首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Dodecyl gallate inhibited the soybean lipoxygenase-1 (EC 1.13.11.12, type-1) catalyzed peroxidation of linoleic acid with an IC50 of 0.007 microM without being oxidized. The progress curves for enzyme reactions were recorded by both spectrophotometric and polarographic methods, and the inhibition kinetics revealed competitive and slow-binding inhibition. Both the initial velocity and steady-state rate in the progress curve decreased with increasing dodecyl gallate. The kinetic parameters that described the inhibition by dodecyl gallate were evaluated by nonlinear regression fits.  相似文献   

2.
Lipoxygenase inhibitory activity of octyl gallate   总被引:2,自引:0,他引:2  
Octyl gallate inhibited soybean lipoxygenase-1 (EC 1.13.11.12, type I) with an IC(50) of 1.3 microM. The inhibition of the enzyme by octyl gallate is a slow and reversible reaction without residual activity. The inhibition kinetics analyzed by Lineweaver-Burk plots indicates that octyl gallate is a competitive inhibitor, and the inhibition constant, K(I), was obtained as 0.54 microM. One molecule of octyl gallate scavenged six molecules of 1,1-diphenyl-2-picrylhydrazyl and inhibited autoxidative lipid peroxidation. In addition, octyl gallate was effective in preventing lipid peroxidation.  相似文献   

3.
A protein-rich fraction from oat was found to protect linoleic acid against oxidation in an aqueous suspension containing soybean lipoxygenase-1 and micellar linoleic acid. In this system the oat fraction reduced the initial oxidation rate of linoleic acid by 50% when the oat fraction/linoleic acid ratio was 5:1 (w/w). The oat fraction did not act on the lipoxygenase enzyme but reduced the concentration of linoleic acid that serves as a substrate for lipoxygenase-1. To achieve the reduction in the oxidation rate a contact between linoleic acid and the oat fraction was required. The efficiency of the protection was dependent on the duration of this contact: the maximum protection was reached after a 5-min incubation period. However, total cessation of oxidation was not reached with any concentration of the oat fraction, indicating that the oxidizible and non-oxidizible forms of linoleic acid are in equilibrium. Because lipoxygenase-1 prefers the monomeric form of the substrate, the present findings agree with the hypothesis that the oat fraction reduces the concentration of monomolecular form of substrate. In most food systems monomolecular free linoleic acid is liberated slowly and at relatively low concentrations, therefore, even a small amount of the oat fraction would guard the system from oxidative deterioration.  相似文献   

4.
Anacardic acid (6-pentadecylsalicylic acid), a major component of cashew nut shell liquid, consists of a heterogeneous mixture of monoenes, dienes, and trienes. The enes mixture of anacardic acid was hydrogenated to a saturated compound. Using saturated anacardic acid as a starting material, analogues of sildenafil [a potent phosphodiesterase-5 (PDE(5)) inhibitor and an orally active drug for the treatment of erectile dysfunction] were synthesized, to observe the effect of the pentadecyl side chain on PDE(5) inhibition. The synthesized compounds were characterized by spectral studies and tested for PDE(5) inhibition, and the results were compared with those obtained with sildenafil.  相似文献   

5.
Foods rich with unsaturated fatty acids are prone to enzymatic and nonenzymatic lipid peroxidation; lipoxygenase, a metalloenzyme and a free radical former, oxidizes polyunsaturated fatty acids and is one of the key enzymes in lipid oxidation. Here, we report sclerotiorin, purified from the fermented broth of Penicillium frequentans, as a potent reversible, uncompetitive inhibitor against soybean lipoxygenase-1 (LOX-1) with a half-maximal value (IC50) of 4.2 microM. The inhibitor also showed an antioxidant property by scavenging free radical with an ED50 of 0.12 microM; in addition, nonenzymatic lipid peroxidation was inhibited with a PD50 value of 64 microM and did not show metal chelation. The observations made in this study suggest that sclerotiorin possibly inhibits LOX in two ways: one, by interacting with the enzyme-substrate complex, and two, as an antioxidant by quenching or trapping the free radical intermediates formed in the enzyme reaction. Sclerotiorin compares well with other known natural and synthetic lipoxygenase inhibitors.  相似文献   

