首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
飞播马尾松林不同林下植被类型枯落物及土壤水文效应   总被引:3,自引:0,他引:3  
为探明飞播马尾松林不同林下植被类型对枯落物及土壤水文效应的影响,按林下植被优势(分芒萁类、禾本类及灌木类3种类型)设置典型样地,对其枯落物持水性能及土壤蓄水能力进行比较分析.结果表明:3种类型的枯落物现存总蓄积量为0.65 ~3.57t/hm2;其中,灌木类总蓄积量>芒萁类>禾本类.3种类型枯落物自然含水率、最大持水率、最大拦蓄率及有效拦蓄率范围分别为15.50%~29.74%、167.70%~218.25%、139.00% ~199.66%和113.85% ~167.39%;枯落物自然含水量、最大持水量、最大拦蓄量及有效拦蓄量均表现为灌木类>芒萁类>禾本类,除半分解层自然含水量以外,其他持水量指标均表现为灌木类显著高于其他2种类型.0 ~ 20 cm土层的饱和蓄水量、非毛管持水总量以及毛管持水总量均以芒萁类最高,分别为865.95、138.96和726.99 t/hm2;其中,芒萁类在0~20 cm土层,非毛管持水总量显著高于其他2种类型,而0~ 10 cm土层饱和蓄水量显著高于禾本类.综合分析表明:灌木类枯落物的水文效应显著高于禾本类和芒萁类,而芒萁类土壤层水文效应明显优于灌木类和禾本类,这是由于土壤层饱和蓄水量及有效蓄水量分别占林地表层(枯落物层和0 ~ 20 cm土壤层)的99%和94%以上,总体上芒萁类林地表层水文效应明显优于灌木类和禾本类.  相似文献   

2.
为探究森林公园植被的水源涵养能力,为森林公园植被配置和经营管理提供依据,研究选取天龙山森林公园6种林分(油松、山杨、刺槐、油松—侧柏混交林、侧柏—油松—杏树混交和灌木林)为研究对象,通过测定林下枯落物厚度、蓄积量、持水性能和干扰度等指标,研究不同林分类型枯落物水文效应。结果表明:(1)所有林分枯落物干扰度范围为无到中度,厚度范围为0.57~2.63 cm,山杨最厚,侧柏—油松—杏混交林最薄;蓄积量范围为7.20~16.30 t/hm2,油松—侧柏混交林最大,侧柏—油松—杏混交林最小。(2)6种林分除山杨林以外,半分解层最大持水量均大于未分解层持水量,其中油松—侧柏最大,山杨最小;未分解层最大持水率均大于半分解层,刺槐最大,灌木林最小。枯落物的总最大持水量为20.02~27.90 t/hm2,总最大持水率为187.40%~277.89%,针阔混交林的持水率较高。(3)山杨有效拦蓄量最大,为15.05 t/hm2,而油松最小,为12.33 t/hm2;侧柏—油松—杏混交林的拦蓄率最大;(4)枯落物持水量、持水率与时间分别为对数和幂函数关系,均在泡水2 h达到极值。综合对比6种林分,轻度干扰的山杨水文效益最优,中度干扰的油松纯林、油松—侧柏混交林最差;阔叶树种水文效应较优于针叶树种,针阔混交优于纯林。研究结果可为森林公园植被管理和水土保持效益评价提供参考依据。  相似文献   

3.
广西壮族自治区的台湾桤木混交造林水源涵养功能评价   总被引:1,自引:1,他引:0  
[目的]研究台湾桤木混交造林的枯落物层和土壤层的水源涵养能力,为台湾桤木在广西壮族自治区的合理经营与利用提供理论依据。[方法]采用熵权法对台湾桤木×马尾松、台湾桤木×巨尾桉、台湾桤木×红锥及台湾桤木纯林的林分枯落物层和土壤层的水文效应相关因子进行综合评价。[结果]①枯落物最大持水量最大是台湾桤木×红锥(2∶1),台湾桤木×马尾松(1∶1)最少;台湾桤木×红锥(1∶2)的枯落物有效拦蓄率最大,台湾桤木×红锥(2∶1)的枯落物有效拦蓄量最大,台湾桤木×巨尾桉(2∶1)的枯落物有效拦蓄率和有效拦蓄量均最小。②台湾桤木混交林土壤容重均明显低于台湾桤木纯林,土壤总孔隙度、毛管孔隙度、自然含水率、最大持水量和毛管持水量均是台湾桤木混交林大于台湾桤木纯林。③采用熵权法计算权重值占比例最大是枯落物最大持水量,最少是土壤毛管孔隙度;台湾桤木不同混交造林模式水源涵养能力综合评价排序为:台湾桤木×巨尾桉(1∶2)台湾桤木×红锥(2∶1)台湾桤木×马尾松(1∶2)台湾桤木×红锥(1∶1)台湾桤木×巨尾桉(1∶1)台湾桤木×马尾松(2∶1)台湾桤木×红锥(1∶2)台湾桤木×巨尾桉(2∶1)台湾桤木×马尾松(1∶1)台湾桤木纯林。[结论]台湾桤木与马尾松、巨尾桉和红锥混交造林的水源涵养能力均优于台湾桤木纯林。  相似文献   

