首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Radioactive cesium (Cs) deposited after the Fukushima Daiichi Nuclear Power Station accident contaminated farmyard manure (FYM) in the wide area surrounding the plant. We conducted a field trial to determine the transfer factor of radioactive Cs to forage corn (Zea mays L.) from soil to which the contaminated FYM had been applied. The main purpose of this experiment was to examine the behavior of the radioactive Cs from contaminated FYM that was incorporated in agricultural fields. Application of FYM containing 3900 Bq kg?1 dry matter (DM) of cesium-137 (137Cs) at a rate of 4.3 kg m?2 increased the 137Cs concentration in the soil by 64 Bq kg?1 dry soil, and in the forage corn by 9.2 Bq kg?1 DM. Therefore, we calculated the transfer factor to corn plants from the soil after application of contaminated FYM to be 0.14. This value is lower than that observed for soil to which uncontaminated FYM had been applied as a control, and it is within the range of reported soil-to-plant transfer factors of 0.003–0.49 listed in the recent parameter handbook by International Atomic Energy Agency. The increase in the radioactive Cs concentration in the corn plants, expressed as the sum of 137Cs and cesium-134 (134Cs), was only 3% of the 2012 provisional tolerance level for cattle roughage in Japan. Even though the application of contaminated FYM did not cause a large change in the radioactive Cs concentration in the corn plants in this trial, such application should be carefully controlled because it increased radioactive Cs concentrations in both soil and forage corn.  相似文献   

2.
The 137Cs and 40K activities and transfer factors from soil to vegetables, grass, and milk from villages located around Tarapur Atomic Power Station (TAPS) were determined using high-resolution gamma spectrometry. A total of 32 soil, 21 vegetable, 23 dry paddy grass, and 23 milk samples were collected from 23 different agricultural farms from various villages around TAPS to determine transfer factors for natural environment. The mean concentration values for 137Cs and 40K in soil, grass, and milk were 2.39?±?0.86 Bq kg?1, 0.31?±?0.23 Bq kg?1, and 12.4?±?5.7 mBq L?1 and 179?±?31 Bq kg?1, 412?±?138 Bq kg?1, and 37.6?±?9.3 Bq L?1, respectively, for soil?Cgrass?Cmilk pathway. In the soil?Cvegetation pathway, the mean concentrations values for 137Cs and 40K were 2.15?±?1.04 Bq kg?1, 16.5?±?7.5 mBq kg?1, and 185?±?24, 89?±?50 Bq kg?1, respectively. The evaluated mean transfer factors from soil?Cgrass, grass?Cmilk, and soil?Cvegetation for 137Cs were 0.14, 0.0044, and 0.0073 and that of 40K were 2.42, 0.0053, and 0.49, respectively. Only 15 out of total 44 milk and vegetable samples were detected positive for 137Cs, indicating a very low level of bioavailability.  相似文献   

3.
Abstract

Radioactivity levels of cesium (Cs)-134 and 137Cs in bamboo [Phyllostachys reticulata (Rupr) K. Koch] sprouts grown from April to June 2011 over a wide area (including Fukushima Prefecture) were elevated (max. 3100 Bq kg?1 fresh weight) after the Tokyo Electric Power Company, Inc. (TEPCO) Fukushima Daiichi Nuclear Power Plant disaster in March 2011. Bamboo sprouts in 2012 also contained high radioactivity levels. Radioactivity imaging analysis of bamboo sprouts harvested in 2012 showed increasing concentration gradients of radioactivity from the lower parts to the top of the sprouts. The peels were individually separated from the sprouts, and the inner edible part (trunk) was cross-sectioned at the internodal sections from the top to the lower parts. Each segmented trunk and its corresponding peel were analyzed for radioactive cesium (134Cs and 137Cs) and stable cesium (133Cs). The concentrations of 134Cs and 137Cs showed significant increases from the lower part to the top, whereas 133Cs showed an almost constant value in the trunk and peel except in the peel of the top node. We speculated that 134Cs and 137Cs in newly emerging bamboo sprouts in 2012 were translocated mainly from various plant tissues (where the fallout was layered on the bamboo tissues) in older bamboo, while 133Cs was translocated from the soil through the roots of the new bamboo sprouts and was present in the roots and stems.  相似文献   