6.
The objective of this study was to determine whether two of the major conjugated linoleic acid (CLA) isomers, cis-9,trans-11 (c9,t11) and trans-10,cis-12 (t10,c12), are possible substrates for pulmonary 15-lipoxygenase-1 (15-LOX-1) and, therefore, they are also involved in the production of 13(S)-hydroxyoctadecadienoic acid [13(S)-HODE] in biological systems. 13(S)-HODE, a major bioactive metabolite of linoleic acid, is an important intracellular signal agent and is involved in cell proliferation and differentiation in various biological systems. Nordihydroguaiaretic acid (NDGA), a known LOX inhibitor, was used as a control for measuring 15-LOX-1 enzyme activity. It was found that c9,t11-CLA was 25% as active as linoleic acid as a substrate for 15-LOX-1; however, t10,c12-CLA was not a substrate for 15-LOX-1 as measured by 13(S)-HODE production. The authenticity of the production of 13(S)-HODE from c9,t11 as a substrate was established by isolation and cochromatography with pure standard on HPLC using non-radioactive and [14C]-c9,t11-CLA.  相似文献   

7.
Inhibitors of 15-lipoxygenase from orange peel   总被引:5,自引:0,他引:5  
A series of polymethoxylated flavonoids has been isolated from orange peel, and their inhibitory activity toward soybean 15-lipoxygenase was determined. The strongest inhibition was shown by 3,5,6,7,3',4'-hexamethoxyflavone (IC(50) = 49 +/- 5 microM). Sinensetin, nobiletin, tangeretin, tetramethylscutellarein, and 3,5, 6,7,8,3',4'-heptamethoxyflavone were somewhat less active, with IC(50) values of 70-86 microM, comparable to the positive control quercetin (IC(50) = 68 +/- 5 microM). Demethylation apparently results in less active compounds, with 5-O-demethylsinensetin having an IC(50) value of 144 +/- 10 microM. Some other orange peel constituents were isolated and tested as well, hesperidin (IC(50) = 180 +/- 10 microM) and ferulic acid (111 +/- 2 microM), showing moderate activity. The polymethoxylated flavonoids were virtually inactive as scavengers of the diphenylpicrylhydrazyl radical. Hesperidin was only slightly active (24.2 +/- 0.7% scavenged at a concentration of 2 mM), and ferulic acid showed good activity (IC(50) = 86.4 +/- 0.7 microM). From this, it appears that orange peel constituents may counteract enzymatic lipid peroxidation processes catalyzed by 15-lipoxygenase in vitro. The radical scavenging activity of orange peel extracts is only modest.  相似文献   

8.
The objective of the present study is to develop a rapid and convenient method to determine antioxidative activity. It was determined by the inhibition capacity on the hemoglobin-catalyzed peroxidation of linoleic acid. The appropriate conditions for reaction of 4 mM linoleic acid were 0.002% hemoglobin at 37 degrees C for 10 min. Adding methanol to the reaction mixture at <20% showed no significant effect on the peroxidation of linoleic acid. Products formed from hemoglobin-catalyzed peroxidation of linoleic acid were 9- and 13-hydroperoxyoctadecadienoic acid at a ratio of approximately 50:50. Eight synthetic antioxidants were assayed for their antioxidative activity; all of them showed linear response to the logarithm of their concentration. Antioxidative activity from different plant samples was also examined. Tea, ginger, chrysanthemum, and roselle showed higher antioxidative activity. Either hydrophobic or hydrophilic antioxidants were able to be assayed with this method within 15 min.  相似文献   

