首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Results are presented from a 3-year investigation into nitrate leaching from grassed monolith lysimeters treated with double (15NH415NO3) or single (15NH4NO3) labelled ammonium nitrate at three rates, 250, 500 and 900 kg N ha?1 a?1. Over the 3 years of the experiment, 0.14%, 3.1% and 18.1% of the applied fertilizer was recovered in the leachate at 250, 500 and 900kg N ha?1 respectively. This represented 9%, 39% and 75% of the overall nitrate leaching at the three application rates. A significant proportion of the fertilizer leached as nitrate at the three application rates was derived, via nitrification, from the fertilizer ammonium. Increasing fertilizer applications caused a rise in the leaching of both soil and fertilizer derived nitrogen, although whether the increase reflected a true priming effect was not clear.  相似文献   

2.
Aluminum toxicity is a major limitation to crop production on highly weathered and leached soils in Rwanda. Moreover, sulfur though widely deficient in Rwanda acidic soils has received little attention by soil fertility researchers. A field experiment on maize response and soil nutrients status to liming materials of travertines at 3.4 t ha?1, ash wood 1.2 t ha?1 of CaO equivalent and sulfur at 10 kg ha?1 combined with NPK at 80, 60, and 45 kg ha?1 respectively was conducted in Rubona Ultisol and Nyamifumba Oxisol. Results revealed that travertine and wood ash increased the soil pH from 4.7 to 5.8 or higher and decreased exchangeable Al3+ and H+ to near 0 cmolc kg?1. Soil nutrients generally increased to high or medium ranges for crop production. Leaf dry biomass, plant height and maize grain yields were significantly higher in Rubona Ultisol than in Nyamifumba Oxisol. Plots that received wood ash, with NPKS or with NPK, generally had higher maize yields, followed by those which received travertines and NPKS or NPK which had maize growth response as compared to the control plots which received NPK only. Thereby, a combination of wood ash with NPKS or NPK, travertines with NPKS was found to neutralize soil aluminum toxicity, increase soil nutrients status to required levels for plant growth and increase maize yields significantly.  相似文献   

3.
Acetylene blockage was evaluated as a method for measuring losses of N2O + N2 from two Denchworth series clay soils. The denitrification potential in anaerobic, dark incubations at 20°C with nitrate (equivalent to 100 kg N ha?1 0–20 cm depth), maximum water holding capacity, and acetylene (1%), was equivalent to 32 ± 11 and 39 ± 6 kg N ha?1 per day for the two 0–20 cm soils and was positively correlated with carbon content (r= 0.98). After 4 days N2O was reduced to N2 in the presence of C2H2. In April 1980 following irrigation (24 mm) and applications of ammonium nitrate (70 kg N ha?1) and acetylene, the mean nitrous oxide flux from soil under permanent grass was 0.05 ± 0.01 kg N2O-N ha?1 per day for 8 days. In June 1980, the losses of nitrogen from cultivated soils under winter wheat after irrigation (36 mm) and acetylene treatment were 0.006 ± 0.002 and 0.04–0.07 ± 0.01 kg N ha?1 per day respectively before and after fertilizer application (70 kg N ha?1). The nitrous oxide flux in the presence of acetylene decreased briefly, indicating that nitrification was rate determining in drying soil.  相似文献   

4.

Purpose

Few studies have examined the effects of biochar on nitrification of ammonium-based fertilizer in acidic arable soils, which contributes to NO3 ? leaching and soil acidification.

Materials and methods

We conducted a 42-day aerobic incubation and a 119-day weekly leaching experiment to investigate nitrification, N leaching, and soil acidification in two subtropical soils to which 300 mg N kg?1 ammonium sulfate or urea and 1 or 5 wt% rice straw biochar were applied.

Results and discussion

During aerobic incubation, NO3 ? accumulation was enhanced by applying biochar in increasing amounts from 1 to 5 wt%. As a result, pH decreased in the two soils from the original levels. Under leaching conditions, biochar did not increase NO3 ?, but 5 wt% biochar addition did reduce N leaching compared to that in soils treated with only N. Consistently, lower amounts of added N were recovered from the incubation (KCl-extractable N) and leaching (leaching plus KCl-extractable N) experiments following 5 wt% biochar application compared to soils treated with only N.