4.
The gamma spectrometric analysis of soil and essential foodstuffs, e.g., wheat, millet, potato, lentils and cauliflower, which form the main component of the daily diet of the local public, was carried out using high purity germanium (HpGe) detector coupled with a computer based high-resolution multi-channel analyzer. The activity concentration in soil samples for 226Ra, 232Th and 40K ranged from 30.0 Bq kg?1 to 81.2 Bq kg?1, 31.4 Bq kg?1 to 78.25 Bq kg?1 and 308.8 Bq kg?1 to 2177.6 Bq kg?1, with mean values of 56.2, 58.5 and 851.9 Bq kg?1, respectively. The average activity measured for 226Ra, 232Th and 40K in soil samples was found higher than the world average. The major radionuclide found in the food items studied was 40K, while 226Ra, 232Th and 137Cs were detected in very nominal amounts. The results clearly indicate that these radionuclides have no health hazard to human beings, as they are well below the annual limit of intake (ALI) for these radionuclides. The transfer factors of these radionuclides from soil to food were also studied. The mean transfer factors of 40K, 226Ra, 232Th and 137Cs from soil to food were estimated to be about 0.17, 0.07, 0.16 and 0.23, respectively. An artificial radionuclide, 137Cs, was also present in detectable amount in all samples. The internal and external hazard indices were measured and had mean values of 0.70 and 0.55, respectively. Absorbed dose rates and effective dose have been determined in the present study. Concentration of trace metals, such as Cr, Pb, Ni and Zn, was also determined in the soil samples. The concentrations of radionuclides and trace metals found in these samples during the present study were nominal and do not pose any potential health hazard to the general public.  相似文献   

5.
Abstract

Radioactive 137Cs concentrations of forage corn (Zea mays L.) and Italian ryegrass (Lolium multiflorum Lam.) in a double cropping system under continuous cattle farmyard manure (FYM) application were observed for more than 2 years after the Fukushima Daiichi Nuclear Power Station accident in 2011. The experiment field is located 110 km southwest of the Fukushima Daiichi Nuclear Power Station, and the soil contains 137Cs of 920 Bq kg?1 on average. For crop cultivation, nitrogen fertilizer was applied in addition to FYM. The 137Cs concentrations in corn decreased significantly between 2011 and 2012, but only differed significantly between 2012 and 2013 for the plot with no FYM application. For Italian ryegrass, no significant differences were observed between the harvest in 2012 and 2013 despite the FYM application rate. To minimize corn 137Cs concentrations, the FYM application rate should be more than and equal to 30 Mg ha?1 when FYM is used as the major nutrient source. Exchangeable potassium oxide (K2O) greater than around 0.3 g kg?1 was mostly maintained with the FYM application rates. Corn 137Cs concentration appeared to increase at exchangeable K2O levels below 0.15 g kg?1. These results suggest that continuous FYM application can maintain soil nutrients including K2O and thereby control radioactive Cs transfer from the soil. FYM application rate of 30 Mg ha?1 is within the levels recommended by the prefectural governments around Fukushima Prefecture for crop production before the accident. These levels are sufficient to decrease the radioactive Cs concentrations for corn. However, unlike corn, differences in soil chemical properties by FYM application did not affect 137Cs concentrations in Italian ryegrass in this study, although low exchangeable K2O seemed to increase concentrations of stable 133Cs. Further experiments should be conducted to understand the observed differences between corn and Italian ryegrass.  相似文献   

6.

Purpose

The area of southeastern Serbia, the P?inja and South Morava River Basins, is under the influence of very strong erosion, and the aim of this study was to investigate the vertical and spatial distribution of the 137Cs in the eroded soils of this area.

