首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated the impacts of organic- and clay-based soil amendments, and their combinations on crop water productivity (CWP) using maize as a test crop. On-station field trials were established over two consecutive years at the Naphok and Veunkham sites in Laos. At each site, 10 treatments were applied in a randomized complete block design with three replications. The treatments were control, rice husk biochar (10 t ha?1), bentonite clay (10 t ha?1), compost (4 t ha?1), clay-manure compost (10 t ha?1), rice husk biochar compost (10 t ha?1), bentonite clay + biochar, bentonite-clay + compost, biochar + compost, and bentonite clay + biochar + compost. All treatments were applied in 2011. Significant (p < 0.05) treatment effects in CWP and growing period evapotranspiration were determined. At Naphok, differences between the amended and control plots in CWP varied between 0.1 and 0.6 kg m?3 in 2011 and from 0.1 to 0.4 kg m?3 in 2012, whereas differences at Veunkham varied between 0.3 and 1.0 kg m?3 in 2011 and from 0.05 to 0.29 kg m?3 in 2012. At both sites, CWP in 2012 was significantly lower than 2011. Our results illustrate that organic- and clay-based soil amendments improve CWP, indicating that soil-based interventions could be suitable options for improving agricultural productivity.  相似文献   

2.
The aim of this study was to evaluate the effect of biochar and organic soil amendments on soil physicochemical and microbial load, carbon sequestration potential, nutrient uptake and yield of groundnut in acidic red soil under rainfed condition. Biochar was prepared from red gram, cotton, maize stalk and mesquite wood using pilot scale slow pyrolysis biochar unit. The above sources of biochar at the rate of 2.5 and 5 t ha?1 and enriched farmyard manure 0.75 t ha?1, composted coir pith 10 t ha?1 and arbuscular mycorrhizae 100 kg ha?1 were applied as basal with required nitrogen, phosphorous and potassium fertilizer. Biochar amendment at the rate of 5 t ha?1 reduced the bulk density from 1.41 to 1.36 g cm?3 and increased the soil moisture 2.5%. With respect to soil chemical changes, it raised soil pH from 5.7 to 6.3; increased the cation exchange capacity 1.4 cmolkg?1 and enhanced the carbon buildup 4.4 t ha?1. The significant differences in bacteria, fungi and actinomycetes population were observed between biochar and control. The nitrogen, phosphorous and potassium were better utilized under biochar and composted coir pith, which was 21, 5 and 20 kg ha?1 higher than control. The experimental results suggested that application of biochar to acidic red soil favoured good soil physical, chemical and biological environment, and these positive changes influenced growth and yield attributes and enhanced pod yield 29% over control.  相似文献   

3.
This study investigated the use of waste amendments (green waste compost (GWC) and water treatment sludge (WTS) cake) in improving the nutrient and revegetation status of contaminated soil obtained from a former industrial site that has heavy metal and hydrocarbon contamination. The waste amendments were mixed with the contaminated soil at application rates equivalent to 90 and 180 t ha?1 (wet weight) and placed in plastic pots. The unamended soil serves as the control. Reed canary grass and white mustard were allowed to grow on the amended and unamended contaminated soil in the glass house. After a 30- day growth period, soil nutrient status was observed and was found to be higher in the amended contaminated soil than the control. In the amended soil, organic matter, total nitrogen, total potassium and soil nitrate were highest in contaminated soil amended with GWC at 180 t ha?1 and lowest in contaminated soil amended with WTS cake at 90 t ha?1. Above-ground dry mass of reed canary grass and white mustard grown on amended contaminated soil increased by 120–222% and 130–337%, respectively, as compared to the control, showing that improved fertility of contaminated soils thereafter, enhanced revegetation.  相似文献   