Conclusions

Incorporating biochar into acidic arable soils accelerates nitrification and thus weakens the liming effects of biochar. The enhanced nitrification does not necessarily increase NO3 ? leaching. Rather, biochar reduces overall N leaching due to both improved N adsorption and increased unaccounted-for N (immobilization and possible gaseous losses). Further studies are necessary to assess the effects of biochar (when used as an addition to soil) on N.  相似文献   

5.
Results are presented from a 3 year investigation into nitrate leaching from isolated 0.4 ha grassland plots fertilized with 250, 500 and 900 kg N ha?1 a?1. Cumulative nitrate leaching over the 3 years was equivalent to 1.5%, 5.4% and 16.7% of the fertilizer applied at 250, 500 and 900 kg N ha?1 rates respectively. Over a whole drainage season, mean nitrate leachate concentrations at 250 kg N ha?1 did not exceed 4 mgl?1, although maximum values of 13.3 mgl?1 were observed. In contrast, at 900 kg N ha?1, the mean nitrate leachate concentration in two of the years exceeded 90 mgl?1. Mineral nitrogen balances constructed for the 1979 growing season indicated that leaching at 250 kg N ha?1 was low because net mineralization of soil organic nitrogen was small, and crop nitrogen uptake almost balanced fertilizer application. Although the pattern of nitrate leaching suggested that by-passing occurred in the movement of water down the soil profile, it was not possible to confirm this using simulation models of leaching. Possible reasons for this, including the occurrence of rapid water flow down gravitationally drained macropores, are discussed.  相似文献   

6.
(pp. 825–831)

This study was carried out to clarify the effects of soil nitrate before cultivation and amounts of basal-dressed nitrogen on additional N application rate and yields of semi-forced tomato for three years from 1998 to 2000. The amounts and timing of additional N dressing were determined based on diagnosis of petiole sap nitrate. The top-dressing was carried out with a liquid fertilizer when the nitrate concentration of a leaflet's petiole sap of leaf beneath fruit which is 2–4 cm declined below 2000 mg L?1.

For standard yield by the method of fertilizer application based on this condition, no basal-dressed nitrogen was required when soil nitrate before cultivation was 150 mg kg?1 dry soil or higher in the 0–30 cm layer; 38 kg ha?1 of basal-dressed nitrogen, which corresponds to 25% of the standard rate of fertilizer application of Chiba Prefecture, was optimum when soil nitrate before cultivation was 100150 mg kg?1 dry soil; 75 kg ha?1 of basal-dressed nitrogen, which corresponds to 50% of the standard, was optimum when soil nitrate before cultivation was under 100 mg kg?1 dry soil. A standard yield was secured and the rate of nitrogen fertilizer application decreased by 49–76% of the standard by keeping the nitrate concentration of tomato petiole sap between 1000–2000 mg L?1 from early harvest time to topping time under these conditions.  相似文献   

7.
Critical loads for nitrogen deposition on forest ecosystems   总被引:2,自引:0,他引:2  
Critical loads for N deposition are derived from an ecosystem's anion and cation balance assuming that the processes determining ecosystem stability are soil acidification and nitrate leaching. Depending on the deposition of S, the parent soil material, and the site quality critical N deposition rates will range between 20 to 200 mmol m?2 yr?1 (3 to 14 kg ha?1 yr?1) on silicate soils and reach 20 to 390 mmol m?2 yr?1 (3 to 48 kg ha?1) on calcareous soils.  相似文献   

8.
The contributions of different acidifying processes to the total protonload (TPL) of the soil in control plots (C) and ammonium sulphate treatedplots (NS) were studied in a Norway spruce stand in Southwest Sweden during 1988–1998. The annual deposition of inorganic nitrogen and sulphate was on average 18 kg N and 20 kg S ha-1. In addition the NS treated plots received 100 kg N and 114 kg S ha-1 annually. The amounts of nutrients added to the ecosystem by wet and dry deposition and the leaching at 50 cm depth were calculated. The net atmosphericproton load, the proton load by nitrogen transformations in the soil, the sulphate sorption/desorption in the soil and the excess base cation accumulation in biomass were calculated. There was no leaching of inorganic nitrogen from control plots during the study period. The net atmospheric proton deposition, originating from sulphuric and nitric acid deposition, was the main contributor to TPL in control plots. The addition of ammonium sulphate increased the leaching of ammonium, nitrate, sulphate, magnesium and calcium but not of potassium. The TPL in NS plots was about ten times that in control plots. The nitrogen transformation processes were the main contributors to TPL to NS soil, in the beginning by ammonium uptake and later also by nitrification. The pH decreased by 0.4 units in the mineral soil. The between-year variation in TPL during the eleven year period in C plots (200–1500 molc ha-1 yr-1) and in NS plots (1000–13000 molc ha-1 yr-1) was mainly dependent on the sorption or release of sulphate. Both in C and NS, the TPL was buffered mainly by dissolving solid aluminium compounds, most probably some Al(OH)3 phase.  相似文献   

