首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Abstract

Response of Sesuvium portulacastrum L., to the elogenous addition of sodium chloride (NaCl), applied at different concentrations ranging from 100 to 900 mM was evaluated. Leaf area, shoot and root weight of the treated plants were increased significantly. Total nitrogen (N) content of leaves, stem and root was significantly increased up to 600 mM NaCl, and thereafter declined moderately. Accumulation of potassium (K), and calcium (Ca) were exponentially increased with NaCl treatment as also observed in the case of N. Sodium content of shoot and roots of S. portulacastrum increased significantly with increasing NaCl concentrations. Certain essential elements like copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn) were also accumulated in all plant parts significantly, up to 600 mM. However, due to high salinization, growth and development of plants inhibited markedly. Furthermore, elemental concentration decreased beyond 600 mM level of NaCl. Due to aging and senescence, marked changes in leaf area, shoot, root volume and mineral content were observed between sampling time.  相似文献   

2.
Pot experiment was conducted in a greenhouse to compare the effect of four organic substrates [S1: Persian turpentine trees leaf mold (50%) + Soil (50%); S2: Oak leaf mold (50%) + Soil (50%); S3: Cypress leaf mold (50%) + Soil (50%) and S4: liquorice processing wastes (50%) + Soil (50%)] application on strawberry growth, yield, and nutrient concentration, and on some soil properties. Results showed that leaves mold and liquorice wastes application decreased pH, increased soil organic matter, and increased soil concentrations in all mineral elements studied, except for potassium (K). The amount of mineral elements in substrates had also a great influence on the leaf nutrient concentrations. High levels of nitrogen (N), K, iron (Fe), manganese (Mn), and zinc (Zn) were obtained in leaves; while phosphorus (P) concentration was lower than sufficient levels. Although, strawberry fresh and dry weights and leaf chlorophyll content were significantly higher in plants grown in S4 with no added fertilizer, the highest fruit yield was obtained in combination substrates with 50% fertilizer. Our results indicate that use of leaf mold and liquorice wastes in soil mixtures can reduce the amount of fertilizer required for optimum strawberry plant growth and yield.  相似文献   

3.
The development of iron deficiency symptoms (growth depression and yellowing of the youngest leaves) and the distribution of iron between roots and leaves were investigated in different vine cultivars (Silvaner, Riparia 1G and SO4) grown in calcareous soils. As a control treatment all cultivars were also grown in an acidic soil. Only the cultivars Silvaner and Riparia 1G showed yellowing of the youngest leaves under calcareous soil conditions at the end of the cultivation period. All cultivars including SO4 showed severe shoot growth depression, by 50 % and higher, before yellowing started or without leaf yellowing in the cultivar SO4. Depression of shoot growth occurred independently from that of root growth. In a further treatment the effect of Fe‐EDDHA spraying onto the shoot growth of the cultivar Silvaner after cultivation in calcareous soil was investigated. Prior to Fe application plants were non‐chlorotic, but showed pronounced shoot growth depression. Spraying led to a significant increase in shoot length, though leaf growth was not increased. Accordingly, depression of shoot growth of non‐chlorotic plants under calcareous soil conditions and with ample supply of nutrients and water has been evidenced to be at least partly an iron deficiency symptom. We suggest that plant growth only partially recovered because of dramatic apoplastic leaf Fe inactivation and/ or a high apoplastic pH which may directly impair growth. Since growth was impaired before the youngest leaves showed chlorosis we assume that meristematic growth is more sensitively affected by Fe deficiency than is chlorophyll synthesis and chloroplast development. In spite of high Fe concentrations in roots and leaves of the vines grown in calcareous soils plants suffered from Fe deficiency. The finding of high Fe concentrations also in young, but growth retarded green leaves is a further indication that iron deficiency chlorosis in calcareous soils is caused by primary leaf Fe inactivation. However, in future, only a rigorous study of the dynamic changes of iron and chlorophyll concentration, leaf growth and apoplastic pH at the cellular level during leaf development and yellowing will provide causal insights between leaf iron inactivation, growth depression, and leaf chlorosis.<?show $6#>  相似文献   

