首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
应用间隔流动分析仪测定土壤硝态氮和亚硝态氮含量   总被引:6,自引:0,他引:6  
使用SAN++间隔流动分析仪,研究了测定土壤硝酸盐和亚硝酸盐的新方法。结果表明,SAN++间隔流动分析仪在测定土壤中NO-3-N和NO-2-N含量时标准曲线相关系数均在0.999 5以上,检测限分别为N 0.20 mg/kg和20.00μg/kg,回收率在98.0%~101.8%之间,相对标准偏差在0.95%~2.25%之间,具有较高的精密度、准确度。该方法使用2.0 mol/L KCl溶液作为浸提剂,适用于吉林省不同土壤类型,并具有线性范围宽、分析速度快、样品用量少、自动化程度高和同时测定土壤中NO-3-N和NO-2-N等优点。  相似文献   

3.
土壤硝化作用过程中亚硝态氮的累积研究   总被引:10,自引:1,他引:10  
在实验室条件下比较了9种土壤硝化过程中NO2^-的累积能力和NO2^-在不同土壤中的稳定性,并在3种代表性土壤上检测了NO2^-累积的动态变化。结果表明,红壤和黄棕壤在所有施氨(NH4^+-N)水平下均未出现NO2^-的累积;但砂姜黑土、潮土、滨海盐士、潮棕壤、褐土、灌漠土和灰钙土等均出现不同程度的NO2^-累积,且随着施NH4^+-N水平提高而增加NO3^-在红壤和黄棕壤中的累积与施NH4^+-N水平无关,但在其它7种pH大于7的土壤中的累积受到浓度NH4^+的抑制。此外,试验还表明,NO2^-在红壤和黄棕壤中不稳定,但在其它7种土壤中相当稳定。土壤硝化过程中产生NO2^-累积的问题应引起重视。  相似文献   

4.
土壤中硝态氮含量的影响因素研究   总被引:22,自引:0,他引:22  
采用田间试验及人工渗滤池试验方法,研究了土壤中硝态氮含量的影响因素。结果表明,影响大田土壤中硝态氮因素很多,程度不一,其中土壤类型决定着硝态氮基础含量,是内因,而施肥及施氮量是影响硝态氮含量最大的外界因素,其次是土壤湿度和氮肥品种,土壤温度对其影响不明显。  相似文献   

5.
通过盆栽试验,以两个硝态氮含量差异显著的菠菜品种为供试材料,在不同生长时期,测定了叶柄、叶片干重、水分含量、硝态氮含量及叶片内源和外源硝酸还原酶活性,研究菠菜硝态氮累积和硝酸还原酶活性的动态变化及其与植株生长变化的关系。结果表明,随生长期后移,叶柄、叶片及地上部干重和水分含量先增加而后降低,硝态氮含量则持续降低,低硝态氮累积品种S9的下降更为明显,出苗后52d和62d地上部分别降低了100%和89.7%;叶片内源和外源酶活性则随植株生长量增加而增加,高硝态氮累积品种S4增加(379%和199%)更明显,之后该品种酶活性随植株生长量降低而显著下降,品种S9却显著增加,分别为121%和288%。生长前期,品种S4硝态氮含量、干重增长速率及内源、外源酶活性均显著高于品种S9,内源/外源酶活性比值却明显低于后者;生长后期,除外源酶活性和内源/外源酶活性比值外,品种间差异均不明显。因此,生长前期高累积品种硝态氮含量降低较少,主要原因可能是其内源/外源酶活性比值(70.7%)较低,生长后期该品种的内源/外源酶活性比值(98.2%)显著增加后,硝态氮含量迅速下降进一步证明了这一推测。综合上述结果可知,内源/外源酶活性比值更能揭示植株生长变化引起的品种间硝态氮含量变化差异。  相似文献   

6.
太仓菜地土壤硝态氮状况   总被引:3,自引:3,他引:3  
王霞  董元华  王辉  安琼  郭宗祥 《土壤》2004,36(1):68-70
本文研究了不同种植制度对农田土壤NO3--N含量的影响。结果表明,由于管理方式不同,大棚蔬菜地土壤中NO3--N明显高于其它管理方式下的土壤,NO3--N含量依次为:大棚蔬菜地>露天蔬菜地>传统菜地>稻田。此外,大量的N肥投入带来了土壤pH的改变。土壤pH(y)值与土壤NO3--N含量(x)呈线性负相关(y = -9.961x 98.095 R2 = 0.151 n=84),经统计检验相关性达极显著水平。 -  相似文献   

