首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 140 毫秒
1.
南水北调工程邳州站竖井贯流泵装置进出水流态分析   总被引:8,自引:7,他引:1  
为揭示竖井贯流泵装置内、外特性之间的联系,完善其优化水力设计理论,该文采用三维流动数值计算的方法,对南水北调东线一期工程邳州站泵装置流道表面的流场和垂直于x、y、z3个方向剖面的流场进行了多视角的详尽剖析,并分别采用透明流道模型试验和透明泵装置模型试验的方法检验了流态数值模拟结果。由数值计算和模型试验结果可得:前置竖井贯流泵装置进水流道内的流态均匀平顺、层次分明;出水流道内的水流在螺旋状运动中平缓扩散,流道内无任何脱流或旋涡等不良流态;其水力性能优异的主要原因在于其具有优异的内特性。邳州站前置竖井贯流泵装置主要工况点的泵装置效率超过83%、临界空化余量小于5m,水力性能优异。该文可为低扬程泵站的水力设计提供有益参考。  相似文献   

2.
为比较竖井与轴伸贯流泵装置的水力特性,借助大型商用CFD软件在水泵水力模型、导叶以及流道总长度保持不变的情况下,对竖井和轴伸贯流泵装置进行了数值仿真模拟计算,并对竖井式贯流泵装置外特性进行了试验验证,试验结果表明设计工况点扬程和效率的模拟结果和试验误差在1%以内,非设计工况误差偏大。计算结果表明:进水流道水力损失较小但是能够影响着水泵性能的发挥,竖井与轴伸进水流道出口的面积加权均匀度分别为92.8%、95.2%,1.25倍设计流量工况下,叶轮的效率在竖井内比在轴伸贯流泵装置内效率最多低1.3%。出水流道的水力损失较大并影响着泵装置的性能曲线,轴伸与竖井出水流道水力损失最大值出现在0.59倍设计流量工况点,此时轴伸出水流道内水力损失值为0.459 m,竖井直管出水流道内水力损失值为0.741 m,轴伸贯流泵装置效率比竖井高了3.5%。算例中扬程以1.27 m为分界线,扬程低时竖井贯流泵装置整体性能较好,扬程高时轴伸贯流泵装置性能较好。该研究可为低扬程泵站的选型提供参考。  相似文献   

3.
为了定量研究大型泵装置导叶出口水流的速度环量对出水流道水力性能的影响,提出了泵装置导叶出口断面水流的速度环量定量表示方法和平均角速度的测量方法,分别采用数值计算和模型试验的方法研究了导叶出口水流的剩余环量对虹吸式出水流道和直管式出水流道水力损失的影响。结果表明:导叶出口水流的环量对出水流道水力损失的影响较为明显,存在使出水流道水力损失最小的最优环量,虹吸式和直管式出水流道的最优环量分别为0.972和1.308 m2/s;虹吸式出水流道和直管式出水流道最优环量时的水力损失计算值较零环量时的水力损失计算值分别小0.126和0.180 m。研究结果不仅有助于改进低扬程泵装置出水流道的优化水力设计,同时对改进轴流泵导叶的优化水力设计也有重要意义。  相似文献   

4.
泵站前置竖井进水流道三维湍流数值模拟与模型试验   总被引:3,自引:3,他引:0  
为探求大型泵站竖井流道的标准化水力设计方法,对基于规则化设计的竖井进水流道进行了三维湍流数值模拟,研究9个不同工况下的流道内部流动特性,揭示不同水平截面和纵向截面的流速分布,分析水泵入口断面的速度分布均匀度、加权平均入流角以及流道水力损失随流量变化规律。结果表明:竖井进水流道流线平顺,水流均匀渐缩,无漩涡或脱流,流态良好;水泵入口断面的速度均匀度和入流角度随流量变化很小,其平均均匀度Vu=95.46%,入流角度?=87.94°;流道水力损失随流量增大而增大,但局部阻力系数随流量增大而减小。设计制作了透明模型进水流道,测得9个不同流量下的流道水力损失,比较了数模与试验结果,并观测流态。由模型进水流道的试验结果可得出,流道水力损失较小,局部阻力系数2?6.249 10???,未见不良漩涡,数值结果与试验结果基本吻合。开展了竖井流道模型泵装置的能量特性试验,测得5个叶片角度下模型泵装置Q-H、Q-P和Q-η曲线。试验结果表明,模型泵装置在特低扬程较大的范围内均具有较高效率,其中在叶片角-2°、装置扬程1.83 m时的最高效率可达80.52%。该研究可为大型泵站竖井流道的水力优化设计提供参考。  相似文献   

