首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
基于物联网的病死猪无害化处理山区运输监控系统设计   总被引:1,自引:0,他引:1  
目前,大多数无害化处置运输车辆使用全球定位系统(global positioning system,GPS)来确定病死猪的消毒站位置和运输路线。然而,当车辆在偏远山区运行时,定位信息传递不连续和不完整。为了解决这个问题,设计了一套病死猪无害化处理监控系统,系统结合北斗导航系统、全球定位系统、无线射频识别技术(radio frequency identification,RFID)、通用分组无线服务技术和地理信息系统等技术。利用北斗/GPS双模用户机双模定位和双向通信的功能,一方面,它可以解决单一定位时出现的定位信息不稳定的问题;另一方面,当BDS导航定位系统数据似乎显示出偏差,将WGS-84坐标系的GPS定位数据转换为BDS定位系统的CGCS2000坐标系,以提高运输车辆位置信息采集精度的目的。利用GAMIT软件计算观测点的三维坐标,并对组合导航和单导航的定位精度进行分析。采用Floyd算法对运输路线进行优化,寻找最短的运输距离。利用北斗卫星的信息通信功能代替全球移动通信系统(global system for mobile communications,GSM),短消息业务,实现无害化运输车辆与控制中心之间的信息远程传输。控制中心通过对接收到的数据进行分析,得到病死猪收运车的运输路线和定点消毒监测信息。系统试验表明:采集的数据能够准确及时地传输到控制中心,北斗/GPS双模接收机定位精度比北斗卫星定位精度高55.13%,比GPS卫星定位精度高52.71%。北斗通信的网络丢包率为0.26%,消毒点的车辆定点识别误差率0.97%,结果表明,满足病死猪无害化处理监控管理的要求,系统运行可靠、稳定。该系统的构建与应用,为其他病死动物无害化处理的综合管理与监控提供参考。  相似文献   

2.
根据"天地一体化"动态监管技术对地面现场调查的支撑技术及设备提出的新要求,提出了一套生产建设项目水土保持"天地一体化"动态监管信息移动采集与管理解决方案,并结合生产建设项目监管示范任务,开发了一套集移动空间数据管理、高精度定位、远距离测绘、移动输出、无线数据传输通信、云端数据管理等先进技术为一体的水土保持监管信息移动采集系统,可有效提高现场信息采集工作效率,满足内外业实时数据互动、全国数据共享、历史数据统一管理等需求。  相似文献   

3.
基于GPS和PDA的移动智能农田信息采集系统开发   总被引:4,自引:4,他引:0  
根据精细农业发展的需要,开发了移动智能农田信息采集系统。系统以掌上电脑(PDA)为平台,集成了ZigBee协调器模块、GPS OEM模块和GPRS模块。ZigBee协调器模块用于管理农田无线传感器网络,通过农田无线传感器网络采集农田信息,应用无线节点进行数据的采集;GPS模块用于采集并管理各采样点的位置信息,并通过虚拟差分站VRS接收GPS位置的差分信息以提高定位精度;GPRS模块用于在申请差分信息和与上位机通讯时建立远程无限网络连接。使用VC语言开发了嵌入式应用模块,实现了无线传感器的农田信息、GPS的  相似文献   

4.
为了满足精细农业中对高精度定位数据的需求,该文使用低成本的RTK-GPS OEM板和无线通讯模块,设计开发了一套可采用VRS差分的GPS接收系统,并对北京市VRS系统的RTCM/CMR两种差分数据源格式、GPRS/CDMA两种差分数据无线传输方式的稳定性进行了分析比较。实验结果表明,设计开发的系统性能稳定;VRS差分数据源稳定可靠,可满足不同精度要求的GPS定位需求;CDMA无线传输方式引起的数据延迟小于GPRS方式,但通信成本较高,用户可综合考虑成本和精度两方面因素进行通讯方式的选择。  相似文献   