4.
In order to investigate the effects of different iron (Fe) sources (nano iron (Fe)-chelate, Fe- ethylenediamine-di(o-hydroxy phenyl acetic acid (EDDHA) and iron (II) sulfate (FeSO4)) on lettuce (Lactuca sativa) growth in alkaline solutions, an experiment was arranged in hydroponic system. This study showed that leaf Fe content and overall plant growth was significantly increased by Fe-chelate application, and the highest values of leaf Fe, plant pigments and vegetative growth were recorded in plants treated with nano Fe-chelate. The lowest Fe, chlorophyll, carotenoids and soluble sugars in leaves were observed in FeSO4 treatment. There were no difference in soluble sugars contents of plants between nano Fe-chelate and Fe-EDDHA treatments. Fertilization of lettuce plants with different Fe-chelate sources had a beneficial effect on the manganese (Mn) and zinc (Zn) uptake in plants. It is concluded that application of chelated form of Fe (especially nano Fe-chelate) must be performed in hydroponic system with alkaline water, to overcome Fe deficiencies and to make better nutritional status.  相似文献   

5.
Abstract

The distribution of some nutrient elements in various parts of Siratro plants of different age and phosphorus status was examined in order to assess which plant parts were best to sample for chemical analysis of nutrient status and to estimate the relative mobility of these elements within the shoot.

With increasing physiological age of leaves, concentrations of nitrogen, phosphorus, sulphur and potassium decreased, concentrations of calcium, aluminium, manganese and boron increased and concentrations of magnesium, iron, zinc and copper were little affected. Concentrations of nitrogen, phosphorus, sulphur, calcium, aluminium, boron, zinc and copper in plant parts between the tip and the third youngest, expanded leaf changed little with plant age, suggesting that analysis of this portion of the shoot would be a suitable guide to the sufficiency, or otherwise, of these elements in Siratro plants. By contrast, potassium concentration in all plant parts was markedly depressed by increasing plant age, suggesting that a standardized sampling time would be necessary for interpretation of plant potassium status. Concentrations of magnesium, iron and manganese in all plant parts also decreased with plant age, but to a lesser extent than potassium.

Concentrations of all elements, except nitrogen and phosphorus, decreased slightly with increasing phosphorus supply. This decrease could best be attributed to a dilution of these elements with increased plant growth, induced by phosphorus.

The present results suggested that potassium, and possibly iron and magnesium, were redistributed in Siratro shoots with time whereas other elements were relatively immobile.  相似文献   

6.
为探究铁、锌不同浓度配施对藿香生长、产量及有效成分的影响,以藿香为试验材料,采用双因素随机区组设计,研究铁锌配施对藿香生长、产量、各部位铁锌分配及挥发油含量的影响。结果表明,叶面喷施铁锌肥能显著影响藿香的生长发育、产量和挥发油成分,显著影响藿香的抗氧化酶活性,显著提高淀粉、还原糖、可溶性糖和可溶性蛋白含量,通过影响氮代谢相关酶活性间接影响植株氮代谢过程。叶面施铁对藿香产量的影响大于叶面施锌,铁锌配施的增产效果优于单独施用铁、锌肥;综合考虑藿香的生长和产量指标,认为Fe1Zn1(0.2%铁,0.1%锌)为铁锌配施的最优处理组合。施用锌铁肥能够增加藿香各部位的铁锌含量,锌在不同部位的含量呈叶>根>茎的变化趋势,铁在不同部位的含量呈根>叶>茎的变化趋势,锌主要集中在藿香叶片,而铁则主要集中在藿香根部。高浓度的叶面施铁有助于叶片Ca含量的累积。铁锌配施能显著提高藿香挥发油含量,并影响挥发油成分,其中D-柠檬烯含量最高,在Fe1Zn2处理时达到最大值(22.99%)。综上,合理配施铁锌肥能提高藿香主要化学成分的含量,但过高浓度的施用增产效果并不明显。本研究结果为铁锌肥在藿香生产中的应用提供了理论依据。  相似文献   