4.
Excessive and inappropriate use of fertilizers is a key factor of low sugarcane yield and degradation of soil. A two-year (2013–14 and 2014–15) field study was conducted to assess the impact of combined application of organic and inorganic fertilizers on sugarcane at research farm of Shakarganj Sugar Research Institute, Jhang, Pakistan. Experiment was conducted under randomized complete block design with three replications. Treatments were used as control (no exogenous application), spent wash (160 t ha?1), (nitrogen, phosphorus and potassium) NPK (168:112:112 kg ha?1), spent wash (120 t ha?1) + NPK (42:28:28 kg ha?1), spent wash (80 t ha?1) + NPK (84:56:56 kg ha?1), spent wash (40 t ha?1) + NPK (126:84:84 kg ha?1), and spent wash (160 t ha?1) + NPK (42:28:28 kg ha?1). Application of spent wash @ 80 t ha?1 + NPK @ 84:56:56 kg ha?1 resulted maximum crop growth rate (11.35 g m?2 d?1), leaf area index (7.78), and net assimilation rate (2.53 g m?2 d?1). Maximum number of millable canes (14), weight per stripped cane (0.90 kg), stripped cane yield (117.60 t ha?1) and unstripped cane yield (141.25 t ha?1) were observed with spent wash @ 80 t ha?1 + NPK @ 84:56:56 kg ha?1, followed by sole fertilizer application @ 168:112:112 kg NPK ha?1 and spent wash @160 t ha?1 + NPK @ 42:28:28 kg ha?1. Similar trend was observed regarding quality parameters. The maximum benefit–cost ratio (1.80) was achieved with integrated application of spent wash @ 80 t ha?1 + NPK @ 84:56:56 kg ha?1.  相似文献   

5.
In order to investigate the changes in chlorophyll fluorescence, chlorophyll, relative water content (RWC) and forage yield of corn and sorghum under various irrigation regimes and combination treatments of barley residue, zeolite and superabsorbent polymer, an experiment was conducted over 2 years in Kerman, Iran. A randomized complete block design arranged in a factorial split was used with three replications. Two irrigation regimes of normal and drought stress based on 70 and 140 mm cumulative pan evaporation, respectively, and two plant species (corn and sorghum) as factorial combinations were compared in the main plots. Five treatments, (1) 10 t ha?1 zeolite + 4.5 t ha?1 residue, (2) 60 kg ha?1 superabsorbent + 4.5 t ha?1 residue, (3) 5 t ha?1 zeolite + 30 kg ha?1 superabsorbent + 4.5 t ha?1 residue, (4) 4.5 t ha?1 residue and (5) – control, were compared in subplots. In both plants, forage yield, potential quantum yield (Fv/Fm), chlorophyll a, total chlorophyll and carotenoid contents decreased significantly under drought stress. Chlorophyll a content, SPAD index and Fv/Fm were higher in corn than in sorghum, but RWC was higher in sorghum. Corn produced higher forage yield (62.8 t ha?1) than sorghum (49.3 t ha?1). The application of 10 t ha?1 zeolite with 4.5 t ha?1 residue increased most traits more than any of the other treatments, but the superabsorbent had no significant effect on the studied traits.  相似文献   

6.
A field experiment with peppermint (Mentha piperita L.) was conducted in a sandy loam (Typic ustifluvent) soil during 2007 and 2008 at Lucknow, India. Ten treatments consisting of control (no synthetic or organic nitrogen fertilization), synthetic nitrogen fertilization (SN) 75, 150 and 225 kg ha?1 alone, vermicompost (VC) 3 t + 37.5 kg SN ha?1, VC 6 t + 75 kg SN ha?1 and VC 9 t + 112.5 kg SN ha?1 and intercropping of one, two and three rows of cowpea for green manuring in combination with 50, 100 and 150 kg SN ha?1, respectively, were evaluated in a randomized block design. Integrated use of VC 9 t with 112.5 kg SN ha?1 produced maximum essential oil (94.3 kg ha?1), increased the herb and essential oil yields by 104 and 89%, respectively, over control and reduced SN use by 50%, without affecting the quality of essential oil. Application of VC and intercropping of cowpea for green manuring significantly improved the organic carbon, available N, P and K content in soil over SN alone. To get sustainable production of peppermint, application of VC 9 t ha?1 along with 112.5 kg N ha?1 through synthetic fertilizer is recommended for light textured sandy loam soils.  相似文献   

7.
An incubation experiment was conducted in the laboratory for 10 weeks to study the changes in some phosphorus (P) fractions in two soil series. Poultry manure was applied at 0, 5, 10, 15, and 20 t ha?1 solely and in combination with single superphosphate (SSP) at 0, 15, 30, 45, and 60 kg P ha?1. Significant increases in all the P fractions were observed to the 6th week of incubation (WAI). Sole application of poultry manure was, however, effective in reducing P occlusion in the two soil series used. An increase in Fe–P which was the largest extractable inorganic P was observed with the application of 10 t ha?1 of poultry manure and 30 kg P ha?1 of SSP in the Iwo series and combination of 20 t ha?1 of poultry manure and 45 kg P ha?1 of SSP in the Alagba series.  相似文献   

8.