5.
改进DV-Hop定位算法在动物监测中的应用   总被引:3,自引:1,他引:2  
为了避免无线传感器网络中由于节点在测距精度、时间同步、硬件与功耗等方面代价较高造成整个网络死亡,同时提高定位精度,该文基于饲养场的实际环境,对无线传感器网络中典型的DV-Hop定位算法进行简化和优化改进,通过仿真和实际节点试验对定位误差等性能指标进行评价。研究结果表明:改进算法比原始三边测量算法的定位误差平均减少3.17%,能够监测到实际环境中“行走动物”节点的运动轨迹,且定位平均误差为0.33 m。改进算法不仅不需要GPS等硬件辅助,而且减少了计算开销,节省能耗,提高了定位精度,可以有效应用于实际环境。  相似文献   

6.
3S技术在水土保持中的应用   总被引:4,自引:2,他引:4  
GIS、GPS、RS三者之间的关系是相互依赖、相互补充的 ,许多应用工程或应用项目需要综合利用这三大技术的特长 ,方可形成和提供所需的对地观测、信息处理、分析模拟的能力。为实现真正的 3S集成技术 ,需要研究和解决 3S集成系统的实时空间定位、一体化数据管理、语义和非语义信息的自动提取等问题。应用 3S技术比手工操作成本要低3 0 %~ 70 % ,甚至更低 ;工作效率能够提高 3 0 %以上 ,对于复杂的项目可能会提高几倍。  相似文献   

7.
基于3S技术联合的农田墒情远程监测系统开发   总被引:14,自引:8,他引:6  
农田墒情信息是现代农业实施精准施肥、精确灌溉的重要科学依据。为了实现快速准确地采集墒情信息,研究开发了基于3S(GPS/GIS/GPRS)技术联合的农田墒情远程监测系统。该系统主要由农田信息监测网络节点和远程服务器组成,在小范围内由传感器节点基于ZigBee通讯协议组成无线传感器网络,在大尺度上通过网关节点集成GPS网络,利用GSM/GPRS网络实现与Internet的信息交互,完成了墒情数据的自动采集、无线传输和准确定位。设计了太阳能自供电的长寿命无线传感器节点和网关节点,开发了服务器端农田墒情信息管理系统软件,实现了Web方式下的参数远程设置和信息实时监测。该系统的设计开发为农田墒情信息监测和分析决策提供了有效的工具。  相似文献   

8.
基于GPS和SMS技术的土壤养分水分速测系统的研究   总被引:1,自引:0,他引:1  
为了满足精确施肥中对高密度、全面的农田土壤信息采集、数据无线传输和施肥决策的需要,本系统利用计算机技术和无线数传技术(SMS)对GPS、GIS和土壤养分水分速测系统进行有机集成.一方面通过AT891v55单片机,使差分GPS和土壤水分测定仪有机集成,实现土壤采样、水分测定、定位一体化;另一方面研制开发了集成针对石灰性褐土的速测值向常规值转换模型的土壤养分速测仪,并利用BENQ M22 SMS数传模块实现土壤养分速测系统与土壤养分管理决策系统的远程数据通讯和资源共享;同时利用Visual Basic和MapObjects控件集成GIS,实现具有空间属性的土壤养分数据可视化管理和分析处理.  相似文献   

9.
鉴于GPS的工作特点、主要功能,在测量、导航、测速、测时、工程变形监测、资源勘察等方面得到广泛的应用,同样应用于水土保持设计和监测领域。如在野外即时定位、寻找目标点、导航、保存航迹、计算距离、计算面积、导线测量和罗盘的如何使用等问题。目的在于使广大水土保持工作者熟练掌握GPS的使用方法,对提高水土保持工作效率,掌握现代高科技设备的使用技术,起到积极的帮助作用。  相似文献   