7.
A short-term experiment was carried out to study the effects of exogenous nitric oxide (NO) on some growth parameters and mineral nutrients of maize grown at high zinc (Zn). Maize seedlings were planted in pots containing perlite and subjected to 0.05 or 0.5 mM Zn in nutrient solution. Nitric oxide (0.1 mM) was sprayed to the leaves of maize seedlings. High Zn reduced total dry matter, chlorophyll (Chl.) content and leaf relative water content (RWC), but increased proline content and membrane permeability. Foliar application of NO significantly increased chlorophyll content, RWC and growth of plants treated with high Zn, and significantly reduced their membrane permeability and proline contents. High Zn resulted in increased leaf and root Zn, but lower concentrations of leaf phosphorus (P), and iron (Fe). Foliar application of NO lowered leaf and root Zn and increased leaf and root nitrogen (N) and leaf Fe in the high Zn plants. These results clearly demonstrated that externally-applied NO induced growth improvement in maize plants was found to be associated with reduced membrane permeability under high zinc. Results can be concluded that NO may be involved in nutritional and physiological changes in plants subjected to high Zn.  相似文献   

8.
Three rice (Oryza sativa L.) varieties viz. ‘CR 683‘, ‘Budumoni’ “Budumoni”, and ‘Akisali’ were grown in sand culture in a greenhouse with three levels of iron (Fe) in nutrient solutions viz., 0.045 (control), 5.34, and 7.12 mM Fe to study the effects of iron on physiology of rice seedling growth. Shoot length, root, and shoot dry weights were reduced significantly by higher levels of Fe in the medium. Results of leaf bronzing have revealed higher bronzing score in the seedlings grown at 7.12 mM Fe in the growth medium. Occurrence of bronzing was severe in varieties ‘CR683’ and ‘Akisali’. Variety ‘Budumoni'maintained higher leaf chlorophyll content, nitrate reductase activity and total soluble protein in the leaves at 5.34 and 7.12 mM Fe. Higher concentration of iron in the nutrient medium exerted an inhibiting effect on the concentration and content of almost all the macro and micronutrients in the root and shoot. Higher Fe and nitrogen (N) contents and lower phosphorus (P), potassium (K), manganese (Mn), copper (Cu), and zinc (Zn) were determined in roots and shoots in plants grown in medium supplied with 7.12 mM Fe. The variety ‘Budumoni’ “Budumoni” performed relatively better in comparison to other tested varieties at 7.12 mM Fe in the growth medium. ‘Budumoni’ “Budumoni” can be considered a suitable rice variety to use in the rice-breeding programme for Fe toxicity tolerance in acid soils of Assam.  相似文献   

9.
A nutrient solution experiment was carried out to evaluate effects of different magnesium (Mg) concentrations (0, 25, 50, 75 and 100 percent of magnesium concentration of Hoagland solution) on growth and physiological characteristics of Iranian melons (Cucumis melo var. inodorus subvar. Khatouni). The experiment was done based on completely randomized design using plastic pots and sand culture. The results showed that SPAD value of leaves, plant leaf number, stem diameter, shoot fresh and dry weight, root fresh weight, chlorophyll b, carotenoids, protein, catalase and peroxidase activities were constantly increased by increasing Mg levels of nutrient solution until 75 or 100% Mg levels, while leaf area, petiole length, internodes length were highest in lower levels of Mg compared to full Mg of nutrient solution. Moreover, the leaf concentrations of nitrogen (N), phosphorus (P), potassium (K), magnesium, and iron (Fe), but not calcium (Ca), were increased by increasing magnesium concentration to full Hoagland nutrient solution Mg level.  相似文献   