9.
Abstract. Nitrogen (N) loss by leaching poses great challenges for N availability to crops as well as nitrate pollution of groundwater. Few studies address this issue with respect to the role of the subsoil in the deep and highly weathered savanna soils of the tropics, which exhibit different adsorption and drainage patterns to soils in temperate environments. In an Anionic Acrustox of the Brazilian savanna, the Cerrado, dynamics and budgets of applied N were studied in organic and inorganic soil pools of two maize (Zea mays L.) – soybean (Glycine max (L.) Merr.) rotations using 15N tracing. Labelled ammonium sulphate was applied at 10 kg N ha?1 (with 10 atom%15N excess) to both maize and soybean at the beginning of the cropping season. Amounts and isotopic composition of N were determined in above‐ground biomass, soil, adsorbed mineral N, and in soil solution at 0.15, 0.3, 0.8, 1.2 and 2 m depths using suction lysimeters throughout one cropping season. The applied ammonium was rapidly nitrified or immobilized in soil organic matter, and recovery of applied ammonium in soil 2 weeks after application was negligible. Large amounts of nitrate were adsorbed in the subsoil (150–300 kg NO3?‐N ha?1 per 2 m) matching total N uptake by the crops (130–400 kg N ha?1). Throughout one cropping season, more applied N (49–77%; determined by 15N tracers) was immobilized in soil organic matter than was present as adsorbed nitrate (2–3%). Most of the applied N (71–96% of 15N recovery) was found in the subsoil at 0.15–2 m depth. This coincided with an increase with depth of dissolved organic N as a proportion of total dissolved N (39–63%). Hydrophilic organic N was the dominant fraction of dissolved organic N and was, together with nitrate, the most important carrier for applied N. Most of this N (>80%) was leached from the topsoil (0–0.15 m) during the first 30 days after application. Subsoil N retention as both adsorbed inorganic N, and especially soil organic N, was found to be of great importance in determining N losses, soil N depletion and the potential of nitrate contamination of groundwater.  相似文献   

10.
The concentration of ammonium and nitrate in precipitation has increased during this century. The deposition of N compounds (wet + dry) is reaching 30 to 40 kg ha?1yr?1 in many areas in Central Europe and above 20 kg in the southern parts of Scandinavia. In extreme situations throughfall data indicate depositions above 60 kg ha?1yr?1 in Central Europe and above 40 kg ha?1yr?1 in south Sweden. Very high depositions are observed on slopes at forest edges and adjacent to areas with animal farms and manure spreading. In areas with low N deposition almost all deposited N (>95%) will be absorbed in the tree canopies or in the soil. In areas with high deposition an increased outflow is observed which in some cases reach 10 to 15 kg ha-lyr-1. The increased output is an indication of N saturation of the ecosystem and it leads to acidification effects in soils, soilwater, groundwater and surface waters.  相似文献   

11.
Abstract. The repeated application of pig slurry to agricultural soils may result in an accumulation of salts and a risk of aquifer pollution due to nitrate leaching and salinization. Under Mediterranean conditions, a field experiment on a sandy loam soil (Typic Xerofluvent) was performed with maize (Zea mays) in 1998, 1999 and 2001 to study the effects of applying optimal (P1) and excessive rates (P3) of pig slurry on soil salinization, nitrate leaching and groundwater pollution. The rate of pig slurry was established considering the optimal N rate for maize in this soil (170, 162 and 176 kg N ha?1 for 1998, 1999 and 2001, respectively). Pig slurry treatments were compared to an optimal N rate supplied as urea (U) and a control treatment without N fertilizer (P0). The composition of the slurries showed great variability between years. Mean NO3? leaching losses from 1998 to 2001 were 329, 215, 173 and 78 kg N ha?1 for P3, P1, U and P0 treatments, respectively. The amount of total dissolved salts (TDS) added to the soil in slurry application between 1998 and 2001 was 2019 kg TDS ha?1 for the P1 treatment and 6058 kg TDS ha?1 for the P3 treatment. As a consequence, the electrical conductivity (EC) of the slurry‐treated soils was greater than that of the control soil. The EC correlated significantly with the sodium concentration of the soil solution. Over the entire experimental period, 2653, 2202 and 2110 kg Na ha?1 entered the aquifer from the P3, P1 and P0 treatments, respectively. The P3 treatment did not significantly increase grain production in 1999 and 2001 compared with that achieved with the optimal N rate treatment (P1). This behaviour shows the importance of establishing application guidelines for pig slurry that will reduce the risk of soil and groundwater pollution.  相似文献   