10.
基于无线传感器网络的设施农业车辆定位系统设计与试验   总被引:2,自引:4,他引:2  
为解决目前设施农业机械定位系统稳定性差、定位精度低和成本高等问题,该文设计了一套基于Nano PAN5375模块的无线传感器网络(wireless sensor network,WSN)定位系统。该定位系统的3个信标节点负责和定位节点的无线测距,安装有定位节点的车辆构成的移动节点负责无线测距和定位坐标的计算。WSN节点采用的是基于Nano PAN5375的WD5032N模块。Nano PAN5375模块通过串行外设接口和微处理器进行通信,实现无线通信和无线测距的功能。设计了WD5032N模块的供电底板电路,满足其微处理器和Nano PAN5375模块的供电要求,以及通过串口和液晶显示屏模块通信实时显示定位坐标X和Y。节点软件以Keil MDK为开发环境,采用单片机C语言开发,实现节点数据采集与处理、无线传输和串口通信等功能。在定位节点上,采用基于线性调频扩频技术的对称双向双边测距算法来计算定位节点到各个信标节点之间的距离,并使用三边质心定位算法计算出未知节点的坐标位置信息,最后使用卡尔曼滤波算法对目标状态的观测值进行迭代,解决因为测量噪声对于定位精度造成的影响。在WD5032N上分别采用3DB天线和5DB天线进行室内和室外测距和定位试验,结果表明,基于Nano PAN5375的WSN定位系统稳定性好,定位精度高,在3个信标节点组成的合适的等边三角形3条边线范围内定位精度能达到1 m左右,而在接近三角形边线外侧的位置定位精度是1~2 m左右,可以满足一般设施农业车辆的定位精度要求。该文为农业机械精确定位的深入研究提供了参考。  相似文献   

11.
为低成本实现对温室不同区域环境的全面感知,该研究设计了移动式温室环境监测系统,其采用超宽带(Ultra Wide Band,UWB)网状拓扑结构进行分布式组网,节点设备以一主多从的形式对移动工作台实时定位。利用优化后的双向双边测距算法计算各基站与标签之间的距离,通过距离的归一化残差分布判断是否存在非视距(Non Line of Sight, NLOS)误差,利用改进后的增量卡尔曼滤波算法消除NLOS误差,通过Chan算法解算标签准确位置。移动工作台以Arduino控制器为核心,搭载温度、湿度、二氧化碳和光照度传感器,实现对温室环境的实时监测和对移动工作台的远程控制。测试结果表明,系统静态定位最大横向偏差为7.92 cm,最大纵向偏差为7.98 cm,横向和纵向偏差的平均值均<5 cm;移动工作台以0.4 m/s的平均速度行驶,动态定位最大横向偏差为8.7 cm,平均横向偏差为4.7 cm;采集参数上传平均丢包率为2.78%;温度、湿度、光照度和二氧化碳浓度监测相对误差分别低于0.63%、0.34%、0.70%和0.67%,满足温室环境信息移动监测要求。该研究对温室环境调控和温室内作业机具精准定位技术的发展具有一定的理论意义和参考价值。  相似文献   

12.
农资仓储脉冲超宽带室内定位系统设计与试验及误差分析   总被引:3,自引:3,他引:0  
针对仓储环境下农资物品与自动导引运输车(automated guided vehicle,AGV)的定位精度低的问题,开发了适用于农资仓储环境下的脉冲超宽带技术(impulse radio-ultra wide band,IR-UWB)室内定位系统。采用双面双程测距(symmetric double sided-two way ranging,SDS-TWR)方法,建立了考虑时钟频偏等因素的到达时间(time of arrival,TOA)定位系统模型。研究表明定位系统计算所带来的误差主要来源于距离测算方法和节点位置计算方法 2方面,在这2方面提出了相应的解决办法,包括测距算法的选择,基站的布置等。最后,以DW1000射频芯片为硬件基础,设计了定位系统移动站和基站节点,并在农资仓库的环境中分别进行了静态测距试验、静态定位试验、以及动态定位试验。试验表明:静态测距精度优于50 mm,静态定位精度优于50 mm,动态定位试验精度优于85 mm。综合结果表明,该文搭建的系统可满足农资物品定位的实际应用要求,可为室内农资仓储环境下AGV的定位和导航提供参考。  相似文献   