Materials and methods

Vertical soil profiles were collected with 5-cm increments from the uppermost layer down to 20, 25, 30, 40, and 50 cm of depth, depending on the thickness of the soil layers, i.e., down to the underlying parent rocks. Measurements of 137Cs activity concentration were performed by using the HPGe gamma-ray spectrometer ORTEC-AMETEK (34 % relative efficiency and high resolution 1.65 keV at 1.33 MeV for 60Co), from its gamma-ray line at 661.2 keV.

Results and discussion

The mean 137Cs activity concentration across all 18 soil profiles (for all soil layers) was found to be 20 Bq kg?1. In the greatest number of soil profiles, the 137Cs activity concentration was generally highest in the first soil layer (0–5 cm) and decreased with soil depth, while in a few soil profiles, the peak of either the 137Cs activity concentration occurred in the second soil layer (5–10 cm) or the 137Cs activity concentration was almost equal throughout the entire soil profile. The mean 137Cs activity concentration in the first soil layer (0–5 cm) was found to be 61 Bq kg?1, and the high coefficient of variation of 92 % pointed out high spatial variability and large range of the 137Cs activity concentrations in the study area.

Conclusions

The obtained results indicate that in the greatest number of soil profiles, 137Cs is present in the upper layers, with concentration decreasing with depth, as is typical in uncultivated soil. Its spatial distribution was very uneven among the surface soil layers of the investigated sites. One of the main reasons for such pattern of 137Cs in the study area may be soil erosion. Additional investigations which would support this hypothesis are required.
  相似文献   

7.
Radioactive substances were released into the environment after the nuclear accident at the Fukushima Daiichi Nuclear Power Station; this led to the contamination of the soil at Fukushima Prefecture. Mixing of organic matter with soil during plowing is known to influence radiocesium (134Cs and 137Cs) absorption by crops. However, the effect of mixing organic matter polluted by radioactive substances during plowing on radiocesium absorption by plants is not yet known. The aim of this study was to investigate the effect on the radiocesium absorption by komatsuna (Brassica rapa L. var. perviridis) cultivated in a 45-L container containing Andosol (14,300 Bq kg?1) or Gray Lowland soil (33,500 Bq kg?1) mixed with polluted wheat (Triticum aestivum L. Thell.) straw (2080 Bq kg?1). The radiocesium concentration of the plants and the soil and the amount of exchangeable radiocesium in the soil were determined using a germanium semiconductor. The transfer of radiocesium from the soil to plants decreased by 53 and 27% in Andosol and Gray Lowland soil, respectively, after the application of 10 t ha?1 polluted wheat straw. This reduction in the level of radiocesium transfer might be attributed to potassium contained in the wheat straw, which might compete with cesium during membrane transport and thereby block the transport of cesium from the soil solution to the roots and from the roots to the shoots. Alternatively, the applied wheat straw probably absorbed radiocesium and decreased the amount of exchangeable radiocesium in the soil. Our findings suggest that the mixing of polluted wheat straw with contaminated soil might influence the absorption of radiocesium content by agricultural products. Further studies are warranted to determine the long-term effects of the application of polluted wheat straw on the rate of radiocesium transfer to crops.  相似文献   