12.
Approximately 40% of New Zealand's land mass is fertilized grassland with entirely non‐native plants, but currently there is substantially increased interest in restoration of native plants into contemporary agricultural matrices. Native vegetation is adapted to more acid and less fertile soils and their establishment and growth may be constrained by nutrient spillover from agricultural land. We investigated plant–soil interactions of native N‐fixing and early successional non N‐fixing plants in soils with variable fertility. The effects of soil amendments of urea (100 and 300 kg N ha?1), lime (6000 kg CaCO3 ha?1), and superphosphate (470 kg ha?1) and combinations of these treatments were evaluated in a glasshouse pot trial. Plant growth, soil pH, soil mineral N, Olsen P and nodule nitrogenase activity in N‐fixing plants were measured. Urea amendments to soil were not inhibitory to the growth of native N‐fixing plants at lower N application rates; two species responded positively to combinations of N, P and lime. Phosphate enrichment enhanced nodulation in N‐fixers, but nitrogen inhibited nodulation, reduced soil pH and provided higher nitrate concentrations in soil. The contribution of mineral N to soil from the 1‐year old N‐fixing plants was small, in amounts extrapolated to be 10–14 kg ha?1 y?1. Urea, applied both alone and in conjunction with other amendments, enhanced the growth of the non N‐fixing species, which exploited mineral N more efficiently; without N, application of lime and P had little effect or was detrimental. The results showed native N‐fixing plants can be embedded in agroecology systems without significant risk of further increasing soil fertility or enhancing nitrate leaching.  相似文献   

13.
This study compared the relative effectiveness of two products recently introduced as nitrification inhibitors with other materials used to inhibit nitrification. Four soils were treated with 0, 0.2, 1, 5, and 25 mg kg?1 of nitrapyrin (NP), a new microencapsulated nitrapyrin product (ENP), dicyandiamide (DCD), a new maleic-itaconic polymer product (MIP), and ammonium thiosulfate (ATS). The soils were also treated with 200 mg N kg?1 as urea, and percent inhibition of nitrification determined after 2 or 4 weeks of incubation. After 4 weeks, similar levels of nitrification inhibition were provided by 1 mg kg?1 of NP (72%), 5 mg kg?1 of ENP (79%), and 25 mg kg?1 of DCD (73%), averaged across soil. After 4 weeks with a sandy soil, the highest rate of MIP and ATS provided 15 and 36% inhibition, respectively. MIP and ATS were ineffective at inhibiting nitrification when added to the other three soils.

Abbreviations: ATS: ammonium thiosulfate; DCD: dicyandiamide; ENP: encapsulated nitrapyrin; MIP: maleic-itaconic polymer; NP: nitrapyrin; UAN: urea-ammonium nitrate liquid fertilizer  相似文献   


14.
Field experiments were conducted to determine the effect of nitrogen (N) fertilizer forms and doses on wheat (Triticum aestivum L.) on three soils differing in their ammonium (NH4) fixation capacity [high = 161 mg fixed NH4-N kg?1 soil, medium = 31.5 mg fixed NH4-N kg?1 soil and no = nearly no fixed NH4-N kg?1 soil]. On high NH4+ fixing soil, 80 kg N ha?1 Urea+ ammonium nitrate [NH4NO3] or 240 kg N ha?1 ammonium sulfate [(NH4)2SO4]+(NH4)2SO4, was required to obtain the maximum yield. Urea + NH4NO3 generally showed the highest significance in respect to the agronomic efficiency of N fertilizers. In the non NH4+ fixing soil, 80 kg N ha?1 urea+NH4NO3 was enough to obtain high grain yield. The agronomic efficiency of N fertilizers was generally higher in the non NH4+ fixing soil than in the others. Grain protein was highly affected by NH4+ fixation capacities and N doses. Harvest index was affected by the NH4+ fixation capacity at the 1% significance level.  相似文献   