13.
针对在谷物产量测量作业中收割机采用单一的全球定位系统(global positioning system,GPS)进行定位时定位信息不稳定的问题,提出利用具有定位和双向通信功能的北斗/GPS双模用户机,其内部采用北斗(BJ-54)和GPS(WGS-84)2种混合定位方式,将这2种定位方式互补使用,可以解决当使用单一定位情况下定位信息不稳定的问题。利用北斗/GPS双模用户机的定位信息实现谷物收割机行走线路图的测绘;利用北斗卫星的报文通信功能代替全球移动通信系统短信息服务,实现谷物收割机作业数据的远程传输功能。谷物收割机作业综合管理系统包括作业管理中心和车载子系统两部分。车载子系统实现收割机的地理位置、收割面积和谷物质量等数据的采集,然后将采集的数据通过北斗卫星传输给作业管理中心。作业管理中心利用这些数据可以绘制出收割机作业轨迹图和产量分布图,同时作业管理中心也可以向收割机发送作业指令,并通过文本语音转换模块将文本内容转换成语音信号输出,实现作业的综合管理与调度。田间产量测量试验表明,系统测量谷物收割面积相对误差为2.9%,谷物产量相对误差为3.47%,系统运行稳定、可靠。该系统可为南方丘陵山区谷物收割机跨区作业的产量测量、管理提供参考。  相似文献   

14.
编码通讯是依靠电动力学的变量的变化进行通讯的,手机的通讯是通过手机无线电基站以及手机信号的数码编码之间通讯的。由于实现了信号的多点化,由于实现了信号的多路化多方并行通讯,手机通讯实现了多方并行通讯,手机之间的通讯是数字编码之间的通讯。手机的入网容量为入网基站的容量,136号网的入网基站同时可以容纳下最大的入网手机为479 001 600部。  相似文献   

15.
放养密度对稻田内鸭子运动规律及杂草控制效果的影响   总被引:2,自引:0,他引:2  
为探索放养密度对鸭子在田间运动行为规律的影响及其对杂草的控制效果,该文采用超宽带(ultra wide band,UWB)定位技术,检测了鸭子在田间运动位置信息,研究了不同放养密度下鸭子在田间的活动规律及其对水田主要杂草的防除效果。结果表明,随着放养密的增加:1)鸭子的活动范围变大,单位面积出入几率也增大;2)鸭子在田间运动时间占总时间的比例逐步加大,对应每660 m2放养15、20、25和30只4种放养密度,该比例分别是69.17%,75.33%,77.83%和80.00%;3)鸭子进入各个小单元格的平均次数越多,对应上述4种放养密度,鸭子每天平均进入各单元格次数分别是12.05、17.82、23.03和27.73次,其中,高频次比例逐渐增加,且增加较快,而低频次比例逐渐较小;4)对杂草的控制效果越好,因为鸭子在田间活动的目的是获取食物,放养密度越大,鸭子为获取食物而产生的竞争越激烈,鸭子在田间的活动范围越广、时间越长、进入各个小单元格的频次越高,其采食杂草的机会越多。研究成果将为鸭稻共作技术工艺的进一步优化提供参考。  相似文献   

16.
集成3S,ZigBee和射频识别的土壤采样远程智能管理系统   总被引:3,自引:3,他引:0  
为实现农田土壤样本采样及管理智能化,设计了基于3S(GIS:geographic information system;GPS:global positioning system;RS:remote sensing)、ZigBee无线通信、射频识别(radio frequency identification,RFID)、4G等技术的土壤采样智能管理系统,该系统由采集节点、协调器网关、移动终端和远程管理软件组成,其中采集节点用来获取土壤样本的地理位置信息、RFID电子标签数据以及土壤环境的温湿度。协调器网关由ZigBee协调器连接4G模块组成,实现ZigBee无线网络转换为4G网络。4G模块经配置软件配置好服务器IP和端口号等信息后,将采集节点获取的数据传输到远程服务器的管理软件中。通过系统稳定性试验测试,丢包率为0.2%,该系统具有较高的可靠性。移动终端采用掌上电脑PDA(personal digital assistant),实现土样采集的现场监测管理。远程管理软件应用Web、SQL Server(structured query language server)、Socket等技术开发了数据接收显示、百度地图、数据自动成图(2D、3D)等功能模块。利用GPS信息在百度地图中可以实现采样点的实时跟踪,调用数据库数据或者本地试验数据可以自动生成有关土壤信息的空间分布图。该系统采集土壤样本信息的同时也可获取相应的土壤样本养分信息,将土壤养分信息数据按照RFID标签导入土壤管理软件中对应的土样信息栏,生成了土壤养分空间分布图,为后续变量施肥提供决策支持。  相似文献   