9.
Solvent extracted cashew nut shell liquid (CNSL), conventionally known as natural CNSL, is a mixture of several alkenyl phenols. One of these alkenyl phenols is anacardic acid, which is present at the highest concentration. In view of anticipated industrial applications of anacardic acid, the objective of this work was to isolate anacardic acid from natural CNSL by supercritical carbon dioxide (scCO 2). In this study, the solubility data for natural CNSL in scCO 2 under a range of operating conditions of pressure (100, 200, and 300 bar), temperature (40 and 50 degrees C), and CO 2 flow rate (5, 10, and 15 g min (-1)) were established. The best scCO 2 working conditions were found to be 50 degrees C and 300 bar at a flow rate of 5 g min (-1) CO 2. Using 3 g of sample (CNSL/solid adsorbent = 1/2) under these scCO 2 conditions, it was possible to quantitatively isolate high purity anacardic acid from crude natural CNSL (82% of total anacardic acid) within 150 min. The anacardic acid isolated by scCO 2 was analyzed by different spectroscopic techniques (UV-vis, FT-IR, and (1)H NMR) and HPLC analysis, indicating that the anacardic acid isolated by scCO 2 has better quality than that obtained through a conventional method involving several chemical conversion steps.  相似文献   

10.
Methanol, MeOH/water extracts, infusion, and decoction of Cymbopogon citratus were assessed for free radical scavenging effects measured by the bleaching of the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical, scavenging of the superoxide anion, and inhibition of the enzyme xanthine oxidase (XO) and lipid peroxidation in human erythrocytes. The extracts presented effect in the DPPH and superoxide anion assay, with values ranging between 40 and 68% and 15-32% at 33 and 50 microg/mL, respectively, inhibited lipid peroxidation in erythrocytes by 19-71% at 500 microg/mL and were inactive toward the XO at 50 microg/mL. Isoorientin, isoscoparin, swertiajaponin, isoorientin 2' '-O-rhamnoside, orientin, chlorogenic acid, and caffeic acid were isolated and identified by spectroscopic methods. Isoorientin and orientin presented similar activities toward the DPPH (IC(50): 9-10 microM) and inhibited lipid peroxidation by 70% at 100 microg/mL. Caffeic and chlorogenic acid were active superoxide anion scavengers with IC(50) values of 68.8 and 54.2 microM, respectively, and a strong effect toward DPPH. Caffeic acid inhibited lipid peroxidation by 85% at 100 microg/mL.  相似文献   

11.
The effects of polar (acetonitrile and tert-butyl alcohol) and apolar (cyclohexane) solvents on the peroxyl-radical-trapping antioxidant activity of some flavonoids, catechol derivatives, hydroquinone, and monophenols have been studied. The inhibition rate constants k(inh) of the antioxidants have been determined by following the increase in absorbance at 234 nm of a dilute solution of linoleic acid at 50 degrees C containing small amounts of antioxidant and radical initiator. Despite the low concentration of linoleic acid, the peroxidation process has been confirmed to be a free radical chain reaction described by the classical kinetic laws for this process. However, in the evaluation of k(inh), a careful analysis of the peroxidation curve, absorbance versus time, must be done because the final oxidation products of phenols may absorb at 234 nm. Phenols with two ortho-hydroxyls are the most active antioxidants, with inhibition rate constants in the range of (3-15) x 10(5) M(-1) x s(-1) (in cyclohexane). Nevertheless, it has been observed that in tert-butyl alcohol (a strong hydrogen bond acceptor) the rate constants dramatically decline to values not detectable by the present kinetic method. In acetonitrile (a weaker hydrogen bond acceptor) instead, the phenols with two ortho-hydroxyls scavenge the peroxyl radicals with rate constants close to those in cyclohexane. From the kinetic solvent effect, the equilibrium constant of the first solvation step of hydroquinone with tert-butyl alcohol has been determined at 50 degrees C, K(1) = 2.5 +/- 0.5 M(-1).  相似文献   

12.
Kinetic study of the oxidation of quercetin by mushroom tyrosinase   总被引:1,自引:0,他引:1  
The kinetic behavior of mushroom tyrosinase in the presence of the flavonol quercetin was studied. This flavonol was oxidized by mushroom tyrosinase and the reaction was followed by recording spectral changes over time. The spectra obtained during the reaction showed two isosbectic points, indicating a stable o-quinone. When quercetin was oxidized by tyrosinase in the presence of cysteine and 3-methyl-2-benzothiazolone hydrazone (Besthorn's hydrazone, MBTH) isosbestic points were also observed indicating a definite stoichiometry. From the data analysis of the initial rate in the presence of MBTH, the kinetic parameters: = (16.2 +/- 0.6) microM/min, = (0.12 +/- 0.01) mM, (/) = (V(max)/K(S)(')()) = (13.5 +/- 1.4) x 10(-)(2) min(-)(1), = (6.2 +/- 0.6) s(-)(1) were determined. We propose that quercetin acts simultaneously as a substrate and a rapid reversible inhibitor of mushroom tyrosinase, depending on how it binds to the copper atom of the enzyme active site. Thus, if the binding occurs through the hydroxylic groups at the C3' and C4' positions, quercetin acts as a substrate, while if it occurs through the hydroxylic group at the C3 position of the pyrone ring, quercetin acts as an inhibitor.  相似文献   