15.
Significance of microbial biomass and non-exchangeable ammonium with respect to the nitrogen transformations in loess soils of Niedersachsen during the growing season of winter wheat. I. Change of pool sizes Nitrogen transformations in loess soils have been examined by laboratory and field experiments. After straw application (· 8 t · ha?1), N in microbial biomass (Nmic) increased by about 20 mg · kg?1 soil (· 90 kg N · ha?1 · 30 cm?1) after 9 days of incubation (20 °C). Another laboratory experiment yielded an increase of about 400 mg of NH4+-N · kg?1 fixed by minerals within 1 h after addition of 1 M NH4+-acetate. Defixation of the recently fixed NH4+ after addition of 1 M KCl amounted to only 60 mg · kg?1 within 50 days. In a field experiment with winter wheat 1991, an increase in Nmic of about 80 kg N · ha?1 · 30 cm?1 was observed from March to June. After July, growth of the microbes was limited by decreased soluble carbon concentrations in the rhizosphere. Different levels of mineral N-fertilizer (0, 177 and 213 kg N · ha?1) did not affect significantly the microbial biomass. The same field experiment yielded a decrease of non-exchangeable ammonium on the “zero”-fertilized plot in spring by 200 kg N · ha?1 · 30 cm?1. The pool of fixed ammonium increased significantly after harvest. After conventional mineral N-fertilizer application (213 kg N · ha?1). NH4+-defixation was only about 120 kg N · ha?1 · 30 cm?1 until July.  相似文献   

16.
In grassland farming, especially on coarse‐textured soils, K can be a critical element. On these soils, the actual K management as well as fertilizer history to a large extent determine the leaching of K. The effects of four fertilizer regimes on the nutrient balances and leaching of K from grassland grown on a sandy soil were investigated. The swards differed in the source and level of N input and K fertilizer: no fertilizer N + 166 kg K ha?1 year?1 (Control), 320 kg inorganic N ha?1 + 300 kg K ha?1 year?1 (MIN 320), 320 kg N + 425 kg K ha?1 year?1 in form of cattle slurry (SLR 320) and a grass–clover sward + 166 kg K ha?1 year?1 (WCL 0) without any inorganic N input. In a second experimental phase, cores from these swards were used in a mini‐lysimeter study on the fate of K from urine patches. On cut grassland after 6 years K input minus removal in herbage resulted in average K surpluses per year of 47, 39, 56 and 159 kg K ha?1 for the Control, MIN 320, WCL 0 and SLR 320, respectively. Related leaching losses per year averaged 7.5, 5, 15 and 25 kg K ha?1. Losses of urinary‐K through leaching were 2.2–4.5 and 5.7–8.4% of the K supplied in summer and autumn applications, respectively. Plant and soil were the major sinks for K from fertilizer or urine. High levels of exchangeable K in the soil and/or large and late fertilizer or urine applications stimulated leaching of K.  相似文献   

17.
Leaching of nutrients in soil can change the surface and groundwater quality. The present study aimed at investigating the effects of raw and ammonium (NH4+)-enriched zeolite on nitrogen leaching and wheat yields in sandy loam and clay loam soils. The treatments were one level of nitrogen; Z0: (100 kg (N) ha?1) as urea, two levels of raw zeolite; Z1:(0.5 g kg?1 + 100 kg ha?1) and Z2: (1 g kg?1 + 100 kg ha?1), and two levels of NH4+-enriched zeolite; Z3: (0.5 g kg?1 + 80 kg ha?1) and Z4: (1 g kg?1 + 60 kg ha?1). Wheat grains were sown in pots and, after each irrigation event, the leachates were collected and their nitrate (NO3?) and NH4+ contents were determined. The grain yield and the total N in plants were measured after four months of wheat growth. The results indicated that the amounts of NH4+ and NO3? leached from the sandy loam soil were more than those from the clay loam soil in all irrigation events. The maximum and minimum concentrations of nitrogen in the drainage water for both soils were observed at control and NH4+-zeolite treatments, respectively. Total N in the plants grown in the sandy loam was higher compared to plants grown in clay loam soil. Also, nitrogen uptake by plants in control and NH4+-zeolite was higher than that of raw-zeolite treatments. The decrease in the amount of N leaching in the presence of NH4+-zeolite caused more N availability for plants and increased the efficiency of nitrogen fertilizers and the plants yield.  相似文献   