5.
箱涵式进水流道的立式轴流泵装置水动力特性分析   总被引:4,自引:4,他引:0  
为了研究有涡时箱涵式进水流道的立式轴流泵装置水动力性能,该文采用CFD(computational fluid dynamic)和高速摄影技术对箱涵式进水流道的立式轴流泵装置进水流道内部附底涡流动特征及其对泵装置水动力性能的影响进行了分析。数值模拟和试验结果表明,基于CFD数值模拟技术,成功捕捉到各工况时箱涵式进水流道内部附底涡轨迹,与高速摄影捕捉到附底涡的运动轨迹较为一致,且均发生于喇叭管口下方,附底涡对泵装置的安全运行稳定性有直接影响。有、无消涡锥的箱涵式进水流道出口断面的轴向速度分布均匀度与速度加权平均角的差异性较小,但其水力损失值下降较大;叶轮所受轴向力相对比值m1在0~7.0%范围内波动,轴向力随流量系数的增大而减小,附底涡对叶轮所受径向力的影响较大,径向力相对比值m2在5.0%~110.0%范围内波动,涡带对叶轮受力有一定程度的影响,实际工程中应避免箱涵式进水流道内部涡带的出现。  相似文献   

6.
大型低扬程泵装置优化设计与试验   总被引:4,自引:3,他引:1  
为了对配置肘形进水流道和虹吸式出水流道的立式泵装置进行深入的研究,得到一种高效的立式泵装置,在肘形进水流道和虹吸出水流道型线数学模型基础上,开发了基于流道设计参数的优化设计软件,能快速进行流道型线的绘制,使流道的型线自动符合一维流速渐变的原则,并对虹吸出水流道的最优驼峰位置进行了理论分析。结合计算流体动力学技术,对待建的某大型低扬程泵站进行了肘形进水流道和虹吸出水流道的优化设计,得到了水力性能优良的进出水流道型线方案。根据泵装置水力模型比选试验,优选出了效率高、高效运行范围宽、无不稳定运行区、汽蚀性能好的高比转数导叶式混流泵211-80模型,在配置优化了的进出水流道的基础上使泵装置在扬程 5.4 m时模型装置效率达到了79.62%。该泵装置的优化设计方法与试验结果对相同装置型式的大型低扬程泵站建设具有重要的参考价值。  相似文献   

7.
内镶式滴灌带绕流流道水力性能研究   总被引:4,自引:6,他引:4  
该文运用水力学公式、数值模拟和快速原型试验研究了绕流流道滴灌带的水力性能,并建立了设计流量与流道结构参数之间的计算模型。数值模拟得到的流场水力结构显示水流的水头损失主要集中在流道的拐角,分支和交汇处。在数值模拟的基础上,利用快速成形技术制造出16种结构形式的绕流流道,并进行压力与流量特性试验。试验结果表明:绕流流道的流态指数为0.5左右,且受流道的截面积和单元数的影响较小;而流量系数则随截面积的增加而增加,随单元数的增加而减小。144组试验数据的回归结果显示:流量随流道的截面积和工作压力的增加而增大,随单元数的增加而减小;其中,截面积影响最大,单元数次之,最后是工作压力。  相似文献   

8.
基于Mixture多相流模型计算双流道泵全流道内固液两相湍流   总被引:14,自引:11,他引:3  
采用Mixture多相流模型、扩展的标准k-ε湍流模型与SIMPLEC算法,应用计算流体力学软件Fluent对双流道泵全流道内的固液两相湍流进行了数值模拟,并将计算结果与清水单相流数值模拟及泵外特性性能试验进行了对比,揭示了不同粒径及颗粒体积浓度条件下双流道泵全流道内的固液两相流动规律.研究结果表明:在叶轮流道内,固相体积浓度分布极不均匀,颗粒主要集中于叶轮出口处的工作面和后盖板上,但是随着颗粒浓度和粒径的减小,会出现颗粒向背面迁移的趋势;在蜗壳流道内,颗粒主要集中于靠近蜗壳出口侧的流道区域,颗粒运动轨迹紊乱,少部分颗粒脱离叶轮后能直接从蜗壳出口流出,大部分颗粒撞击蜗壳壁面,留在蜗壳内转动数圈才能流出;颗粒浓度变化对固相的离析作用影响相对较小;粒径变化对固相的离析作用影响较大,粒径越大,颗粒撞击点愈加集中于叶轮工作面,固相的离析作用越明显;相同体积流量下,泵进出口总压差随颗粒浓度和粒径的增加而减小.  相似文献   