7.
土壤硝态氮含量原位检测系统设计   总被引:2,自引:2,他引:0  
针对现阶段土壤硝态氮测量成本较高、无法长期原位测量等问题,该研究提出了一种使用钛烧结滤芯收集土壤溶液,通过近红外光谱法检测土壤溶液中的硝酸根浓度进而得到土壤中硝态氮含量的方法,并设计了相应的检测装置。通过试验对比陶土头与钛烧结滤芯在不同土壤条件下的土壤溶液收集效果,选用钛烧结滤芯作为土壤溶液采集器收集土壤溶液,以近红外LED作为测量光源,采集人工配置土壤溶液的光谱数据,利用BP神经网络进行预训练建立硝态氮含量预测模型。建立的硝态氮含量预测模型其训练集皮尔逊相关系数、测试集皮尔逊相关系数、预测均方根误差分别达到0.997、0.995、3.43。实地测量土壤溶液并与硝酸根离子电极以及土壤养分速测仪进行对比,最大相对偏差为5.9%,可满足实际测量准确性要求。该套检测设备在深度为10~40 cm、含水率为15%以上的土壤中有较好的土壤溶液采集效果;检测装置的长期测量标准差为0.006,动态响应时间为1.4 s,具有良好的检测特性。试验结果表明,使用溶液吸光度数据建立的硝态氮预测模型具有较好的预测效果,可以应用于土壤溶液硝态氮原位监测,为长期自动测量土壤硝态氮及水肥一体化系统的搭建提供了一种可行的方案。  相似文献   

8.
供氮水平和有机无机配施对夏玉米产量及土壤硝态氮的影响   总被引:12,自引:1,他引:12  
通过大田试验研究了不同氮素水平下有机无机肥料配施夏玉米生育期内土壤硝态氮(NO3--N)的变化规律。结果表明,玉米产量主要受施氮量影响,不受有机无机配施影响;土壤的硝态氮含量随施氮量的增加而增加;有机肥与尿素配合施用,可保证土壤长期和短期的氮素的供应;增施有机肥可以协调土壤氮素的供应,降低土壤NO3--N含量,从而可减少对地下水的污染;夏玉米季的施氮安全值在200 kg/hm2较为适宜,且有机肥无机肥配比以3∶1为宜。  相似文献   

9.
杨凌地区大棚土壤硝态氮累积效应研究   总被引:7,自引:0,他引:7  
通过调查不同棚龄大棚土壤硝态氮含量的变化,研究了杨凌大棚蔬菜生产中的土壤硝态氮累积特性,结果显示:大棚蔬菜土壤硝态氮含量显著高于露天菜地和拱棚土壤,反映出过高的氮肥投入,各棚龄土壤均表现出明显的硝态氮表土累积。随着棚龄的增加土壤硝态氮及总盐含量呈增加趋势,土壤pH值则表现为逐渐下降,不合理的施肥将导致短龄大棚土壤硝态氮及总盐含量急剧上升而超过长龄大棚土壤;在番茄生长周期内随生育期延长硝态氮在土壤中累积量逐渐增大,但总盐含量变化并不明显。硝态氮在土壤中的迁移,导致土壤底层硝态氮也大量累积。  相似文献   

10.
  目的  探讨宁夏引黄灌区日光温室集约种植区地下水硝态氮污染现状及其与土壤硝态氮含量之间的关系,为有效防治地下水硝态氮污染及土壤盐渍化提供理论依据。  方法  通过抽样调查方法,采集7个典型日光温室集约种植区不同时期的214个地下水样及102个0 ~ 20 cm土壤样品,分析了地下水和土壤的硝态氮含量及电导率等。  结果  地下水样本硝态氮含量超过Ⅲ类水标准的达53.3%;近80%的土壤样本呈现出不同程度的盐渍化,其中中度盐化土占57%。当地下水硝态氮含量大于40 mg L?1时,地下水电导率、土壤电导率和土壤硝态氮含量均随地下水硝态氮浓度增加而急剧增加。土壤电导率与土壤硝态氮含量之间呈极显著线性函数关系,决定系数达0.376。土壤硝态氮含量与地下水硝态氮含量之间呈极显著的指数函数关系,土壤电导率与地下水电导率之间呈极显著的线性函数关系。  结论  宁夏典型日光温室集约种植区的地下水硝态氮污染和次生盐渍化严重,并与土壤硝态氮含量和盐渍化密切相关。  相似文献   