8.
Abstract

The accident at Fukushima Dai-Ichi Nuclear Power Station (NPS) extensively contaminated the agricultural land in the Tohoku region of Japan with radioactive cesium [sum of cesium-134 (134Cs) and cesium-137 (137Cs)]. We evaluated the status of radioactive cesium (Cs) contamination in soil and plants at the Field Science Center of Tohoku University, northern Miyagi prefecture, 150 km north of the NPS. In seven pastures with different management, we examined: (1) the distribution of radioactive Cs in soil, (2) the concentration of radioactive Cs in various herbaceous plant species and (3) the change in radioactive Cs content of plants as they matured. We collected samples of litter, root mat layer (root mat soil and plant roots), and subsurface soil (0–5 cm beneath the root mat) at two to three locations in each pasture in December 2011 and May 2012. The aboveground parts of herbaceous plants (four grasses, two legumes, and one forb species) were collected from May 9 to June 20, 2012, at 14-d intervals, from one to five fixed sampling locations in each pasture. The distribution of radioactive Cs in soil differed among pastures to some degree: a large proportion of radioactive Cs was distributed in the root mat layer. Pasture management greatly influenced the radioactive Cs content of herbaceous plants (p < 0.001); plant species had less influence. Radioactive Cs content was highest (> 3 kBq kg?1 dry weight) on May 9 and significantly decreased with maturity (p < 0.001) for most of the pastures, whereas it remained low (0.04–0.18 kBq kg?1 dry weight) throughout the measurement period in the pasture where composted cattle manure was applied. The soil-to-plant transfer factor was negatively correlated to pH(H2O) (R2 = 0.783, p < 0.001) and exchangeable K content (R2 = 0.971, p < 0.001) of root mat soils, which suggests that surface application of composted cattle manure reduces plant uptake of radioactive Cs by increasing the exchangeable K content of the soil. The radioactive Cs content of plants decreased with plant maturity; its degree of decrease (May 9 to June 6) was smaller in legumes (80.6%) than grasses (55.5%) and the forb (58.6%). Radioactive Cs content decreased with plant maturity; also, the proportion remaining in the aboveground plant was higher in legumes (80.6%) than grasses (55.5%) and the forb (58.6%).  相似文献   

9.
ABSTRACT

Radiocesium (RCs) discharged by the Fukushima Daiichi Nuclear Power Plant (Tokyo Electric Power Co., Inc.) accident has extensively contaminated agricultural land in Fukushima Prefecture and its neighboring areas. Many studies have demonstrated that Cs (RCs and 133Cs) uptake of plants is affected by the exchangeable K (Ex-K) concentration in soil. However, the precise plant–soil interaction in relation to Cs uptake is still unclear. The aim of this study was to investigate Cs uptake of plant in field by focusing on xylem exudate and roots because nutrients in xylem exudate reflect medium (soil) conditions and affect nutrient accumulation in shoots. Two varieties of amaranth, K4 (Amaranthus caudatus L.) and Mexico type (A. hypochondriacus L.), which have different Cs uptake abilities, were grown in four fields and in pots (750 to 3440 Bq kg?1 of RCs) in Fukushima Prefecture. Cs concentrations in xylem exudate, shoot, and soil; Ex-K concentration in soil; and root distribution in soil were determined. RCs concentration in xylem exudate varied from 0.04 to 164 Bq kg?1 and 133Cs concentration in xylem exudate ranged from 0.01 to 33.7 μg kg?1. The Cs concentrations were decreased by the high Ex-K concentration and the large amount of 2:1 type clay minerals in soil. The average of the ratios of Cs concentration in shoot to Cs concentration in xylem exudate for all samples was 127 ± 112 (mean ± standard deviation), although no clear correlation was found between them. The correlations betwee\n RCs and 133Cs concentrations in xylem exudate and shoot were strong in pot and in the field with low Ex-K concentration. Eighty-five percent of the total root length was distributed in the topsoil (0–20 cm soil layer). The positions where roots take up Cs were estimated from the differences in the vertical distribution of RCs and 133Cs concentrations in soil. The estimated Cs uptake ratios of topsoil to total soil layer ranged from 7% to 91% and varied with the concentration and the vertical distribution of Ex-K in soil.  相似文献   

10.
The objectives of this study are: (1) Evaluate the capacity of Indian mustard (Brassica juncea) for uptake and accumulation of Cs and Sr natural isotopes. (2) Identify foliar structural and other physiological changes (biomass, relative water content etc.) resulted from the accumulation of these two elements. (3) Monitor the Cs and Sr uptake and bioaccumulation process by spectral reflectance. Potted Indian mustard plants were exposed to different concentrations of Cs (50 and 600 ppm) and Sr (50 and 300 ppm) natural isotopes in solution form for 23 days. Bioaccumulation of Cs and Sr were found in the order of leaves > stems > roots for both Cs- and Sr-treated plants. The highest leaf and root Sr accumulations are observed to be 2,708, and 1,194 mg kg?1, respectively; and the highest leaf and root Cs accumulations are 12,251, and 6,794 mg kg?1, respectively. High translocation efficiency for both elements is documented by shoot/root concentration ratios greater than one. Biomass decreases were observed for plants treated with higher concentration of Cs or Sr. Cs accumulation affected the pigment concentration and internal structure of the leaf and the spectral characteristics of plants. Within the applied concentration range, Sr accumulation resulted in no significant changes in relative water content (RWC), leaf structural and spectral characteristics of mustard plants. Cs shoot concentration showed significant negative correlation with relative water content (RWC; r = ?0.88*) and normalized difference vegetative index (NDVI) value (r = ?0.68*) of plant shoots. The canopy spectral reflectance and NDVI analysis clearly revealed (p < 0.05) the stress caused by Cs accumulation.  相似文献   