Purpose

Occlusion of carbon in phytoliths is an important biogeochemical carbon sequestration mechanism and plays a significant role in the global biogeochemical carbon cycle and atmospheric carbon dioxide (CO2) concentration regulation at a millennial scale. However, few studies have focused on the storage of phytolith and phytolith-occluded carbon (PhytOC) in subtropical forest soils.

Materials and methods

Soil profiles with 100-cm depth were sampled from subtropical bamboo forest, fir forest, and chestnut forest in China to investigate the variation of phytoliths and PhytOC storage in the soil profiles based on amass-balance assessment.

Results and discussion

The storage of phytoliths in the top 100 cm of the bamboo forest soil (198.13?±?25.08 t ha?1) was much higher than that in the fir forest (146.76?±?4.53 t ha?1) and chestnut forest (170.87?±?9.59 t ha?1). Similarly, the storage of PhytOC in the bamboo forest soil (3.91?±?0.64 t ha?1) was much higher than that in the fir forest soil (1.18?±?0.22 t ha?1) and chestnut forest soil (2.67?±?0.23 t ha?1). The PhytOC percentage in the soil organic carbon pool increased with soil depth and was the highest (4.29 %) in the bamboo forest soil. Our study demonstrated that PhytOC in soil was significantly influenced by forest type and the bamboo forest ecosystem contributed more significantly to phytolith carbon sequestration than other forest ecosystems.

Conclusions

Different forest types have a significant influence on the soil PhytOC storage. Optimization of bamboo afforestation/reforestation in future forest management plans may significantly enhance the biogeochemical carbon sink in the following centuries.
  相似文献   

9.
The experiment on the effect of primary biomethanated spentwash (PBSW) on soil properties, nutrient uptake and yield of wheat on sodic soil was carried out at a research farm of Post Graduate Institute, Mahatma Phule Krishi Vidyapeeth, Rahuri, Maharashtra state, India, during the post-monsoon season. The experimental soil was sodic calcareous having Sawargaon series of isohyperthermic family of Vertic Haplustepts. The experiment was laid out in a randomized block design with nine treatments and three replications. The treatments consisted of varying doses of PBSW (100, 200, 300, 400 and 500 m3 ha?1), absolute control, farmyard manure (FYM) 5 t ha?1 + RDF-AST (recommended dose of fertilizer as per soil test), FYM 5 t ha?1 + 50% GR (gypsum requirement) + RDF-AST and FYM 5 t ha?1 + 100% GR + RDF-AST. The results revealed that the physical properties, namely bulk density and hydraulic conductivity, were improved in sodic soil due to the application of increased doses of PBSW. A significant reduction in pH, calcium carbonate and exchangeable sodium percentage (ESP) and an increase in organic carbon, cation-exchange capacity (CEC) and electrical conductivity (EC) were observed in the soil, due to the addition of PBSW. The available soil nitrogen (N), phosphorus (P), potassium (K) and micronutrient iron, manganese, copper and zinc (Fe, Mn, Cu and Zn) content after the harvest of wheat was the highest in the 500 m3 ha?1 treatment compared with all the other treatments. The exchangeable calcium (Ca2+), magnesium (Mg2+) increased significantly and exchangeable Sodium (Na+) reduced significantly with increased doses of PBSW. The saturation paste extract analysis also showed the same trend. A significant increase in the EC of the saturation paste of extract of the soil was observed in all PBSW treatments and it was the highest (4.75 dS m?1) in PBSW application @ 500 m3 ha?1. The application of PBSW @ 500, 400, 300 and 200 m3 ha?1 resembled the treatments of FYM + gypsum @ 100 GR + RDF-AST, FYM + gypsum @ 50 GR + RDF-AST and FYM + RDF-AST, respectively, regarding the biological properties of sodic soil. The PBSW application @ 500 m3 ha?1 had recorded the highest grain (47.33 q ha?1) and straw (72.72 q ha?1) yield and the maximum total uptake of N, P, K, Fe, Mn, Cu, and Zn by wheat, which was at par with the treatment of FYM (5 t ha?1) + gypsum @ 100% GR + RDF-AST.  相似文献   