10.
Plants grown in salt‐affected soils may suffer from limited available water, ion toxicity, and essential plant nutrient deficiency, leading to reduced growth. The present experiment was initiated to evaluate how salinity and soil zinc (Zn) fertilization would affects growth and chemical and biochemical composition of broad bean grown in a calcareous soil low in available Zn. The broad bean was subjected to five sodium chloride (NaCl) levels (0, 10, 20, 30, and 40 m mol kg?1 soil) and three Zn rates [0, 5, and 10 mg kg?1 as Zn sulfate (ZnSO4) or Zn ethylenediaminetetraaceticacid (EDTA)] under greenhouse conditions. The experiment was arranged in a factorial manner in a completely randomized design with three replications. Sodium chloride significantly decreased shoot dry weight, leaf area, and chlorophyll concentration, whereas Zn treatment strongly increased these plant growth parameters. The suppressing effect of soil salinity on the shoot dry weight and leaf area were alleviated by soil Zn fertilization, but the stimulating effect became less pronounced at higher NaCl levels. Moreover, rice seedlings treated with ZnSO4 produced more shoot dry weight and had greater leaf area and chlorophyll concentration than those treated with Zn EDTA. In the present study, plant chloride and sodium accumulations were significantly increased and those of potassium (K), calcium (Ca), and magnesium (Mg) strongly decreased as NaCl concentrations in the soil were increased. Moreover, changes in rice shoot Cl?, Na+, and K+ concentrations were primarily affected by the changes in NaCl rate and to a lesser degree were related to Zn levels. The concentrations of Cl? and Na+ associated with 50% shoot growth suppression were greater with Zn‐treated plants than untreated ones, suggesting that Zn fertilization might increase the plant tolerance to high Cl? and Na+ accumulations in rice shoot. Zinc application markedly increased Zn concentration of broad bean shoots, whereas plants grown on NaCl‐treated soil contained significantly less Zn than those grown on NaCl‐untreated soil. Our study showed a consistent increase in praline content and a significant decrease in reducing sugar concentration with increasing salinity and Zn rates. However, Zn‐treated broad bean contained less proline and reducing sugars than Zn‐untreated plants, and the depressing impact of applied Zn as Zn EDTA on reducing sugar concentration was greater than that of ZnSO4. In conclusion, it appears that when broad bean is to be grown in salt‐affected soils, it is highly advisable to supply plants with adequate available Zn.  相似文献   

11.
A pot experiment was conducted to evaluate the effects of zinc oxide (ZnO) and iron oxide (Fe2O3) nanoparticles on the growth of two maize cultivars under the saline condition. Salt stress induced decreases of shoot, root dry weight, leaf area and leaf gas exchange of S.C. 704 more than Bulk. The increase of salinity level, chlorophyll a, b and total chlorophyll content and iron (Fe) and zinc (Zn) concentrations under all spray treatments declined. Application of ZnO and Fe2O3 significantly enhanced the root growth (17%), net carbon dioxide (CO2), assimilation rate (8%) and sub-stomatal CO2 concentration (5%) of maize compared to control. Nanoparticles of Fe2O3 and ZnO caused an increase in leaf Fe (22%) and Zn (11%) concentrations, respectively, compared with normal forms. According to the results, although the alleviation effects of Zn and Fe have been demonstrated under stress conditions, nanoparticles were more effective than normal forms, which may be due to their shape, size, distribution and characteristics.  相似文献   

12.
Plant growth promoting effects of Alcaligenes 637Ca, Staphylococcus MFDCa-1, MFDCa-2, Agrobacterium A18, Pantoea FF1 and Bacillus M3 were tested on strawberry cv. ‘Aromas’ based on yield, number, and weight of fruit, leaf area, vitamin C, total soluble solids (TSS), acidity and ionic composition of leaves under calcareous soil conditions. The results demonstrated that all of bacterial treatments significantly affected all parameters tested. The best result was obtained from 637Ca treatment, which significantly increased fruit yield, number and weight about 47.5, 34.7, and 9.4%, respectively, compared to control. Except for magnesium (Mg) and zinc (Zn) in the leaf, the concentrations of all plant tissue nutrients [nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), iron (Fe), copper (Cu), manganese (Mn), boron (B)] were significantly increased by bacterial treatments tested. The data in the present study showed that all bacterial treatments including Alcaligenes 637Ca, Staphylococcus MFDCa-1, MFDCa-2, Agrobacterium A18, Pantoea FF1, and Bacillus M3 to strawberry plants can ameliorative the deleterious effect of high lime on fruit yield, growth and nutrition. These results suggested that plant growth-promoting Rhizobacteria (PGPR) treatments could be offer an economic and simple means to increased plant resistance for high calcareous soil conditions.  相似文献   

