by 15–27%, compared with CT with a heavy-duty cultivator prior to planting. In the winter wheat rotation-tillage study, total organic C was 2 Mg ha−1 higher in a continuous winter wheat (WW) rotation compared with that in a winter wheat-fallow rotation. The lack of an organic C response to ZT on the WW rotation may have been due to moldboard plowing of the ZT treatment in 1989 (6 years after establishment and 3 years before soil sampling), in an effort to control a severe infestation of downy brome (Bromus tectorum L.). Our results suggest that although relative increases in soil organic matter were small, increases due to adoption of ZT were greater and occurred much faster in continuously cropped than in fallow-based rotations. Hence intensification of cropping practices, by elimination of fallow and moving toward continuous cropping, is the first step toward increased C sequestration. Reducing tillage intensity, by the adoption of ZT, enhances the cropping intensity effect.  相似文献   

17.
不同耕作方式对旱地土壤酶活性动态的影响   总被引:21,自引:4,他引:17  
结合中长期田间定位试验,研究了传统耕作(T)、免耕(NT)、免耕结合秸秆覆盖(NTS)以及秸秆还田(TS)处理下春小麦生长期内土壤过氧化氢酶、脲酶、蔗糖酶和碱性磷酸酶等活性的动态变化趋势。结果表明:(1)各种酶的活性随着小麦生育期的变化呈现出明显的规律性变化,并且四种耕作方式下各种酶活性的变化趋势基本一致。土壤过氧化氢酶和蔗糖酶活性呈现先上升,在灌浆期出现峰值后逐渐下降的变化规律。土壤脲酶和碱性磷酸酶活性呈现先上升,在拔节期出现峰值后逐渐下降,而在灌浆期到收获后又处于回升阶段。(2)在春小麦的各生育期:与T相比较,NT、NTS以及TS处理均可使土壤酶活性增加。  相似文献   

18.
保护性耕作对土壤养分分布及冬小麦吸收与分配的影响   总被引:5,自引:2,他引:3  
通过田间试验研究了华北平原山前平原区不同耕作方式下土壤氮、磷、钾等养分分布及冬小麦吸收与分配变化和对产量的影响。试验设深翻耕秸秆还田(MC)、秸秆还田旋耕(X)、秸秆粉碎免耕(NC)和整秸覆盖免耕(NW) 4 种冬小麦播前土壤耕作方式。试验结果表明, 6 年的不同耕作处理对土壤养分分布及冬小麦吸收与分配有显著影响。秸秆还田旋耕可显著提高土壤表层(0~5 cm)有机质、全氮以及碱解氮、速效磷、速效钾含量,但随土壤深度增加, 提高效果呈逐渐下降趋势; 20~30 cm 土层土壤有机质、全氮和速效氮含量显著低于秸秆粉碎免耕处理。两种免耕模式(NC、NW)植株的全氮、全磷、全钾含量在苗期明显低于翻耕(MC)和旋耕(X)模式,在返青期差异最为显著。到拔节和扬花期, 免耕(NC、NW)植株的全氮、全磷、全钾含量与翻耕(MC)和旋耕(X)之间的差异逐渐减少, 并最终影响到籽粒养分的积累。  相似文献   

19.
Double cropping of soybean has progressed less rapidly in the U.S. Southeastern Coastal Plains than expected by the ample rainfall and long frost-free season. Post-emergence herbicides, the management of plant residues to reduce water use by cover crops, and a no-till planter with a combination subsoiler are the innovations that have facilitated this new production. Full-season soybean (Glycine max L.) was planted following a grazed cover crop of winter rye (Secale cereale L.) or late-season soybean was planted following winter wheat harvest. In both cases, a special planter was used with an integral subsoil shank ahead of the opener. Full-season soybean under conservation tillage produced yields equal to or better than yields in conventional clean tillage. In a dry summer, soybean yields under conservation tillage exceeded conventional tillage because of suppressed early biomass production which conserved stored soil water and favored growth during the reproduction phase of the crop-cycle. Late-season soybean yields behind wheat favored the conservation tillage practice of in-row subsoil-planting into stubble. However, planting in burned-off wheat stubble produced the highest yields in this study. In a dry spring, the cover crop accelerated soil water use which resulted in lower soybean yields under conservation tillage. Comparisons of 76 vs. 97 cm row spacing were inconclusive, but the trend suggests that wider rows conserve water under periods of drought and that the narrower-row configuration favors adequate water regimes.  相似文献   

20.
Three different experiments have been carried out in the area to the northeast of Madrid (central Spain) over 10 years with winter wheat (Triticum aestivum L.), winter barley (Hordeum vulgare L.), spring barley and vetch (Vicia sativa L.) grown for hay. In these experiments, three tillage systems were compared: conventional tillage (primary tillage was mouldboard ploughing to 300 mm depth), minimum tillage (primary tillage was spring tine cultivation either with a chisel or a cultivator to 150 mm depth) and zero tillage (direct drilling), in relation to energy consumption, production costs, energy efficiency and productivity, and economic returns. The experiments were performed on a Vertic Haploxeralf of a clay loam texture.The aforementioned variables were calculated considering every input (i.e. fertilisers, seeds, herbicides, machinery and fuel) including all the labour practices performed to harvesting. Post-harvesting activities were not included.The results showed that important energy and production cost savings may be achieved through minimum tillage and zero tillage, compared with conventional tillage. These energy savings ranged from 7 to 11% for cereal crops, whereas for vetch crops the reduction was 10% for minimum tillage and 15% for zero tillage. Production costs for minimum tillage were 13–24% less than for conventional tillage. For zero tillage these reductions ranged from 6 to 17%. For cereal crops, minimum tillage and zero tillage had energy productivities which were 18% and 20%, respectively, greater than that for conventional tillage. In most cases, yields of winter crops were similar, regardless of the tillage system considered. Only spring barley showed lower yields with zero tillage. For winter cereals the profitability with minimum tillage and zero tillage is higher than that with conventional tillage. However, spring barley is less profitable when using zero tillage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号