10.
The fate and transport of tricyclazole and imidacloprid in paddy plots after nursery-box application was monitored. Water and surface soil samples were collected over a period of 35 days. Rates of dissipation from paddy waters and soils were also measured. Dissipation of the two pesticides from paddy water can be described by first-order kinetics. In the soil, only the dissipation of imidacloprid fitted to the simple first-order kinetics, whereas tricyclazole concentrations fluctuated until the end of the monitoring period. Mean half-life (DT50) values for tricyclazole were 11.8 and 305 days, respectively, in paddy water and surface soil. The corresponding values of imidacloprid were 2.0 and 12.5 days, respectively, in water and in surface soil. Less than 0.9% of tricyclazole and 0.1% of imidacloprid were lost through runoff during the monitoring period even under 6.3 cm of rainfall. The pesticide formulation seemed to affect the environmental fate of these pesticides when these results were compared to those of other studies.  相似文献   

11.
This study evaluated the effect of biochar and phosphorus fertilizer application on selected soil physical and chemical properties in two contrasting soil types: Rhodic Ferralsols (clay) in Thohoyandou and Leptic Cambisols (loamy sand) in Nelspruit, South Africa. Field experiments were conducted in summer and winter. Treatments consisted of a factorial combination of four biochar levels (0, 5, 10 and 20 t ha?1) and two phosphorus fertilizer levels (0 and 90 kg ha?1) arranged in a randomized complete block design with three replicates. Chickpea was the test crop. Soil bulk density, aggregate stability, porosity, total C, total N, C:N ratio, K and Mg were determined. Biochar (10 t ha?1) and phosphorus increased bulk density and decreased porosity at 0–5 and 15–20 cm soil depth on a loamy sand soil in both seasons. The interaction between biochar and phosphorus increased total C and total N on a clay soil in the summer sowing. However, in the loamy sand soil, biochar (10 t ha?1) increased total C, C:N ratio, K and Mg in the summer sowing. The effect of biochar was more evident in the loamy sand soil than the clay soil suggesting that the influence of biochar may be soil-specific.  相似文献   

12.

Purpose

In situ immobilization of heavy metal-contaminated soils with the repeated incorporation of amendments can effectively reduce the bioavailability of soil heavy metals. However, the long-term application of amendments would lead to the destruction of soil structure and accumulation of soil toxic elements, ultimately affecting food security and quality. Thus, the sustainability of the amendments in a heavy metal-contaminated soil was evaluated from 2010 to 2012.

Materials and methods

Batch field experiments were conducted in the soils, which were amended with apatite (22.3 t ha?1), lime (4.45 t ha?1), and charcoal (66.8 t ha?1), respectively. The amendments were applied only one time in 2009, and ryegrass was sown each year. Ryegrass and setaria glauca (a kind of weed) were harvested each year. Concentrations of copper (Cu) and cadmium (Cd) were determined by batch experiments. Five fractions of Cu and Cd were evaluated by a sequential extraction procedure.

Results and discussion

Ryegrass grew well in the amended soils in the first year, but it failed to grow in all the soils in the third year. However, setaria glauca could grow with higher biomass in all the amended soils. The treatment of apatite combined with plants was more effective than lime and charcoal treatments in removing Cu and Cd from the contaminated soils by taking biomass into account. Apatite had the best sustainable effect on alleviating soil acidification. The Cu and Cd concentrations of CaCl2-extractable and exchangeable fractions decreased with the application of amendments. Moreover, apatite and lime could effectively maintain the bioavailability of Cu and Cd low.