13.
The response of pea plants (Pisum sativum, cv. Citrine) to various zinc (Zn) concentrations (0.67 to 1000 μM Zn) in the presence and absence of succinate (200 μM Na-succinate) were investigated. Treatment of pea plants alone with excess of Zn reduced plant growth, chlorophyll content and induced alterations in the structure of the chloroplast, resulting mainly in decreased granal thylakoids. The photochemical activity of photosystem II estimated by the ratios Fv/Fm and Fv/Fo was less affected by Zn treatment. The presence of succinate lead to an increase in plant growth and chlorophyll content, improved chloroplast structure of and recovered photosystem II activity in Zn-treated plants. This stimulation was accompanied by an increased zinc root concentration and a decreased zinc shoot concentration. The higher root zinc concentration and decreased zinc translocation from root to shoot by succinate treatment suggest that succinate facilitates the formation of metal-succinate complexes in the roots and may play a role in zinc accumulation.These results provide indirect evidence for a possible role of succinate in Zn-resistance of plants.  相似文献   

14.
Although boron deficiency (BD) is a drastic disorder to the agriculture crops, its effects on watermelon still unknown. Therefore, the present study investigates the effect of BD (0 and 0.5 mg L?1) on different morphological, physiological and biochemical traits, and mineral uptake during early seedlings stage of watermelon. B-deficiency induced leaf chlorosis in watermelon initiated from the leaf margins and tips. Despite that, BD increased shoot length, and root and shoot dry weight of BD-watermelon seedlings. BD decreased leaf chlorophyll and carotenoid contents, and photosynthetic parameters without affecting quantum yield of PSII. BD significantly inhibited total soluble protein accumulation, while leaf proline content was unaffected. A significant increase in antioxidant enzyme activities in response to higher hydrogen peroxide (H2O2) generation could possibly reduced lipid peroxidation and promoted BD-watermelon plant growth. BD influenced mineral uptake variously: the induction of phosphorus (P) and zinc (Zn), and the preservation of potassium (K), calcium (Ca) and molybdenum (Mo) levels in the leaves could maintain watermelon growth; while, the inhibition of magnesium (Mg) uptake seemed to be responsible for suppressed leaf chlorophyll and photosynthesis. These results would further help in understanding the physiological pathways and mechanisms associated with BD especially in watermelon, and provide database for fertilizer recommendations in B-deficient areas.  相似文献   

15.
ABSTRACT

The use of organic or reduced form of nitrogen (N) can have various beneficial effects in terms of plant nutrient uptake, metabolism, and environmental issues. In this study, the influence of soil application of reduced N-forms (ammonium, glycine, and glutamine) compared to nitrate and a no fertilizer treatment was evaluated on growth characteristics of sweet basil (Occimum basilicum L.) under a moderate lime soil conditions. The basil growth traits including root and shoot biomass were increased under application of reduced N-forms mainly glycine and glutamine compared to no fertilizer treatment. Application of reduced forms of nitrogen (ammonium, glycine, and glutamine) increased the leaf concentrations of potassium (K), magnesium (Mg), calcium (Ca), iron (Fe) and zinc (Zn), whereas the leaf N concentration was increased by ammonium and nitrate fertilization compared to unfertilized control plants. The results indicate that soil application of reduced N-forms particularly glycine and glutamine is superior to nitrate application.  相似文献   