4.
为了研究沿坝地区3种典型林分的枯落物层与土壤层的水源涵养能力,利用熵权法对林分的枯落物层和土壤层的相关因子进行了综合评价。结果表明:(1)枯落物层最大持水量:针阔混交林油松林落叶松纯林;有效拦蓄量:针阔混交林油松林落叶松纯林。(2)持水量与浸水时间的回归方程为Q=alnt+b(R~20.97),持水速率与浸水时间的回归方程为V=Kt~n(R~20.94)。(3)3种林分类型土壤总孔隙度的排序为:针阔混交林油松纯林落叶松纯林;土壤持水能力大小排序为:针阔混交林落叶松纯林油松纯林;3种林分土壤层的初渗速率差距比较大,大小排序为:针阔混交林落叶松纯林油松纯林;林分的稳渗速率大小排序为:针阔混交林落叶松纯林油松纯林;入渗速率与入渗时间回归方程为:f=at~(-b)(R0.96)。(4)利用熵权法计算得出的权重大小排序为:枯落物最大持水量枯落物有效拦蓄量=土壤持水力初渗速率土壤毛管孔隙度土壤容重枯落物蓄积量=土壤非毛管孔隙度,3种林分类型综合评分排序为:针阔混交林油松纯林落叶松纯林。针阔混交林为最优的水源涵养林,其在保持水土、涵养水源方面功能最强。  相似文献   

5.
砒砂岩区主要造林树种枯落物及林下土壤持水特性   总被引:13,自引:2,他引:11  
为了探究砒砂岩区不同造林树种水文特征,以该地区油松、侧柏、青杨、山杏、沙棘、柠条为研究对象,通过浸泡法和环刀法,对比分析了不同树种枯落物层和土壤层的持水特性。结果表明:砒砂岩区主要造林树种枯落物蓄积量变动范围为1.55~7.89t/hm~2,青杨林下枯落物最大持水率最高为281.26%,其他树种枯落物最大持水率依次为油松(217.14%)、侧柏(201.05%)、山杏(202.79%)、沙棘(170.96%)、柠条(158.08%)撂荒地(143.88%)。油松林下土壤层容重最小为1.46g/cm3,总孔隙度和毛管孔隙度最大分别为43.55%和36.99%,毛管持水量最大为14.50mm;山杏林下土壤非毛管孔隙度最大为13.12%,非毛管持水量最大为6.86mm。油松枯落物及其林下土壤层持水能力良好,更适宜作为砒砂岩地区植被建设树种。  相似文献   

6.
北京九龙山8种林分的枯落物及土壤水源涵养功能   总被引:5,自引:0,他引:5  
为了阐明森林植被的水源涵养功能,对北京九龙山油松纯林、华北落叶松纯林、侧柏纯林、樟子松纯林、栓皮栎纯林、五角枫纯林、油松日本落叶松混交林、油松华北落叶松混交林等8种林分类型的枯落物和土壤持水性能进行研究.结果表明:各林分枯落物总储量变化范围为8.87 ~47.87 t/hm^2,其中未分解层储量大于半分解层储量;综合枯落物未分解层和半分解层最大持水量和有效拦蓄量的变化规律来看,油松纯林最大持水量最大(36.46t/hm^2),其次为华北落叶松纯林(36.06 t/hm^2),侧柏纯林最小(11.83 t/hm^2);油松日本落叶松混交林的有效拦蓄量最大(23.51 t/hm^2),其次为樟子松纯林(19.85 t/hm^2),侧柏纯林最小(9.53t/hm^2);综合考虑不同林分枯落物与土壤涵养水源能力发现,华北落叶松纯林和油松华北落叶松混交林具有良好的水源涵养功能;不同层次枯落物持水量、吸水速率与浸水时间均存在较好的函数关系;8种林分土壤容重均值在0.89~ 1.41 g/cm3之间变动,总孔隙度在39.43% ~54.23%之间变动;林地土壤的入渗速率与人渗时间通过回归分析得出,二者呈幂函数关系,且R2值均在0.90以上.  相似文献   