Conclusions

Apatite had a better sustainable effect on the remediation of heavy metal-contaminated soils than lime and charcoal. Although all the amendment treated soils did not reduce soil total concentrations of Cu and Cd, they could effectively reduce the environmental risk of the contaminated soils. The findings could be effectively used for in situ remediation of heavy metal-contaminated soils.
  相似文献   

13.
ABSTRACT

Soil degradation due to salinization and sodication is the paramount threat in Indo-Gangetic plains. The studies on reclamation and management of such soils can provide a pragmatic solution for improving fertility and productivity of these soils. Lack of organic matter and poor availability of nutrients are the major factors for low productivity of sodic soils. Rice-wheat is a major cropping system in Indo-Gangetic alluvial plain region even in reclaimed sodic soils and farmers used inorganic fertilizers only to get higher yields. In this study, we used different organic sources of amendments in conjunction with different nitrogen (N) doses supplied through inorganic fertilizers to investigate the combined effect of organic and inorganic amendments on soil fertility and the productivity of rice- wheat system in sodic soils. Salt tolerant varieties of rice and wheat were grown in sodic soil (pH: 9.30, EC: 1.12 dSm?1 and exchangeable sodium percentage, ESP: 52) during 2014–15 to 2016–17 in a field experiment with 13 treatment combinations of organic and inorganic amendments (T1- (control) 100% of recommended dose of N (RDN), T2-municipal solid waste compost (MSWC) @10 t ha?1 + 50%RDN, T3- MSWC @10 t ha?1 + 75% RDN,T4- MSWC @10 t ha?1 + 100%RDN, T5-Vermicompost (VC) @10 t ha?1 + 50% RDN, T6- VC @10 t ha?1 + 75% RDN, T7-VC@10 t ha?1 + 100% RDN, T8- Farm yard manure (FYM) @ 10 t ha?1 + 50% RDN,T9- FYM@10 t ha?1 + 75%RDN, T10- FYM@10 t ha?1 + 100% RDN, T11-Pressmud (PM) @10 t ha?1 + 50% RDN, T12-PM@10 t ha?1 + 75%RDN, and T13- PM @ 10 t ha?1 + 100% RDN). Use of organic amendments supplemented with reduced dose of N through inorganic fertilizer has significantly improved soil bio-physical and chemical properties. Application of VC@10 t ha?1 + 100% RDN (T7) decreased soil bulk density, pH, EC, ESP and Na content to 2.0, 4.2, 26.5, 42.8, and 56.6% respectively and increased soil organic carbon by 34.6% over control (T1). Soil fertility in terms of available N, P, K, Ca, and Mg increased by 20.5, 33.0, 36.4, and 44%, respectively, over control (T1). Soil microbial biomass carbon, nitrogen, and phosphorus also improved significantly due to combined use of organic amendments and inorganic fertilizers over the only use of inorganic fertilizers. Decreasing in soil sodicity and increasing soil fertility showed significant increase (P < 0.05) in crop growth, growth indices, and grain yields of rice and wheat. The study revealed that combined use of VC or MSW compost @10 t ha?1 in conjunction with 75% RDN through inorganic fertilizers in sodic soils proved sustainable technology for restoration of degraded sodic soils and improving crop productivity.  相似文献   

14.
Vertisol soils of central India are heavy in texture, with high clay content and low organic matter. These soils are prone to degradation and the soil loss is due to poor management practices including excessive tillage. Based on a long-term study conducted for improving the quality of these soils, it was found that management practice such as low tillage (LT) + 4 t ha?1 compost + herbicide (Hb) recorded significantly higher organic carbon (OC) (6.22 g kg?1) and available N (188.5 kg ha?1) compared to conventional tillage (CT) + recommended fertilizer (RF) + off-season tillage (OT) + hand weeding (HW) (OC: 4.71 g kg?1, available nitrogen (N) (159.3 kg ha?1). Among the physical soil quality parameters, mean weight diameter (MWD) was significantly higher under LT + 4 t ha?1 straw + Hb (0.59 mm). The practice of LT + 4 t ha?1 straw + HW recorded significantly higher microbial biomass carbon (MBC) (388.8 μg g?1). The order of key indicators and their contribution towards soil quality was as follows: OC (29%) >, MBC (27%) > available zinc (Zn) (22%) > MWD (9%) > available boron (B) (8%), > dehydrogenase activity (DHA) (5%). The order of the best treatment which maintained soil quality index (SQI) values reasonably good (>1.5) was as follows: LT + 4t ha?1 compost + HW (1.65) > LT + 4 t ha?1 compost +Hb (1.60) > LT + 4t ha?1 straw + HW (1.50). Hence, these treatments could be recommended to the farmers for maintaining higher soil quality in Vertisols under soybean system. Correlation studies revealed stronger relationship between key indicators like OC (R2 = 0.627), MBC (R2 = 0.884), available Zn (R2 = 0.739) and DHA (R2 = 0.604) with Relative Soil Quality Index (RSQI). The results of the present study would be highly useful to the researchers, farmers and land managers.  相似文献   