11.
土地休闲过程中土壤硝态氮变化的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
  相似文献   

12.
通过有机肥与无机肥对比定位试验,揭示氮肥肥效与硝态氮在土壤储存的一些规律。结果表明,有机氮肥能够实现作物高产,有机氮肥最高产量13092 kg hm-2、无机氮肥最高产量12773 kg hm-2。玉米作物产投比1.0时的最佳推荐施氮量有机氮为:252.72 kg hm-2、无机氮为:381.84 kg hm-2。施氮量在120~300 kg hm-2范围内,有机肥处理的土壤硝态氮储量高于无机氮处理。有机氮用量在80 kg hm-2以下,不会引起土壤硝态氮储量增加;无机氮用量在160 kg hm-2以下,不引起土壤硝态氮储量增加。  相似文献   

13.
双波长分光光度法测定土壤硝态氮   总被引:2,自引:0,他引:2  
涂常青  温欣荣 《土壤肥料》2006,(1):50-51,61
研究了双波长分光光度法测定土壤中的硝态氮,结果与酚二磺酸法相符,样品标准加入回收率为90%-109%,PSD)为2.22%-3.45%。结果表明;该方法具有选择性好、灵敏度高、操作简便、测定范围宽、能有效消除亚硝酸盐、氯离子、有机物的干扰等优点。  相似文献   

14.
双波长分光光度法测定土壤硝态氮   总被引:1,自引:0,他引:1  
研究了双波长分光光度法测定土壤中的硝态氮,结果与酚二磺酸法相符,样品标准加入回收率为90%~109%,RSD为2.22%~3.45%。结果表明:该方法具有选择性好、灵敏度高、操作简便、测定范围宽、能有效消除亚硝酸盐、氯离子、有机物的干扰等优点。  相似文献   

15.
旱地土壤硝态氮残留淋溶及影响因素研究   总被引:29,自引:1,他引:29  
王朝辉  李生秀  王西娜  苏涛 《土壤》2006,38(6):676-681
在我国北方旱地,施入土壤而未被作物吸收利用的肥料N,主要以NO3--N的形式残留于土壤中。残留的NO3--N如不及时被作物吸收利用,在降水或灌水的作用下,会淋入土壤深层,或随径流进入地表水体,或经反硝化形成N2O进入大气,对土壤、水体和大气环境构成严重威胁。本文分析了旱地农田生态系统中,NO3--N在土壤剖面的残留淋溶与施肥、灌溉/降水、耕作、土壤、植物等因素的关系。提出在今后的研究工作中应特别注意的问题:①建立长期定位试验,确定NO3--N淋溶阈值,评价和预测NO3--N残留和淋失的趋势;②优化作物栽培和养分资源管理措施,提高作物利用土壤NO3--N的能力;③改进N肥施用技术,加强N素管理,防止NO3--N在土壤中大量累积。  相似文献   

16.
桓台县高产农田土壤硝态氮淋失动态研究   总被引:13,自引:1,他引:13  
试验研究高产农田生态系统条件下N肥施用量和秸秆还田对土体硝态氮(NO3^--N)的时空分布动态结果表明,NO3^- -N含量在空间上随土壤深度而降低,这一相关关系可用Y=aX^b函数表达。小麦-玉米2季秸秆还田同单季小麦秸秆还田对NO3^- -N的动态影响较小,但相同施N量下未进行玉米秸秆还田0-40cm土层土壤中NO3^- -N含量偏高,土体NO3^- -N有淋失较强的趋势。土体NO3^- -N含量年度内波动大小与施N量密切相关,0-40cm土层土壤内NO3^- -N含量起伏最大,60cm土层以下相对稳定。各土层内NO3^- -N含量与施N量相关密切,这一相关关系影响到2m土层深度。土体中NO3^- -N含量周年内出现2次峰值和1次低谷,峰值出现在玉米和小麦收获后,低谷发生在小麦苗期-开花期土体养分大量吸收时期。9月下旬2m土层土壤NO3^- -N含量可高达10mg/kg,而且有淋失出2m土体的趋势。  相似文献   