18.
ABSTRACT

Grain yield in many soybean experiments fails to respond to fertilizer nitrogen (N). A few positive responses have been reported when soybean were grown in the southern U.S., when N was applied near flowering and when biosolids were added. In a previous study, low N concentrations of soybean forage in north Texas on a high pH calcareous soil were reported and thus, we suspected a N nutrition problem. Consequently, we initiated this study to determine whether selected preplant N sources broadcast and incorporated into a Houston Black clay (fine, smectitic, thermic Udic Haplusterts) might increase forage N concentration, forage yield, or soybean grain yield. In 2003, N was applied as ammonium nitrate (NH4NO3, AN) up to 112 kg N ha? 1 and dairy manure compost (DMC) was applied at rates of 4.9, 9.9, 15.0, and 19.9 Mg ha? 1. The DMC contained 5.9, 2.6, and 6.7 g kg? 1 of total N, P, and K, respectively; thus DMC added 29 to 116 kg N ha? 1. In 2004, AN was applied at rates of 112 and 224 kg N ha? 1 and DMC was applied at 28 and 57 Mg ha? 1; thus, DMC added 168 to 335 kg N ha? 1. In another 2004 test, biosolids, a biosolids/municipal yard waste compost mixture (BYWC), and AN were compared. The biosolids contained 31, 18, and 2.9 g kg? 1 total N, P, and K, respectively. The BYWC mixture contained 8.8, 6.1, and 3.4 g kg? 1 of total N, P, and K, respectively. Biosolids were applied at 10 Mg ha? 1 (310 kg N ha? 1), BYWC was applied at 58 Mg ha? 1 (510 kg N ha? 1), and AN up to 224 kg N ha? 1. None of the soil treatments increased soybean grain yield or forage yield although AN slightly increased forage N concentration in 2003.  相似文献   

19.
Nitrogen (N) losses through nitrate leaching, occurring after slurry spreading, can be reduced by the use of nitrification inhibitors (NIs) such as dicyandiamide (DCD) and 3,4‐dimethyl pyrazole phosphate (DMPP). In the present work, the effects of DCD and DMPP, applied at two rates with cattle slurry, on soil mineral N profiles, annual ryegrass yield, and N uptake were compared under similar pedoclimatic conditions. Both NIs delayed the nitrate formation in soil; however, DMPP ensured that the soil mineral N was predominantly in the ammonium form rather than in the nitrate form for about 100 days, whereas with DCD such effect was observed only during the first 40 days after sowing. Furthermore, the use of NIs led to an increase of the dry‐matter (DM) yields in a range of 32–54% and of the forage N removal in a range of 34–68% relative to the slurry‐only (SO) treatment (without NIs). A DM yield of 8698 kg ha?1 was obtained with the DMPP applied at the greater rate against only 7444 kg ha?1 obtained with the greater rate of DCD (4767 kg ha?1 in the SO treatment). Therefore, it can be concluded that DMPP is more efficient as an NI than DCD when combined with cattle slurry.  相似文献   

20.
The beneficial effect of sewage sludge in crop production has been demonstrated, but there is concern regarding its contribution to nitrate (NO3) leaching. The objectives of this study were to compare nitrogen (N) rates of sewage sludge and ammonium nitrate (NH4NO3) on soil profile (0–180 cm), inorganic N [ammonium nitrate (NH4‐N) and nitrate nitrogen (NO3‐N)] accumulation, yield, and N uptake in winter wheat (Triticum aestivum L.). One field experiment was established in 1993 that evaluated six N rates (0 to 540 kg·ha‐1·yr‐1) as dry anaerobically digested sewage sludge and ammonium nitrate. Lime application in 1993 (4.48 Mg ha‐1) with 540 kg N ha‐1·yr‐1 was also evaluated. A laboratory incubation study was included to simulate N mineralization from sewage sludge applied at rates of 45, 180, and 540 kg N ha‐1·yr‐1. Treatments did not affect surface soil (0–30 cm) pH, organic carbon (C), and total N following the first (1994) and second (1995) harvest. Soil profile inorganic N accumulation increased when ≥270 kg N ha‐1 was applied as ammonium nitrate. Less soil profile inorganic N accumulation was detected when lime was applied. In general, wheat yields and N uptake increased linearly with applied N as sewage sludge, while wheat yields and N uptake peaked at 270 kg N ha‐1 when N was applied as ammonium nitrate. Lime did not affect yields or N uptake. Fertilizer N immobilization was expected to be high at this site where wheat was produced for the first time in over 10 years (previously in native bermudagrass). Estimated N use efficiency using sewage sludge in grain production was 20% (average of two harvests) compared to ammonium nitrate. Estimated plant N recovery was 17% for sewage sludge and 27% for ammonium nitrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号