11.
Abstract

Within Amaranthaceae, 33 different varieties, including local varieties from Japan, were grown in 2012 in a field in the town of Iino in the Fukushima prefecture, which is located approximately 51 km north of Tokyo Electric Power Company, Fukushima Daiichi Nuclear Power Plant (FDNPP). The contamination level of the soil was 2770 ± 140 Bq kg?1 dry weight (134Cesium (Cs) + 137Cs, average ± SE), and the field was also cultivated in 2011. There was a significant varietal difference in the dry weight production, radiocesium accumulation and transfer factor (TF) of radiocesium from the soil to the plant. The ratio of the lowest TF to the highest TF was approximately 3. Because the ratio of 137Cs to 133Cs was significantly positive, radiocesium seems to be absorbed in a manner similar to that of 133Cs. It is suggested that the varietal difference in the behavior of radiocesium uptake mainly depends on its genetic background rather than on environmental factors.  相似文献   

12.
ABSTRACT

The accident at Fukushima 1 Nuclear Power Plant in 2011 caused contamination by radioactive cesium (134Cs and 137Cs) in surrounding areas. After this accident, concerns about Cs contamination, including food safety, have limited industrial activities and reconstruction in Fukushima. Sorghum (Sorghum bicolor (L.) Moench) is an annual C4 crop that can be used as biofuel feedstock due to its high biomass. Use of Cs-contaminated fields to produce biofuel feedstock would be more acceptable than use for food or feed crops due to the lower risk of human internal exposure to radioactive Cs. In addition, high-biomass sorghum might be suitable for removal of Cs from fields (phytoremediation). For both applications, it is important to use accessions showing the appropriate level of accumulation of radioactive Cs (low for biofuel feedstock, high for phytoremediation). Here, we examined the accumulation of radioactive Cs in the aerial parts of 56 sorghum accessions grown in Fukushima. Accessions were cultivated in a low-level-contaminated field in 2011 and in a highly contaminated field in a planned evacuation zone in 2012. After cultivation, activity concentrations from 134Cs and 137Cs were measured in the aerial plant parts. In 2011, the activity concentrations of 134Cs and 137Cs were 58.2–350 and 58.6–450 Bq kg?1 dry weight, respectively. In 2012, the concentrations of 134Cs and 137Cs were 54.2–1320 and 57.1–1960 Bq kg?1 dry weight, respectively. Relative to the median values of the accessions grown each year, 3 showed lower activity concentrations and 2 showed higher activity concentrations of radioactive Cs under both cultivation conditions. In contrast to a previous report, there was no significant correlation between biomass and Cs activity concentration. Because both biomass and Cs concentration are important in classifying accessions for use in phytoremediation, we also calculated the Cs accumulation index (single-plant biomass × Cs activity concentration) for each accession. The accession AKLMOI WHITE showed the highest values in both years, suggesting that this accession has the high per-plant accumulation capacity for radioactive Cs. Our data collected from actual contaminated fields is irreplaceable for choosing sorghum accessions for cultivation in Cs-polluted sites such as Fukushima.  相似文献   