15.
This study investigates the influence of fly ash (FA) application on zinc adsorption-desorption in recommended chemical fertilizer (RDF) and farmyard manure (FYM) treatments of acidic Inceptisols of Assam. Zinc adsorption was better explained by Freundlich over the Langmuir adsorption equation. Adsorption was greatest in the treatment receiving FA only at 15 t ha?1 and least in the treatment receiving RDF 50 percent + FYM 5 t ha?1 + FA 5 t ha?1. The zinc distribution coefficient of treatment FA 15 t ha?1 was 40 to 31 times greater than treatments containing FA + RDF + FYM. The zinc supply parameter increased when FA was applied with RDF and FYM, and zinc desorption followed the order of exctractants CaCl2 > MgCl2 > DTPA > HCl. They desorbed more Zn from soils with low “b” and vice versa. Results confirm that fly ash integrated with RDF + FYM can effectively be used to maintain substantial concentrations of Zn in soil.  相似文献   

16.
Effect of potassium (K) fertilization (0, 20, 40, 60, 80 and 100 kg K ha?1) on yield, nitrogen (N) and K nutrition of Boro (dry season) rice and apparent soil K balance was studied. Experiment was conducted at Bangladesh Rice Research Institute (BRRI) regional station farm, Habiganj, Bangladesh during 2007–2008 to 2009–2010 in a wetland rice ecosystem under haor area. Cropping pattern was Boro–Fallow–Fallow. A popular rice variety BRRI dhan29 was tested in a randomized complete block design with three replications. Results indicated that BRRI dhan29 maintained an average grain yield of 5.19 t ha?1 year?1 without K fertilization. Potassium fertilization significantly increased the grain yield to 6.86 t ha?1 year?1. Quadratic equations best explained the progressive increase of rice yield with increasing K rates. Optimum dose of K in 3 years ranged from 78 to 93 kg ha?1. Internal N use efficiency of rice decreased with increasing K rates. However, K use efficiency was inconsistent. Apparent K balance study revealed that application of 100 kg K ha?1 was not able to maintain a positive K balance in soil under wetland ecosystem with Boro–Fallow–Fallow cropping system. However, K fertilization decreased the negativity of K balance in soil.  相似文献   

17.

Purpose

A better understanding of the role of grassland systems in producing and storing phytolith-occluded carbon (PhytOC) will provide crucial information in addressing global climate change caused by a rapid increase in the atmospheric CO2 concentration.

Materials and methods

Soil samples of typical steppe, meadow steppe, and meadow in Inner Mongolia, China, were taken at 0–10-, 10–20-, 20–40-, and 40–60-cm depths in July and August of 2015. The soil phytoliths were isolated by heavy liquid (ZnBr2), and the soil PhytOC was determined by the traditional potassium dichromate method.

Results and discussion

The results of our study showed that the storage of soil phytoliths was significantly higher in the meadow (33.44 ± 0.91 t ha?1) cf. meadow steppe (26.8 ± 0.98 t ha?1) and typical steppe (21.19 ± 4.91 t ha?1), which were not different. The soil PhytOC storage was significantly different among grassland types, being: meadow (0.39 ± 0.01 t ha?1) > meadow steppe (0.29 ± 0.02 t ha?1) > typical steppe (0.23 ± 0.02 t ha?1). PhytOC storage in typical steppe soil within the 0–60-cm soil layer is the lowest and that in meadow soils is the highest. The grassland type and the soil condition play significant roles in accumulation of phytoliths and PhytOC in different grassland soils. We suggest that the aboveground net primary productivity (ANPP) is important in soil phytolith accumulation and PhytOC content.