13.
The objectives of this study were to isolate the antioxidative components in the broth filtrate of Aspergillus candidus (CCRC 31543), to characterize their antioxidative properties, and to evaluate their safety. Three major compounds were isolated and identified as 3,3' '-dihydroxyterphenyllin, 3-hydroxyterphenyllin, and candidusin B. In the linoleic acid peroxidation system, the inhibition of peroxidation in these three compounds was greater than 95% and was significantly higher than that of alpha-tocopherol but equal to that of BHA at 12.5-200 microg/mL. As measured using the Rancimat method in lard, 3,3' '-di-OH-terphenyllin exhibited a protection factor value of 7.82, which was substantially higher than those of BHA (5.58) and alpha-tocopherol (4.29) at 200 microg/mL. 3,3' '-di-OH-terphenyllin and 3-OH-terphenyllin also exhibited marked scavenging effects on the alpha,alpha-diphenyl-beta-picrylhydrazyl radicals (94.7 and 96.0%, respectively), which were similar to those of BHA and alpha-tocopherol. Safety studies showed that these three compounds were neither cyto- nor geno-toxic toward human intestine 407 (INT 407) cells, nor mutagenic toward Salmonella typhimurium TA98 and TA100.  相似文献   

14.
As part of a project directed toward the discovery of new cancer chemopreventive agents from plants, two new natural products, asparagusic acid anti-S-oxide methyl ester (1) and asparagusic acid syn-S-oxide methyl ester (2), a new acetylenic compound, 2-hydroxyasparenyn [3',4'-trans-2-hydroxy-1-methoxy-4-[5-(4-methoxyphenoxy)-3-penten-1-ynyl]-benzene] (3), as well as eleven known compounds, asparenyn (4), asparenyol (5), (+/-)-1-monopalmitin (6), ferulic acid (7), 1,3-O-di-p-coumaroylglycerol (8), 1-O-feruloyl-3-O-p-coumaroylglycerol (9), blumenol C, (+/-)-epipinoresinol, linoleic acid, 1,3-O-diferuloylglycerol, and 1,2-O-diferuloylglycerol, were isolated from an ethyl acetate-soluble fraction of the methanol extract of the aerial parts of Asparagus officinalis (Asparagus), using a bioassay based on the inhibition of cyclooxygenase-2 to monitor chromatographic fractionation. The structures of compounds 1-3 were elucidated by 1D- and 2D-NMR experiments ((1)H NMR, (13)C NMR, DEPT, COSY, HMQC, HMBC and NOESY). All the isolates were evaluated for their inhibitory effects against both cyclooxygenase-1 and -2, with the most active compound being linoleic acid.  相似文献   