13.
The objective of this work was to evaluate the effect of the application of boron (B) by foliar spraying for the yield of beet (Beta vulgaris L.) and tomato (Solanum lycopersicum L.) crops. An experiment for each crop was done in a greenhouse at the São Paulo State University (UNESP), Jaboticabal campus, in Brazil. The experiments evaluated the B concentrations of 0, 0.085, 0.170, 0.255, and 0.340 g L?1; applied in the 20, 35, and 50 days after the transplant (DAT) of beet cv. ‘Tall Top Early Wonder’, and in the 20, 40, and 60 DAT for the tomato cv. ‘Raisa N’. The plants were cultivated in pots with washed sand with 5 dm3 for the beet crop and 10 dm3 for the tomato crop. The beet and tomato crops were harvested 58 and 154 DAT, respectively. The leaves and fruits numbers; the foliar area; the dry matter of leaves, bark and roots; the fresh and dry matter of the fruits and the tuberous root; the dry matter of the total plant and the B foliar content were evaluated. The total dry matter of beet and tomato the plant were influenced by the concentration of the foliar B spray. The highest yield of the tuberous root and the total plant dry matter of beet occurred with B foliar concentration of 0.065 g L?1 and it was associated with the B foliar content of 26 mg kg?1. The highest yield of fruit and total plant dry matter of tomato occurred with the B foliar spraying of 0.340 g L?1 and it was associated with the B foliar content of 72 mg kg?1.  相似文献   

14.
Abstract

To clarify the mechanism of Magnesium (Mg) in alleviating cadmium (Cd) phytotoxicity, Japanese mustard spinach (Brassica rapa L. var. pervirdis) was grown for 10 days after treatment in hydroponics in a growth chamber under natural light. The treatments were: (1) nutrient solution alone (Control), (2) 10 mmol L?1 Mg (High-Mg), (3) 2.5 µmol L?1 Cd (Cd-toxic), (4) 2.5 µmol L?1 Cd plus 10 mmol L?1 Mg (Mg-alleviated). The Cd-toxic treatment showed substantial growth retardation and chlorosis of young leaves, such symptoms were not observed in Mg-alleviated plants. Magnesium-alleviated plants showed higher shoot growth, more than twofold, and decreased shoot Cd concentration, approximately 40%, compared with Cd-toxic plants. This increase in shoot growth and simultaneous decrease in shoot Cd concentration may explain the alleviation of Cd toxicity with Mg in Japanese mustard spinach. In Cd-toxic plants, concentrations of K in shoots and Zn in both shoots and roots increased compared with the other three treatments. Concentrations and accumulations of Fe and Mn in shoots decreased significantly in the Cd-treated (Cd-toxic and Mg-alleviated) plants compared with the control and High-Mg plants. Thus, the application of high amounts of Mg in the nutrient solution can alleviate Cd toxicity in plants.  相似文献   

15.
Environmental concern due to plant accumulation of natural radionuclides is a major concern in uranium mining areas. To evaluate the risk associated with the transfer of radionuclides to edible plants, the uptake of 238U, 226Ra, and 210Pb by Chinese cabbage (Brassica rapa L. subsp. pekinensis (Lour.) Hanelt) grown in soils contaminated with uranium-mill tailings (UMT) was investigated. Test plants were grown under controlled conditions in substrate composed of soil and UMT in different ratios. Activity concentrations of 238U, 226Ra, and 210Pb in substrate, leaves, and roots were measured and the concentration ratios determined. Soil characteristics were determined, since they directly affect bioavailability of radionuclides. Concentration ratios of 238U, 226Ra, and 210Pb in leaves varied from 0.001 to 0.006, 0.024 to 0.172, and 0.004 to 0.011, respectively, and in roots from 0.020 to 0.126, 0.015 to 0.241, and 0.033 to 1.460, respectively. Concentrations of 238U, 226Ra, and 210Pb in leaves and roots were found to correlate with the amount of 238U, 226Ra, and 210Pb in the substrate. A higher amount of 226Ra accumulated in aboveground parts (57–877 Bq kg?1 d. m. for leaves) compared to 238U (0.6–4.7 Bq kg?1 d. m. for leaves) and 210Pb (8–53 Bq kg?1 d. m. for leaves), which were mainly stored in the roots. The relationships between the amount of radionuclides in plants and soil characteristics and their role in radionuclide uptake are discussed and critically evaluated.  相似文献   