17.
酸性土壤中亚硝态氮提取方法的改进   总被引:1,自引:0,他引:1  
戴沈艳  温腾  张金波  蔡祖聪 《土壤》2018,50(2):341-346
亚硝态氮NO_2~-N是土壤硝化和反硝化过程中很重要的一种中间产物,与土壤中含氮气体的产生密切相关。NO_2~-N在土壤中的转化极其迅速,尤其在强酸性条件下NO_2~-N极不稳定,2 mol/L KCl溶液提取过程中会大量发生分解。为了更准确地研究酸性土壤中的NO_2~-N变化,必须选择合适的提取剂,以实现土壤中NO_2~-N的高效提取。本文采用15N标记方法,系统比较了不同方法提取土壤NO_2~-N和NH_4~+-N的回收率,提出了改进措施。结果显示:调节强酸性土壤初始pH为6.0和8.0处理,经2 mol/L KCl溶液提取,提取液的pH分别保持在4.8和5.8左右,显著高于对照(3.8)。pH与振荡时间对酸性土壤NO_2~-N和NH_4~+-N的回收率存在显著的交互影响。振荡时间30 min以内,pH 6.0和pH 8.0处理,NO_2~-N的回收率最高;而振荡时间为30 min时,未调节pH和pH 6.0处理NH_4~+-N的回收率最高。综合考虑,提取土壤无机氮时,土壤/KCl悬浮液的pH保持在5.0~6.0,振荡时间30 min,能同时满足对土壤NO_2~-N和NH_4~+-N的提取。对于强酸性土壤(pH6.0),本研究推荐使用KCl溶液和pH 8.4的缓冲液混合溶液(KCl溶液/缓冲液比为4/1)作为提取液(土/液比为1/5)。对于pH在7.5以上的土壤样品,推荐使用KCl溶液和pH 7.5的缓冲液混合溶液(KCl溶液/缓冲液比为4/1)作为提取液(土/液比为1/5)。对于pH在6.0~7.5的土壤样品,可以直接使用2 mol/L KCl溶液提取。  相似文献   

18.
该文研究了充分利用土壤漫反射光谱在可见-近红外波段的有效信息,研究快速准确检测土壤硝态氮含量的新方法。试验选取89个风干土壤样本,经粉碎过直径1 mm筛孔后,使用 FieldSpec 3便携式光谱仪(光谱波长范围:400~2 500 nm),获取其漫反射光谱。检查各土样的原始光谱的有效性并进行平均,经偏最小二乘法partial least squares(PLS)聚类分析后,选取其中的63个样本构成校正集建立模型,10个样本构成预测集进行模型验证。通过一阶微分与滑动平均滤波相结合的预处理方法,用15个主成分建立的主成分+神经网络模型为最好,其校正模型的回判相关系数为0.9908,均方根误差(RMSEC)为1.4528,预测模型的相关系数为0.7179。研究结果表明,利用可见-近红外光谱技术可以准确地检测茶园土壤硝态氮含量。  相似文献   

19.
在过去10年中,施用生物质炭降低氮素淋洗正逐渐成为研究热点。为全面总结分析生物质炭在降低农田土壤硝态氮淋洗方面的影响,本文收集了2010—2016年在中国知网和Web of science上发表的相关中英文文献41篇,采用加权平均法对数据进行处理。结果表明:在农业生产过程中,86%的研究数据表明施入生物质炭可降低土壤硝态氮淋洗,且降低比例随生物质炭施入量的增加而升高。同时,98.2%的研究数据显示生物质炭的施入可以减少土壤水分淋溶体积,平均降幅达10.0%。生物质炭的施用效果以在中性土壤(p H=6.48)为最佳,硝态氮的淋失减少量达30.7%。研究表明,生物质炭可以降低土壤硝态氮的淋洗,平均降幅达24.6%,其淋洗效果主要与生物质炭施用量及原材料有关,此外土壤类型、土壤酸碱度等也是相关影响因素。但是目前关于生物质炭对硝态氮淋洗的研究主要集中在室内土柱模拟,未来仍需长期的田间定位试验来进一步验证其作用效果。  相似文献   

20.
玉米对土壤深层标记硝态氮的利用   总被引:2,自引:1,他引:2  
采用将15N标记的硝态氮注射于土壤剖面110cm处的田间微区试验法,在施氮和不施氮两种条件下研究玉米对深层累积硝态氮的利用程度。结果表明,对于试验土壤在施氮和不施氮的条件下,玉米对注射于土壤剖面110cm处15N标记的硝态氮的回收率分别为11.9%和6.7%;土壤耕层施用氮肥促进了玉米中下层根系的发育,提高了对深层标记NO3--N的回收率;在偏旱气候年份,土壤深层110cm处标记的硝态氮没有发生明显向下迁移,仅以标记区域为中心向上和向下扩散了20cm左右。研究结果还表明,通过植物利用土壤深层累积NO3--N,避免硝态氮进一步向浅层地下水迁移具有一定的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号