7.
冀北山地6种天然纯林枯落物及土壤水文效应   总被引:11,自引:3,他引:8  
以冀北山区6种典型纯林为对象,对枯落物层和土壤层水文效应进行初步研究,结果表明:①枯落物总储量变化范围在3.44~23.97t/hm2之间,顺序为白桦纯林>油松纯林>山杨纯林>五角枫纯林>蒙古栎纯林>黑榆纯林,最大持水量的变化范围为5.16~45.11t/hm2,顺序为五角枫纯林>山杨纯林>蒙古栎纯林>白桦纯林>油松纯林>黑榆纯林,山杨纯林有效拦蓄能力最强,为35.45t/hm2,黑榆纯林的拦蓄能力最弱,为2.66t/hm2;②未分解层枯落物8h基本达到饱和,半分解层在6h已经达到饱和,持水量与浸泡时间呈明显对数关系;枯落物在浸水的0.5h内吸水速率最大,4h左右时下降速度明显减缓,枯落物吸水速率与浸泡时间呈明显幂函数关系;③土壤容重均值变化范围为0.82~1.14g/cm3,总孔隙度的变动范围为44.43%~56.97%;④土壤层有效持水能力以五角枫纯林最强,为116.00t/hm2,白桦纯林持水能力最弱,为40.50t/hm2,土壤入渗速率与入渗时间呈明显幂函数关系。  相似文献   

8.
太行山不同林型枯落物持水性及生态水文效应研究   总被引:7,自引:0,他引:7  
研究了太行山不同林型枯落物物持水性及生态水文效应,结果表明:(1)灌丛和混交林未分解层占总厚度的一半以上,阔叶林和针叶林半分解层占总厚度的一半以上;枯落物总蓄积量大小排序为针叶林>混交林>阔叶林>灌丛,不同林型半分解层蓄积量均占总蓄积量一半以上,表明了高海拔枯落物分解速度比低海拔枯落物分解速度快。(2)不同林型枯落物半分解层和未分解层最大持水量、最大持水率、有效拦蓄率、有效拦蓄量和自然含水率随海拔的增加而增加,基本表现为针叶林>阔叶林>混交林>灌丛,并且未分解层高于半分解层;针叶林枯落物有效拦蓄能力最强,灌丛最弱,即高海拔拦蓄能力较强,低海拔较弱。(3)土壤容重随着海拔的增加而降低,依次表现为灌丛>混交林>阔叶林>针叶林;土壤总孔隙度、非毛管孔隙度和毛管孔隙度随海拔的增加而降低,其中毛管孔隙度在不同林型差异均不显著(p > 0.05);土壤饱和含水量、有效调蓄空间、最大持水率、最大持水量和有效持水量随海拔的增加而增加,依次表现为针叶林>阔叶林>混交林>灌丛。(4)不同林型初渗速率与稳渗速率存在较好的幂函数关系,相关性分析结果显示土壤渗透性能与总孔隙度和非毛管孔隙度均为极显著正相关关系(p < 0.01),其中,非毛管孔隙状况对土壤渗透性的影响更为显著。综合分析表明:太行山森林水源涵养能力随海拔的增加而增加。  相似文献   

9.
在北京九龙山自然保护区内选取有代表性的4种林分类型,测定各林分枯落物的蓄积量,采用室内浸泡法对其水文效应进行研究,旨在为该区森林植被枯落物生态水文功能评价提供一定的参考。结果表明:(1)4种林分枯落物层蓄积量大小依次为:黄栌油松混交林(29.65 t/hm2) > 黄栌纯林(22.78 t/hm2) > 黄栌侧柏混交林(16.87 t/hm2) > 侧柏纯林(12.17 t/hm2);(2)同一浸水时间下黄栌油松混交林的枯落物持水量最大,黄栌纯林、黄栌侧柏混交林次之,侧柏纯林最小,枯落物层的持水量与浸泡时间为对数函数关系,持水量历时过程呈现出迅速吸水、缓慢吸水、逐渐饱和、饱和4个阶段;(3)4种林分枯落物层的吸水速率与浸水时间为幂函数关系,其过程可分为迅速下降、缓慢下降、趋于稳定的3个阶段。  相似文献   