16.
Both drought and salinity cause nutrient disturbance, albeit for different reasons: a decrease in the diffusion rate of nutrients in the soil and the restricted transpiration rates in plants for drought and extreme soil sodium (Na)/calcium (Ca), Na/potassium (K), and chloride (Cl)/nitrate (NO3) ratios for salinity. The objective of this study was to examine short-term effects of drought and salinity on nutrient disturbance in wheat seedlings. Wheat was grown in a greenhouse in soil under drought and saline conditions for 26 days after sowing. At harvest, shoot biomass and length, and fresh weight and dry weight of the blade and sheath in expanded leaves 3 and 4 and expanding leaf 5 were determined. Mineral elements (K, Ca, magnesium (Mg), phosphorus (P), nitrogen (N), Na, sulphur (S), iron (Fe), zinc (Zn), and manganese (Mn)) in leaf blades and sheaths were also analyzed. At harvest, the reduction in plant height, shoot biomass, and accumulative evapotranspiration under drought was similar to that under salinity as compared with control plants. However, drought decreased the accumulation of all ions in the blade of the youngest leaf 5 compared with the control, whereas there was either an increase or no difference in all ion concentrations under saline conditions. The change in concentration for most ions in the blade and sheath of expanded leaves 3 and 4 varied among control, drought, and salinity plants, which indicated a different competition for nutrients between the sheath and blade of expanded leaves under drought and saline conditions. It can be concluded from this study that ion deficiency might occur in expanding leaves under drought but not saline conditions.  相似文献   

17.
Abstract

In this study, the effect of glycine amino acid was evaluated on growth characteristics and nutrient uptake of coriander plants under greenhouse conditions. The treatments were soil application of glycine in two concentrations of 300 and 600?mg kg?1 soil, foliar application of glycine (in 0.05% concentration), soil application of mix NPK fertilizer and no fertilizer control. The growth parameters of plant height, leaf SPAD value, shoot and root fresh weights were significantly improved by soil application of glycine, particularly in higher concentration. Soil application of glycine also reduced the number of flowered plants, while it increased soluble solids (TSS) and vitamin C of plant leaf extracts than control plants. Leaf nutrient concentrations of nitrogen (N), calcium (Ca), potassium (K), phosphorus (P), iron (Fe), and zinc (Zn), but not magnesium (Mg) and manganese (Mn), were significantly increased by soil application of glycine, whereas soil applied NPK significantly increased P and Ca of leaves than unfertilized control plants.  相似文献   

18.
This study was conducted in order to investigate the effects of single, dual, and triple inoculations with Rhizobium, N2-fixing Bacillus subtilis (OSU-142), and P-solubilizing Bacillus megaterium (M-3) on nodulation, plant growth, nutrient uptake and seed yield of common bean (Phaseolus vulgaris L. cv. ‘Elkoca-05’) in comparison to control and mineral fertilizer application under field conditions in 2006 and 2007 in the cold highland in Erzurum plateau (29° 55′ N and 41° 16′ E with an altitude of 1850 m), Turkey. Bacterial inoculations significantly increased all the parameters investigated compared with the control treatment, equal to or higher than nitrogen (N), phosphorus (P), and NP treatments. The lowest shoot dry weight and chlorophyll content values were recorded in the control treatment and the bacterial inoculations increased shoot dry weight by 19.7–54.3% and chlorophyll content by 34.1–59.3% over control. Nodule dry weight significantly increased in Rhizobium alone treatment. Additionally, nodulation by native soil Rhizobium population was increased in single inoculations of OSU-142 and M-3. Significant increases of the seed yield under different inoculation treatments ranged between by 6.6% (Rhizobium + OSU-142 + M-3) and 12.2% (OSU-142 alone) over the control whereas N, P and NP applications corresponded to increases of 5.6%, 4.0% and 7.4%, respectively. All bacterial inoculations, especially triple inoculation, significantly increased uptake of macronutrients and micronutrients by common bean. In conclusion, seed inoculation with Rhizobium, OSU-142 and M-3, especially OSU-142 alone, may substitute partially costly NP fertilizers in common bean production even in cold highland areas such as in Erzurum.  相似文献   