16.
Cesium-137 (137Cs) and Strontium-90 (90Sr) are radionuclides characteristic of nuclear fallout from nuclear weapons testing and nuclear reactor accidents. Alamo switchgrass (Panicum virginatum L.) is a perennial C4 species native to central North America that produces exceptionally high biomass yields in short periods of time. In three separate experiments, Alamo switchgrass plants were tested for their ability to accumulate 137 Cs and90 Sr from a contaminated growth medium. Plants in experiment 1 were grown in 33 × 20 × 7 cm plastic pans containing 2.5 kg sand. Plants in experiments 2 and 3 were grown in 30 × 3 cm diameter test tubes containing 0.3 kg growth medium. After 3 months of plant growth, either 102 Bq 137Cs or 73 Bq90 Sr g?1 soil were added to the growth medium. Plants in all three experiments were grown within a greenhouse that was maintained at 22 ± 2 °C with a photosynthetic active radiation of 400–700 µmol m?2 s?1 and a 14–16 h photoperiod. Above-ground plant biomass did not differ between plants that were not exposed to these radionuclides (controls) and those that were exposed to growth medium containing 137Cs or90 Sr over the course of the experiment. Plants accumulated 44 and 36% of the total amount of 90Sr and137 Cs added to growth medium after the first 5 harvests. After the first two harvests, the concentration of 137Cs and90 Sr in plant tissue and the amount of 137Cs or90 Sr removed from growth medium declined with each successive harvest. Duration of exposure correlated curvilinearly with accumulation of both 90Sr and 137Cs by plants (r2 = 0.95 and 0.78, respectively). As concentration of both 137Cs and 90Sr in growth medium increased, plant accumulation of both radionuclides increased and correlated curvilinearly in seedlings (r2 = 0.83 and 0.89 respectively).  相似文献   

17.
ABSTRACT

Excessive application of animal manure to farmland leads to phosphorus (P) loss into the surrounding water. Manure is incinerated to convert it to P-rich ash as a slow-release P fertilizer. However, the potential P loss and P availability for plants from cattle manure ash (CMA) have not been fully understood. The aims of this study were to determine the P release mechanism from CMA and to propose appropriate application rates that mitigate P loss and increase available P to soil in Fukushima, where the soil is deficient in nutrients after the replacement of cesium-137-contaminated soil with sandy mountain soil. Different P fractions in CMA were sequentially extracted with H2O, 0.5 M NaHCO3, 0.1 M NaOH, and 1 M HCl. Phosphorus contents in different fractions of CMA were in the order of HCl–P > NaHCO3–P > H2O–P > NaOH–P. Water-soluble P release of CMA was also determined by kinetic experiments for 120 h. Results showed that total water-soluble P accounted for a maximum of 2.9% of total P in CMA over 120 h due to recalcitrant P compounds formed through incineration. The Fukushima sandy soil amended with CMA at three application rates, 94, 157, and 314 mg P kg?1 (corresponding to 300, 500, 1000 kg P2O5 ha?1) was incubated for 56 days. Cattle manure compost and KH2PO4 were applied at 157 mg P kg?1 for comparison. Phosphorus release in water and CaCl2 solution from ash-amended soil was significantly lower than those from compost and KH2PO4-amended soil at the same P application rate of 157 mg P kg?1 (p < 0.05). Available P in ash-amended soil, determined by Fe-oxide impregnated strips, was not significantly different from those in compost-amended soil after day 7 and KH2PO4-amended soil on day 56 at the same P application rate. Thus, CMA reduces P losses from soil to the surrounding water while it increases P availability for plants. In comparison of different rates of CMA, P release in water or CaCl2 was significantly greater at 314 mg P kg?1 than at 94 or 157 mg P kg?1, while the percentage of available P to total P was the lowest at the highest application rate (p < 0.05), suggesting that the best application rates were 94 and 157 mg P kg?1 in this experiment.  相似文献   