15.
In this study, the polyphenol oxidase (PPO) of artichoke (Cynara scolymus L.) was first purified by a combination of (NH(4))(2)SO(4) precipitation, dialysis, and a Sepharose 4B-L-tyrosine-p-aminobenzoic acid affinity column. At the end of purification, 43-fold purification was achieved. The purified enzyme migrated as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Polyacrylamide gel electrophoresis indicated that PPO had a 57 kDa molecular mass. Second, the contents of total phenolic and protein of artichoke head extracts were determined. The total phenolic content of artichoke head was determined spectrophotometrically according to the Folin-Ciocalteu procedure and was found to be 425 mg 100 g(-1) on a fresh weight basis. Protein content was determined according to Bradford method. Third, the effects of substrate specificity, pH, temperature, and heat inactivation were investigated on the activity of PPO purified from artichoke. The enzyme showed activity to 4-methylcatechol, pyrogallol, catechol, and L-dopa. No activity was detected toward L-tyrosine, resorsinol, and p-cresol. According to V(max)/K(m) values, 4-methylcatechol (1393 EU min(-1) mM(-1)) was the best substrate, followed by pyrogallol (1220 EU min(-1) mM(-1)), catechol (697 EU min(-1) mM(-1)), and L-dopa (102 EU min(-1) mM(-1)). The optimum pH values for PPO were 5.0, 8.0, and 7.0 using 4-methylcatechol, pyrogallol, and catechol as substrate, respectively. It was found that optimum temperatures were dependent on the substrates studied. The enzyme activity decreased due to heat denaturation of the enzyme with increasing temperature and inactivation time for 4-methylcatechol and pyrogallol substrates. However, all inactivation experiments for catechol showed that the activity of artichoke PPO increased with mild heating, reached a maximum, and then decreased with time. Finally, inhibition of artichoke PPO was investigated with inhibitors such as L-cysteine, EDTA, ascorbic acid, gallic acid, d,L-dithiothreitol, tropolone, glutathione, sodium azide, benzoic acid, salicylic acid, and 4-aminobenzoic acid using 4-methylcatechol, pyrogallol, and catechol as substrate. The presence of EDTA, 4-aminobenzoic acid, salicylic acid, gallic acid, and benzoic acid did not cause the inhibition of artichoke PPO. A competitive-type inhibition was obtained with sodium azide, L-cysteine, and d,L-dithiothreitol inhibitors using 4-methylcatechol as substrate; with L-cysteine, tropolone, d,L-dithiothreitol, ascorbic acid, and sodium azide inhibitors using pyrogallol as substrate; and with L-cysteine, tropolone, d,L-dithiotreitol, and ascorbic acid inhibitors using catechol as a substrate. A mixed-type inhibition was obtained with glutathione inhibitor using 4-methylcatechol as a substrate. A noncompetitive inhibition was obtained with tropolone and ascorbic acid inhibitors using 4-methylcatechol as substrate, with glutathione inhibitor using pyrogallol as substrate, and with glutathione and sodium azide inhibitors using catechol as substrate. From these results, it can be said that the most effective inhibitor for artichoke PPO is tropolone. Furthermore, it was found that the type of inhibition depended on the origin of the PPO studied and also on the substrate used.  相似文献   

16.
The antioxidant activity of caseins and casein-derived peptides was evaluated by using three free radical producing reactions-the lipoxygenase- and AAPH-catalyzed oxidation of linoleic acid and the hemoglobin-catalyzed oxidation of linoleic acid hydroperoxide. Caseins and casein-derived peptides were able to inhibit enzymatic and nonenzymatic lipid peroxidation, suggesting they were preferred targets for the free radical intermediates. The antioxidative feature was not lost with the dephosphorylation or the proteolysis of the proteins. The fractionation of the tryptic beta-casein digest yielded peptides with antioxidant activity. A structure-function relationship between the amino acid sequence and the antioxidant capacity and effectiveness is proposed. In addition, indirect evidence suggested that the trapping of free radicals by the proteins/peptides was accompanied by the oxidation of proteins/peptides, according to a sequence-specific mechanism.  相似文献   

17.
Prolyl endopeptidase (PEP, EC 3.4.21.26) is widely distributed in various organs, particularly in the brains of amnestic patients. Evaluation of PEP levels in postmortem brains of Alzheimer's disease patients revealed significant increases in PEP activity, suggesting that a specific PEP inhibitor can be a good candidate for an antiamnestic drug. In this study, mono- and polyunsaturated fatty acids were investigated to determine their role as PEP inhibitors. Oleic, linoleic, and arachidonic acids, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) showed PEP inhibitory activities (IC50 values of 23.6 +/- 0.4, 43.8 +/- 1.8, 53.4 +/- 1.2, 99.4 +/- 1.2, and 46.2 +/- 1.0 microM, respectively), indicating that they were effective PEP inhibitors, with inhibition constant (Ki) values of 26.7 +/- 0.3, 51.0 +/- 0.7, 91.3 +/- 3.1, 247.5 +/- 2.6, and 89.0 +/- 2.3 microM, respectively. Oleic acid showed the highest PEP inhibitory activity. Dixon plots of PEP inhibition showed oleic, linoleic, and arachidonic acids, EPA, and DHA are noncompetitive inhibitors; despite higher IC50 values of these unsaturated fatty acids than strong natural inhibitors, they may have potential use in preventing memory loss.  相似文献   