10.
[目的] 明确黄土高原水蚀风蚀交错区枯落物对沙地水文效应的影响,为该地区退耕还林后生态水文效益的评估提供理论依据。[方法] 以小叶杨(Populus simonii)、柠条(Caragana korshinskii)和白羊草(Bothriochloa ischaemum)枯落物覆盖样地为研究对象,并以裸沙地作为对照,利用熵权法探究枯落物覆盖对沙地水源涵养功能的影响。[结果] ①枯落物最大持水率、最大拦蓄率、有效拦蓄率和最大吸湿比均表现为:白羊草>小叶杨>柠条,但枯落物持水量和拦蓄量则表现为:小叶杨>柠条>白羊草。②枯落物覆盖降低了土壤容重,提高了总孔隙度、饱和持水量、毛管持水量和平均入渗速率。③水源涵养功能综合评价值表现为:柠条枯落物覆盖样地(0.889)>小叶杨枯落物覆盖样地(0.484)>白羊草枯落物覆盖样地(0.228)>裸沙地(0.038)。④稳渗速率、土壤有效持水量和土壤非毛管孔隙度的水源涵养功能权重比例最高,分别为15.3%,14.8%和14.8%。[结论] 枯落物有效地改善了沙地水文效应,在优化水源涵养功能的条件下,建议适宜种植灌木,可搭配种植乔木和草本植物。  相似文献   

11.
晋西黄土丘陵区不同植物群落的土壤分形特征   总被引:3,自引:0,他引:3  
为研究晋西黄土丘陵区不同植物群落与土壤结构特性和入渗特性的关系,探索土壤结构的定量化描述,运用分形学原理和方法,研究晋西黄土丘陵区油松纯林、刺槐纯林、油松+刺槐混交林、侧柏纯林、黄刺玫灌丛、柠条灌丛及荒地7种植物群落的土壤分形维数与土壤质地、密度、孔隙度、含水量及饱和导水率的关系.结果表明:1)植物群落具有改善土壤颗粒结构的作用,其改善作用以针阔混交林(油松+刺槐混交林)最好,阔叶林(刺槐纯林、黄刺玫纯林)次之,针叶林(油松纯林、侧柏纯林)最低.2)研究区土壤颗粒分形维数在2.799 ~ 2.805之间,黏粒(<0.002mm)质量分数偏高.3)土壤颗粒分形维数与土壤黏粒质量分数呈显著正相关关系,与土壤砂粒(2.00~0.02 mm)质量分数、土壤总孔隙度、含水量及饱和导水率呈显著负相关关系.因此,土壤颗粒分形维数可以表征土壤结构特性和入渗特性的好坏.不同的植物群落对土壤的改良效果不同,研究结果可为研究区域植树造林提供参考依据.  相似文献   

12.
倭肯河上游两种林型枯落物和土壤持水特性   总被引:2,自引:0,他引:2  
为探讨不同树种组成的林分持水特性,采用实地调查与室内浸泡法,对倭肯河上游杂木林和阔叶红松林枯落物的蓄积量和持水特性进行测定,采用环刀法对土壤持水量进行测定。结果表明:两种林型枯落物厚度约7.5 cm,蓄积量为8.07~9.85 t/hm2,最大持水量相当于可吸收2.0~2.5 mm的降水,有效拦蓄量相当于可吸收1.0 mm的降水。枯落物持水量与浸水时间呈对数函数关系(R 2>0.9843),吸水速率与浸水时间呈幂函数关系(R 2>0.9999)。两种林型土壤总孔隙度范围为50.32%~51.41%,非毛管孔隙度范围为3.00%~4.44%,土壤最大持水量范围为1509.74~1542.17 t/hm2,土壤有效持水量范围为89.96~133.32 t/hm2。阔叶红松林密度低,生产力高,枯落物层最大持水量、有效拦蓄量,土壤层最大持水量、有效持水量均高于杂木林,但各评价指标差异不显著(p>0.05)。两林地持水能力中等偏低,以提高森林水源涵养为目标时,可维持现有结构,进一步开展密度调整研究。  相似文献   