18.
Pot and field experiments were conducted to clarify the effect of soil exchangeable potassium (K) and cesium-137 (137Cs) on 137Cs accumulation and to establish soil index in rice (Oryza sativa L.). Four paddy soils in Fukushima Prefecture, Japan, showing different transfer factors for radioactive Cs derived from the accident of Fukushima Daiichi Nuclear Power Station in the field were compared in terms of 137Cs accumulation in rice in a pot experiment. 137Cs accumulation in shoots and brown rice widely varied among soils with the transfer factor ranging from 0.018 to 0.068 for shoots and 0.004 to 0.065 for brown rice. 137Cs concentration in brown rice and shoots tended to decrease with higher levels of soil exchangeable K, and they were more closely related to the exchangeable Cs/K ratio. Similar relationships between the Cs/K ratio and Cs accumulation in plants were obtained for the stable isotope cesium-133 (133Cs). The distributions of 137Cs and 133Cs in grains were also similar and variable among soils. The transfer factors obtained in pot experiments mostly agreed with field observations. The results imply that the exchangeable 137Cs/K can be a potential soil index to estimate 137Cs accumulation in rice.  相似文献   

19.
Hydroponic and pot experiments were conducted to assess the uptake of heavy metals (Cd and Zn) by a common crop plant, African basil, Ocimum gratissimum. In addition, the effects of soil amendments, hydroxyapatite (HA) and cow manure on plant growth and metal accumulations were compared. In the hydroponic study, plants were exposed to various concentrations of Cd (2.5 and 5 mg L?1) and Zn (10 and 20 mg L?1) for 15 days. O. gratissimum was shown to be a Cd accumulator more than a Zn accumulator. Cadmium concentration in its shoots exceeded 100 mg kg?1. In the pot experiments, soils from a heavily Cd-contaminated site (Cd 67.9 mg kg?1 and Zn 2,886.8 mg kg?1) were treated with cow manure and HA at the rates of 10% and 20% (w/w), and 0.75 and 1.5% (w/w), respectively. Plants were grown in the greenhouse for 3 months. The addition of cow manure resulted in the highest biomass production and the lowest accumulations of Cd in plant parts, while HA was more efficient than cow manure in reducing Zn uptake. Leaves of African basil showed a decreased Cd concentration from 1.5 to 0.3 mg kg?1 (cow manure) and decreased Zn concentration from 69.3 to 34 mg kg?1 (HA). This clearly demonstrates the efficiency of HA and cow manure in reducing metal content in leaves of plants grown on high metal-contaminated soil to acceptable or close to acceptable values (0.2 mg kg?1 for Cd, 99.4 mg kg?1 for Zn).  相似文献   

20.
A pot experiment evaluated the growth of lettuce (Lactuca sativa L.) and barley (Hordeum vulgar) and accumulation of molybdenum (Mo) in plants and soils following amendments of Mo compost (1.0 g kg?1) to a Truro sandy loam. The treatments consisted of 0 (control), 12.5, 25, and 50% Mo compost by volume. The Mo compost did not affect dry‐matter yield (DMY) up to 25% compost, but DMY decreased at the 50% compost treatment. The 50% compost treatments increased the soil pH an average of 0.5 units and increased the nitric acid (HNO3)–extractable Mo to 150 mg kg?1 and diethylenetriaminepentaacetic acid (DTPA)–extractable Mo to 100 mg kg?1 in the growth medium; the same treatment increased tissue Mo concentration to 569 and 478 mg kg?1 in the lettuce and barley, respectively. Plants grown in the 25% compost produced about 55 mg kg?1 of total Mo in the growth medium; this resulted in tissue Mo concentration of 348 mg kg?1 in lettuce and 274 mg kg?1 in barley without any phytotoxicity. Our results suggested that 55 mg Mo kg?1 soil would be an appropriate limit for Mo loading of soil developed from compost additions, a value which is presently greater than the Canadian Council for Ministers of the Environment (CCME) Guidelines for the use of type B compost in Canada.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号