9.
为了研究侧流道泵叶轮周围间隙质量流量交换规律,该文利用数值计算方法研究了侧流道泵在最高效率工况点下叶轮间隙处的流动规律,具体分析了其脉动扬程、交换质量流量、间隙处压力脉动情况、轴向速度变化等。结果表明,每旋转一个叶轮流道(18°),扬程出现一次完整的波动周期,每个周期内扬程最大值与最小值相差0.07 m左右;间隙外缘监测点的瞬时压力值明显大于其他4个监测点,顶部监测点压力值最大,在整个周期内的平均压力值大约是最小压力监测点的2.8倍;右侧间隙靠近外缘处的流体交换最激烈,该处速度绝对值最大;流体主要是在右侧间隙外缘大约0.8~1倍间隙半径处向侧流道流入,在0.53~0.8倍间隙半径处从侧流道流出至叶轮中;净交换流曲线近似呈三角函数图像变化,交替出现减小增大反复趋势,并且净交换流的波动导致侧流道泵扬程曲线的波动。该研究可为进一步提高侧流道泵的水力性能提供理论依据。  相似文献   

10.
迷宫灌水器水流流态试验   总被引:3,自引:3,他引:0  
为分析迷宫灌水器流道内水流流态及其相互转换的临界雷诺数,该文对5种流道尺寸的模型中水流流动现象进行观测与分析,并进一步分析了迷宫流道内水流水头损失与断面平均流速之间的关系以及相应断面尺寸直流道内水流沿程水头损失与断面平均流速之间的关系。结果表明:迷宫灌水器不断转折的流道对水流有很大的干扰,可以使其中水流在雷诺数为41.5时就失去稳定转变为过渡区;迷宫流道进口段单元中可能出现层流,出现层流的单元数占总单元数的10%~12%。从整体来看,可认为迷宫灌水器中水流流态为紊流或过渡区;与经典雷诺试验结果不同,迷宫流道中水流水头损失与断面平均流速的2.0~2.5次方成比例;迷宫灌水器的流态指数可达到0.4~0.5;该试验迷宫流道中水流过渡区与紊流区相互转换的临界雷诺数为87.5~125.0。  相似文献   

11.
削剪泵轮叶片是优化液力变矩器性能的一种手段。为了研究泵轮叶片削剪程度对液力变矩器性能的影响规律,该研究基于计算流体动力学,采用应力混合涡湍流模型(stress-blended eddy simulation,SBES)对液力变矩器内部流场进行仿真模拟,依托外特性试验验证仿真结果的准确性。通过Q准则涡识别方法,甄选合适阈值重构叶片削剪前后泵轮流道三维涡系结构,定性分析多尺度涡动力学特性,量化提取二维流场图谱信息,揭示流速场时空演化规律。结果表明:泵轮叶片设计流线从出口处经过10%、20%和30%的削剪后,液力变矩器的变矩比逐渐增大,由原型变矩器的1.77增大到叶片削剪30%的2.33,泵轮转矩系数降幅明显,由原型变矩器的5.51降低到叶片削剪30%的3.39,叶片削剪10%后变矩比增大4.34%,泵轮转矩系数降低10.73%,降幅明显;随着泵轮叶片削剪程度加剧,叶片对流体的推动作用减弱,流体动能减小,多尺度涡运动趋势衰减,流道中部涡结构特征改变,流道出口高能小尺度“脱落涡”现象减弱;泵轮流道出口流速随叶片削剪程度增大而减小,由原型变矩器的23 m/s降低到叶片削剪30%的19 m/s,泵轮进口流速几乎不变,因进出口流速的变化,泵轮转矩系数降低。研究结果可为液力变矩器叶片设计与性能优化提供指导性建议。  相似文献   