13.
太行山区主要森林生态系统水源涵养能力   总被引:9,自引:1,他引:8  
森林生态系统水源涵养功能是林冠层、枯落物层和土壤层对大气降水进行再分配的过程。本文通过文献收集整理太行山地区森林植被林冠一次降水截留量、枯落物层持水量和土壤层贮水量数据,分析该地区主要森林植被对降水的截留和贮蓄能力,采用综合蓄水能力法对森林植被的综合涵养水源能力进行评价,旨在为合理经营和管理森林生态系统提供依据。结果表明:1)土壤非毛管孔隙度与生态系统综合持水量呈正相关,且最大持水量占整个森林生态系统综合持水量的90%以上,表明土壤层作为森林生态系统水文效应最重要的一层,是整个森林系统水分循环的主要贮蓄库和调节器;2)针叶林中油松和侧柏的冠层一次降水截留量显著高于其他林型,其林冠结构更加适应该地区气象条件,林冠层降水再分配能力也优于其他林型;3)混交林郁闭度低,有利于林下灌、草丛的生长,其枯落物现存量比纯林和人工林更高,虽然林冠一次截留量低但林下具有丰富的枯落物层而更易涵养水源;4)天然林综合蓄水能力整体高于人工林,侧柏人工林和油松人工林综合蓄水能力仅次于刺槐、侧柏和油松天然林。综上可见,合理利用森林资源防止水土流失、天然林长期封育和合理控制优势树种密度及增加植被覆盖率对太行山地区植被恢复和生态建设具有重要意义。为提高该区综合水源涵养能力,可增加乡土树种油松和侧柏人工林的种植面积。  相似文献   

14.
选取黄土丘陵区12种典型植被样地,通过测定各样地不同土层植物残体生物量、土壤容重、毛管孔隙度、非毛管孔隙度及饱和导水率,研究各指标随土层深度和植被类型的变化规律及其对土壤饱和导水率的影响。结果表明:(1)除容重随土层深度增加外,植物残体、毛管孔隙度、非毛管孔隙度和饱和导水率均随土层深度减少,其中植物残体大多集中于表层土壤(0—10 cm),占总残体生物量的51.4%~85.7%。(2)不同植被类型其植物残体及土壤物理性质存在显著差异,乔木林地植物残体、农耕地土壤容重、灌木林地非毛管孔隙度及饱和导水率均最大,而毛管孔隙度与不同土地利用类型间无显著差异。(3)饱和导水率随植物残体生物量密度(0—10 cm)和土壤容重呈幂函数减小,随毛管孔隙度和非毛管孔隙度呈幂函数增大;土壤容重(BD)和非毛管孔隙度(NCP)是影响土壤饱和导水率(K_s)的主要因素,且土壤饱和导水率可表示为两者的综合非线性方程(K_s=0.6BD~(-4.717)NCP~(0.203),P0.01,R~2=0.63,NSE=0.50)。此外,沙棘灌木林地平均饱和导水率最大,有利于降雨过程中土壤水分入渗,具有较强的水土保持功能。本研究结果可为黄土高原植被恢复生态水文效益评价提供理论依据。  相似文献   

15.
暴雨条件下北京山区主要乔木蓄水能力研究   总被引:1,自引:1,他引:0  
利用大型称重式蒸渗仪记录2012年7月21-22日北京暴雨全过程下土体水重的变化,分析不同树种土体水重的增幅和总量的差异.同时运用土壤三参数测定仪对蒸渗仪的不同深度土体中土壤含水率进行观测,分析降雨过程中各层含水率的动态变化.结果表明,暴雨条件下蒸渗仪土体水重呈先猛增后缓增的趋势,五角枫的土体水重增加最多,渗漏量最少;油松土体水重增加最少,渗漏量最多.土体水重大小依次为:五角枫>侧柏>空地>油松.不同深度土层在暴雨过程中都有水分猛增的过程,表层土发生较早,且增幅大;深层土发生晚,增幅小.五角枫各层土体的含水率最高,油松的最低,含水量大小依次为:五角枫>空地>侧柏>油松.  相似文献   

16.
通过对土桥沟流域SW33-SW75坡向的4种类型人工水土保持林(油松纯林、刺槐纯林、侧柏纯林、油松刺槐混交林)林下枯落物储量的调查结合室内持水试验,运用数理统计的方法分别得到4种林分林下枯落物的储量、最大储水量、吸水速率等水文特征参数。结果表明:①4种林分的单位面积枯落物蓄积量2.35~3.32 t/hm2,其由大到小的排列顺序为:油松林>油松刺槐混交林>侧柏林>刺槐林;②4种林分枯落物的最大持水量存在一定的差异。油松刺槐混交林、油松林、刺槐林、侧柏林的枯落物最大持水量分别相当于0.739,0.73,0.663,0.524 mm的降雨。这4种林分枯落物最大可吸收其自身重量2.11~2.90倍的降雨;③4种林分枯落物的未分解层和半分解层的持水量与时间呈线性相关,在浸水的前2 h内,吸水速度较快,随着时间的延长趋势逐渐变缓,当枯落物在水中浸泡8 h时,持水量基本上达到最大值;④枯落物未分解层和半分解层的吸水速率与时间之间存在一定的相关关系,在浸水的前0~2 h,吸水速率较快,4~6 h后下降速率逐渐减缓。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号