Conclusions

Phytolith and PhytOC storages in grassland soil are influenced by factors such as grass type, local climate and soil conditions, and management practices. Management practices to increase grass biomass production can significantly enhance phytolith C sequestration.
  相似文献   

18.
Increased population pressure coupled with unsustainable cropland management has resulted in soil degradation and a decline in crop productivity in China. This study tested the hypothesis that the soil with combined addition of composted green waste (CGW) and carbonized rice hulls (CRHs) as amendments will improve soil properties and increase peanut production. Some selected parameters of soil and peanut plant were measured, which were best if the soil was amended with 35 t ha?1 CGW and 10 t ha?1 CRH and were worst in the nonamended soil. Relative to the soil without amendment addition, amendment of the soil with 35 t ha?1 CGW and 10 t ha?1 CRH increased seed yield, total pod yield, root nodule number, and nodule dry weight by 50.0, 52.4, 55.4, and 57.9%, respectively, and increased total Kjeldahl nitrogen, total phosphorus, total potassium, and total chlorophyll content of plants by 53.2, 54.4, 53.7, and 56.8%, respectively.  相似文献   

19.
Data from a 49-year-long organic–mineral fertilization field experiment with a potato–maize–maize–wheat–wheat crop rotation were used to analyse the impact of different fertilizer variations on yield ability, soil organic carbon content (SOC), N and C balances, as well as on some characteristic energy balance parameters. Among the treatments, the fertilization variant with 87 kg ha?1 year?1 N proved to be economically optimal (94% of the maximum). Approximately 40 years after initiation of the experiment, supposed steady-state SOC content has been reached, with a value of 0.81% in the upper soil layer of the unfertilized control plot. Farmyard manure (FYM) treatments resulted in 10% higher SOC content compared with equivalent NPK fertilizer doses. The best C balances were obtained with exclusive mineral fertilization variants (?3.8 and ?3.7 t ha?1 year?1, respectively). N uptake in the unfertilized control plot suggested an airborne N input of 48 kg ha?1 year?1. The optimum fertilizer variant (70 t ha?1 FYM-equivalent NPK) proved favourable with a view to energy. The energy gain by exclusive FYM treatments was lower than with sole NPK fertilization. Best energy intensity values were obtained with lower mineral fertilization and FYM variants. The order of energy conversion according to the different crops was maize, wheat and potato.  相似文献   

20.
Soil degradation affects soil properties such as structure, water retention, porosity, electrical conductivity (EC), sodium adsorption ratio (SAR), and soil flora and fauna. This study was conducted to evaluate the response of contrasting textured soils irrigated with water having different EC:SAR ratios along with amendments: gypsum (G), farm manure (FM), and mulch (M). Water of different qualities viz. EC 0.6 + SAR 6, EC 1.0 + SAR 12, EC 2.0 + SAR 18, and EC 4.0 + SAR 30 was used in different textured soils with G at 100% soil gypsum requirement, FM at 10 Mg ha?1, and M as wheat straw was added on surface soil at 10 Mg ha?1. Results revealed that the applied amendments in soils significantly decreased pHs and electrical conductivity (ECe) of saturated paste and SAR. Four pore volumes of applied water with leaching fraction 0.75, 0.77, and 0.78 removed salts 3008, 4965, and 5048 kg ha?1 in loamy sand, silty clay loam, and sandy clay loam soils, respectively. First four irrigations with LF of 0.82, 0.79, 0.75, and 0.71, removed 5682, 5000, 3967, and 2941 kg ha?1 salts, respectively. The decreasing order for salt removal with amendments was FM > G > M > C with LF = 0.85, 0.84, 0.71, and 0.68, respectively. This study highlights a potential role of soil textures to initiate any mega program for reclamation of saline-sodic soils in the perspective of national development strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号