19.
The partial sterilization of soil eliminates useful microorganisms, resulting in the reduced growth of mycorrhizae-dependent citrus plants, which are often unresponsive to the application of fertilizer. Research was conducted to test the hypothesis that indigenous mycorrhizae (IM) inoculation is as efficient as selected mycorrhizal inoculation under sterile and non-sterile soil conditions. Rhizophagus clarus and indigenous mycorrhiza spores, isolated from citrus orchards, were used as arbuscular mycorrhizae fungi under greenhouse conditions with sterile and non-sterile Çanakçi series (Typic xerofluvent) soils with low phosphorus (P) fertility. Different P (0 and 100 mg kg?1) and zinc (Zn) (0, 5 and 10 mg kg?1) concentrations were used at the start of the experiments. The shoot, root dry weight (RDW), root colonization, and P, Zn, iron (Fe), copper (Cu) and manganese (Mn) concentrations of the shoot were determined; mycorrhizae dependency (MD) was also calculated.

The results indicate that R. clarus and indigenous mycorrhiza in sterile and non-sterile soil conditions considerably increased the growth of citrus plants. Owing to existing beneficial indigenous rhizosphere microorganisms, citrus plant growth without inoculation was better in non-sterile soils than in the sterile soils. In non-sterilized soil, the plant growth parameters of R. clarus-inoculated soils were higher than those of indigenous mycorrhiza-inoculated soils. Mycorrhizae infection increased certain citrus plant growth parameters, such as root infection, biomass and nutrient uptake (P, Zn, Fe, Mn and Cu). In sterile soil, the addition of up to 5 mg kg?1 soil Zn and the inoculation of R. clarus significantly increased plant growth; inoculation with indigenous mycorrhiza produced more dry weight upon the addition of up to 100 mg kg?1 phosphorus pentoxide (P2O5). Under sterile soil conditions, without considering fertilizer addition, MD was found to be higher than that of non-sterile soils. In general, the contribution of the indigenous soil spores is significant. However, indigenous soil mycorrhizae may need to be managed for better efficiency in increasing plant growth and nutrient uptake. The major finding was that the inoculation of citrus seedlings with mycorrhiza is necessary under both sterilized and non-sterilized soil conditions.  相似文献   

20.
The effect of inoculation of microorganisms-based commercial products on post-flask management and field establishment of tissue cultured (TC) banana plantlets was investigated. TC banana cv. Gros Michel plantlets were inoculated with Bacillus, mycorrhizal and Trichoderma based products in a Vertisol, Humic Nitisol, Rhodic Ferralsol and conventional nursery media. Initial inoculation of plants with products was done at the acclimatization phase and subsequently at the potting phase. Survival of inoculated plantlets was recorded at the end of the acclimatization phase, 8 weeks after deflasking. Effect of products on growth was evaluated as ability to enhance height and girth of pseudostem, leaf length, leaf width, number of functional leaves and root and shoot biomass yield. The efficacy of products on survival of plants at hardening was variable and dependent on soil type. Inoculation with Bacillus enhanced survival of plants in the Vertisol, mycorrhiza and Trichoderma inoculation in the Rhodic Ferralsol and mycorrhiza in the Humic Nitisol and conventional media. Performance of inoculated plants was dependent on soil type. Application of Bacillus based products significantly increased plant growth (leaf length, leaf width, plant height, shoot dry weights) in the Vertisol and Rhodic Ferralsol in the nursery phase. Application of multiple species mycorrhiza and Trichoderma under field conditions significantly increased plant growth (apparent volume and leaf surface area) in the Vertisol by over 100% and 25% compared to the control and conventional practice respectively. Mycorrhizal colonization was not significantly affected by product inoculation. However, higher percentages of colonization were observed with Bacillus inoculation in the Vertisol and by mycorrhizae and Trichoderma in the Rhodic Ferralsol compared to the non-inoculated controls. Results demonstrate that tissue cultured bananas can benefit from application of arbuscular mycorrhizal fungi, Trichoderma and Bacillus to improve survival and growth during the nursery phase as well as enhance plant performance under field conditions. The effect of microorganisms-based commercial inoculants is however dependent on soil type and the stage of plant development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号