18.
We measured directly the reactive oxygen generated from a peroxide-free reaction system when a ferrous complex with nitrilotriacetic acid was oxidized to the ferric complex. Further, it was observed by a measurement of chemiluminescence that peroxidation of a lipid substrate added in the system is initiated by the Fe(3+)-type of reactive oxygen generated. Antioxidant activity can be estimated by contrasting the reaction rates of lipid peroxidation between the systems with and without a putative antioxidant sample. By this method, the antioxidant activity, expressed as catechin equivalent, of red wines for linoleic acid peroxidation was shown to be higher than those of rosé and white wines (189-311, 84, and 37 microM for red, rosé, and white wines, respectively) because of a higher concentration of polyphenols such as flavanol and anthocyanin in red wines. The chemiluminescence measurement would be a promising method for evaluating the antioxidant potential because of its highly specific and sensitive detection of the hydroperoxide and for monitoring in situ peroxidation reaction.  相似文献   

19.
Grilled red turkey muscle (Doner Kabab) is a real "fast food" containing approximately 200 microM hydroperoxides, homogenized in simulated gastric fluid and oxidized more rapidly at pH 3.0 than at pH 5.0, after 180 min, producing 1200 and 600 microM hydroperoxides, respectively. The effects of "free" iron ions and metmyoglobin, two potential catalyzers of lipid peroxidation in muscle foods, were evaluated for linoleic acid peroxidation at pH 3.0 of simulated gastric fluid. The prooxidant effects of free iron ions on linoleic acid peroxidation in simulated gastric fluid was evaluated in the presence of ascorbic acid. At low concentrations of ascorbic acid, the effects were prooxidative, which was reversed at high concentrations. In the presence of metmyoglobin, ascorbic acid with or without free iron enhanced the antioxidative effect. Lipid peroxidation by an iron-ascorbic acid system was inhibited totally by 250-500 microM catechin at pH 3.0. The catechin antioxidant effect was determined also in the iron-ascorbic acid system containing metmyoglobin. In this system, catechin totally inhibited lipid peroxidation at a concentration 20-fold lower than without metmyoglobin. The ability of catechin to inhibit lipid peroxidation was also determined at a low pH with beta-carotene as a sensitive target molecule for oxidation. The results show that a significant protection was achieved only with almost 100-fold higher antioxidant concentration. Polyphenols from different groups were determined for the antioxidant activity at pH 3.0. The results show a high antioxidant activity of polyphenols with orthodihydroxylated groups at the B ring, unsaturation, and the presence of a 4-oxo group in the heterocyclic ring, as demonstrated by quercetin.  相似文献   

20.
柿子单宁的制备及其抗氧化活性研究   总被引:10,自引:2,他引:10  
利用含有1%盐酸的无水甲醇提取柿子果肉中的单宁,粗提液经大孔树脂AB-8初步纯化后,再经超滤膜法制得柿子单宁两级分:高分子量单宁(High Molecular Weight Tannin,HMWT)以及小分子量单宁(Small Molecular Weight Tannin,SMWT)。HMWT具有良好的水溶性,凝胶渗透色谱(GPC)分析表明其分子量分布范围为1.16×104~1.54×104。抗氧化试验表明:HMWT对2-脱氧-D-核糖、甲基紫、水杨酸体系产生的羟基自由基均具有很强的清除能力,其最大清除率分别为90.47%、96.46%、87.77%,;HMWT对邻苯三酚自氧化和亚油酸脂质过氧化亦有较强的抑制作用,其最大抑制率分别为56.57%、69.63%。在所有体系中HMWT抗氧化能力呈明显的剂量效应关系,且效果均强于相同浓度的葡萄籽原花青素(OPC)及SMWT,同时表明HMWT是柿子单宁的主要抗氧化活性组分。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号