17.
基于遗传BP算法的温室无线传感器网络定位方法   总被引:4,自引:3,他引:1  
王俊  刘刚 《农业工程学报》2012,28(21):156-163
针对温室移动节点定位的需求,提出了一种基于遗传BP算法的温室无线传感器网络定位方法。该方法主要包括路径损耗指数确定、定位模型训练、未知节点定位3个阶段。首先,锚节点间相互通信,通过高斯校正模型增强定位信息的准确性后,利用最小均方误差估计法确定路径损耗参数;然后,应用遗传BP算法建立未知节点坐标和未知节点至锚节点的距离向量之间的映射关系模型;最后将未知节点接收各锚节点的RSSI值转换为距离向量,输入定位模型中,估算未知节点的位置。试验表明,该方法充分考虑环境对信号传输模型的影响,定位误差≤2m的比例达24%,定位误差≤3.5m的比例达86%,相对定位误差低于4.8%,具有较高的稳定性和定位精度,能够满足实际温室环境的定位需求。  相似文献   

18.
曹守启  禹松  张铮 《农业工程学报》2020,36(10):158-165
现代渔业养殖朝着精细化的方向发展,渔业物联网的应用越来越广泛。对于部署的终端节点,除了需要获取环境感知信息,还必需获取节点的位置信息,这样采集数据才有应用价值。该研究提出了一种面向渔业物联网应用的基于LoRa(LongRange)网络的低成本GPS(GlobalPositioningSystem)相对定位方法。首先通过误差分析建立相对定位策略数据模型,然后设计了基于LoRa网络的相对定位方法和改进的时分多址(Time Division Multiple Access, TDMA)传输策略,实现了高精度定位和高能效数据传输,最后设计了LoRa物联网硬件节点并在近海渔场进行了部署测试,试验数据表明了该文提出方法的有效性与可靠性。在采用低成本GPS商用模块的情况下,距离网关1 000和499 m的终端节点的平均定位精度由10 m分别提高到4.8和2.4 m,数据投递率由80%提高到95%以上。  相似文献   

19.
水产养殖参数无线测量网络的长生命周期研究   总被引:3,自引:3,他引:0  
在水产养殖参数的无线测控网络中,测量节点能耗不均匀,个别节点由于能耗大过早失效,降低了网络的有效生命周期。该文对采用平面路由协议和低能量自适应分群分层路由协议(LEACH)的测控网络进行对比试验,发现采用LEACH协议网络的有效生命周期延长19%以上。在LEACH协议的水质参数测量网络中存在2个缺陷:一方面无线测控网络中每个簇的簇首功耗远远大于普通节点,LEACH协议通过等概率随机选择簇首部分改善了节点能耗的均衡性,但水产养殖参数监控中每个簇首功耗不同,为此在LEACH优化协议中依据节点剩余能量的多少选择簇首,使节点的剩余能量更趋均衡;另一方面水产养殖池中距离基站较远的节点容易提前失效,主要是因为监控面积大,簇首节点与基站采用单跳通信,远距离节点被选为簇首后向基站发送数据通信距离远,路径损耗采用多路径衰落信道模型,衰减指数为4。在优化协议中,对远距离簇首与基站通信采用双跳通信,使路径损耗采用自由空间信道模型,衰减指数为2。试验表明,无线传感网络有效生命周期延长了8%,各节点失效时间更趋接近。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号