12.
为使离心式长轴泵能够在不同工况下高效运行,该文以500GJC-32.3×3型离心式长轴泵为例,对其进行优化,首先根据传统方法估算离心式长轴泵叶轮参数,通过正交方法对离心式长轴泵叶轮进行优化设计,对正交试验结果进行极差分析,得到了叶轮几何参数对离心式长轴泵扬程和效率影响的主次顺序。综合考虑各参数对离心式长轴泵性能的影响,选取重要因素,基于不等扬程设计理论,采用控制变量法对叶轮进行多方案优化设计,对比不同方案计算结果可知:基于不等扬程理论优化设计的叶轮具有较好的水力性能,选择合适的后盖板无穷叶片数理论扬程系数,可使叶轮水力性能趋于最佳。对于该型离心式长轴泵,当后盖板无穷叶片数理论扬程系数取1.1时可获得较优的水力性能,对比较优方案的试验与计算结果可知:二者变化趋势相同,扬程、效率、轴功率的最大误差分别为4.02%、5.58%、3.59%,在(0.8~1.2)倍设计流量工况下,扬程、效率、轴功率的误差小。同时由试验可知:该型离心式长轴泵在设计流量时扬程大于97 m,效率高于82%,最高效率点出现在1.1倍设计工况附近为83.22%,曲线具有较宽的高效区和无过载特性,能够满足设计要求,在丰水期和枯水期均能高效稳定的运行,同时可降低电机的配套功率,减少一次成本投入。因此,该文的研究结果对离心式长轴的优化设计有较好的参考价值。  相似文献   

13.
轴流泵叶轮出口轴面速度和环量的试验研究   总被引:3,自引:3,他引:0  
为了研究系列高效轴流泵叶轮出口轴面速度和环量分布规律,设计了叶轮出口流场测量装置。基于流体绕流圆球理论,采用微型五孔探针对高效轴流泵叶轮出口轴面速度和环量进行了试验测量。试验结果表明,在最优工况下,系列高效轴流泵模型叶轮出口轴面速度呈二次抛物线流型,其最大值出现在叶片中部,且轮缘侧较小的轴面速度提高了汽蚀性能;系列高效轴流泵叶轮出口呈非线性环量分布规律,在轮毂侧环量稍小,在叶片中部较为平直,在轮毂侧环量降低至中部的0.8倍左右,而轮缘侧增大至1.2倍左右;同时叶轮出口轴面速度分布呈现抛物线流型,叶片中部速度最大。测量的轴面速度和环量分布数据拟合成多项式数学模型,可为轴流泵叶轮水力设计提供参考。  相似文献   

14.
为了通过理论的方法准确预测液力透平的性能,该文分析了叶轮内部相对环流流动的特征,提出了3种计算离心泵反转作液力透平叶轮出口滑移系数的方法,得到了相应的叶轮出口滑移系数解析计算公式,然后采用10组离心泵反转作液力透平的试验数据对所提出的滑移系数计算公式进行验证,最后得出与试验结果较为吻合的解析公式。结果表明:当假设叶片工作面上的相对涡诱导速度与叶轮出口边上的相对涡诱导速度的比值等于叶片和涡心所张曲边三角形的面积与叶轮出口边和涡心所张曲边三角形的面积之比时,得到的液力透平叶轮出口滑移系数的计算公式最准确,可用于较准确地预测液力透平的性能。在计算液力透平叶轮内的滑移时只需计算叶轮出口的滑移。该研究结果为更加精确地通过理论方法预测液力透平的性能提供了参考。  相似文献   

15.
高比转数双蜗壳混流泵设计及流动特性分析   总被引:1,自引:1,他引:0  
针对目前比转数超过500的蜗壳混流泵研究较少,该文基于理论分析、CFD技术和模型试验的研究方法,以某高比转数混流泵的叶轮与蜗壳在设计工况下的良好匹配为目标,利用速度系数法对蜗壳结构进行优化设计,设计了一台比转数为585的高比转数双蜗壳混流泵,并对优化后的高比转数双蜗壳混流泵的内部流动特性进行了分析。将外特性试验数据与数值计算结果作对比,验证了该文数值计算模型与方法的准确性。研究结果表明,双蜗壳方案下水泵在偏离设计工况下的效率明显高于单蜗壳方案;双蜗壳结构混流泵的径向力在相同工况下比单蜗壳结构的径向力低,双蜗壳结构在保持原有水力性能的基础上还可以起到减小径向力的作用;不同工况下双蜗壳混流泵叶轮径向力矢量轨迹图分布呈类似正方形的封闭区间分布,径向力合力随时域呈现周期性变化,每个转动周期内有4个波峰和波谷;设计工况下的瞬态径向力合力最小,而小流量工况下的瞬态径向力合力最大且最不稳定,说明当双蜗壳混流泵长期运行在小流量工况下会增加安全事故隐患。研究成果为高比转数双蜗壳混流泵的设计以及内部流动特性研究提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号