首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background, Aims and Scope  Endpoints in earthworm ecotoxicology scheduled in guidelines are mortality and reproduction rates. However, not only the direct influence of pollutants on population parameters but also changes in behaviour such as substrate avoidance can have an important impact on soil ecosystems. In practice two different avoidance response tests are applied in earthworm ecotoxicology: (i) a six-chamber test system and (ii) a two-chamber test system. Both avoidance response-test systems were compared to establish their respective advantages and disadvantages in order to advance the standardisation of behavioural tests. The earthworm avoidance-response tests were applied in addition to the standard acute and chronic earthworm toxicity tests (ISO 11268) in order to compare the sensitivity of the test endpoints. Methods  Test substrates were contaminated with crude oil and 2,4,6-Trinitrotoluene (TNT), respectively. The test species wasEisenia fetida. The earthworms were exposed to the contaminated substrates and their mortality (14 d), reproduction rates (number of cocoons after 28 d, juvenile hatching after 56 d), and substrate preference (48 h) determined. Results and Discussion  Whereas 1000 mg/kg TPH (Total Petroleum Hydrocarbons) did not show any lethal effects, 100% mortality occurred in soil with comparable TNT concentration. The acute tests consistently produced the highest effect concentrations whereas reproduction and substrate avoidance were the more sensitive test parameters. Both behavioural test systems, when compared, showed similar substrate avoidance after an incubation time of 48 h. The six-chamber test system provides the potential to test six different substrates/concentrations at one time. It was observed, however, that earthworms did not migrate among all test chambers within a test unit in order to select the most appropriate substrate. Orientation was observed only between directly neighbouring test compartments, which complicates the interpretation of the test results. Conclusion  Substrate avoidance and reproduction variables were clearly more sensitive test endpoints than mortality. Therefore avoidance-response tests proved to be useful test methods in detecting effects of sublethal concentrations of pollutants on earthworms. The test duration of the avoidance tests is much shorter compared to the standard acute and chronic earthworm toxicity tests, which makes them a quick screening tool for identifying potential soil toxicity. Both avoidance-response test systems showed comparable results regarding the test sensitivity. Nonetheless, the incomplete substrate use in the six-chamber avoidance test due to the reduced migration possibilities (orientation only to neighbouring chambers) might reduce the distinctness of test results as it allows only reliable information on the most avoided and therefore most toxic substrate but not on 1 a clear dose-response pattern. Thus, to gain valid results, the number of replicates and the arrangement of the different substrates must be adopted. The two-chamber test system is less time-consuming due to easy handling and test results can be quantified more easily. Recommendations and Outlook  In consequence of the better validity of test results, lower expenses for test containers and less time for handling, the use of the two-chamber system is preferred over the six-chamber test system to assess the toxicity of polluted soil. Because of the ecosystem consequences of behavioural effects and the fact that avoidance response tests can reveal the toxic potential of pollutants in low concentrations, such tests should be included into ecotoxicological test protocols.  相似文献   

2.
Adding biochar to soils and maintaining high earthworm biomasses are potential ways to increase the fertility of tropical soils and the sustainability of crop production in the spirit of agroecology and ecological engineering. However, a thorough functional assessment of biochar effect on plant growth and resource allocations is so far missing. Moreover, earthworms and biochar increase mineral nutrient availability through an increase in mineralization and nutrient retention respectively and are likely to interact through various other mechanisms. They could thus increase plant growth synergistically. This hypothesis was tested for rice in a greenhouse experiment. Besides, the relative effects of biochar and earthworms were compared in three different soil treatments (a nutrient rich soil, a nutrient poor soil, a nutrient poor soil supplemented with fertilization). Biochar and earthworm effects on rice growth and resource allocation highly depended on soil type and were generally additive (no synergy). In the rich soil, there were both clear positive biochar and earthworm effects, while there were generally only positive earthworm effects in the poor soil, and neither earthworm nor biochar effect in the poor soil with fertilization. The analysis of earthworm and biochar effects on different plant traits and soil mineral nitrogen content, confirmed that they act through an increase in nutrient availability. However it also suggested that another mechanism, such as the release in the soil of molecules recognized as phytohormones by plants, is also involved in earthworm action. This mechanism could for example help explaining how earthworms increase rice resource allocation to roots and influence the allocation to grains.  相似文献   

3.
《Applied soil ecology》2009,42(3):269-276
Earthworms can be used to remove polycyclic aromatic hydrocarbons (PAHs) from soil, but this might affect their survival and they might accumulate the contaminants. Sterilized and unsterilized soil was contaminated with phenanthrene (Phen), anthracene (Anth) and benzo(a)pyrene (BaP), added with or without Eisenia fetida, sewage sludge or vermicompost. Survival, growth, cocoon formation and concentrations of PAHs in the earthworms were monitored for 70 days. Addition of sewage sludge to sterilized or unsterilized soil maintained the number of earthworms and their survival was 94%. The addition of sludge significantly increased the weight of earthworms 1.3 times compared to those kept in the unamended soil or in soil amended with vermicompost. The weight of earthworms was significantly lower in sterilized than in unsterilized soil. Cocoons were only detected when sewage sludge was added to unsterilized soil. A maximum concentration of 62.3 μg Phen kg−1 was found in the earthworms kept in sterilized soil amended with vermicompost after 7 days and 22.3 μg Phen kg−1 when kept in the unamended unsterilized soil after 14 days. Concentrations of Phen in the earthworms decreased thereafter and ≤2 μg kg−1 after 28 days. A maximum Anth concentration of 82.5 μg kg−1 was found in the earthworms kept in sterilized soil amended with vermicompost and 45.8 μg Anth kg−1 when kept in the unamended unsterilized soil after 14 days. A maximum concentration of 316 μg BaP kg−1 was found in the earthworms kept in sterilized soil amended with vermicompost after 56 days and 311 μg BaP kg−1 when kept in the unsterilized soil amended with vermicompost after 28 days. The amount of BaP in the earthworm was generally largest after 28 days, but after 70 days still 60 μg kg−1 was found in E. fetida when kept in the sterilized soil amended with sewage sludge. It was found that E. fetida survived in PAHs contaminated soil and accumulated only small amounts of the contaminants, but sewage sludge was required as food for its survival and cocoon production.  相似文献   

4.
Previous laboratory studies using epigeic and anecic earthworms have shown that earthworm activity can considerably increase nitrous oxide (N2O) emissions from crop residues in soils. However, the universality of this effect across earthworm functional groups and its underlying mechanisms remain unclear. The aims of this study were (i) to determine whether earthworms with an endogeic strategy also affect N2O emissions; (ii) to quantify possible interactions with epigeic earthworms; and (iii) to link these effects to earthworm-induced differences in selected soil properties. We initiated a 90-day 15N-tracer mesocosm study with the endogeic earthworm species Aporrectodea caliginosa (Savigny) and the epigeic species Lumbricus rubellus (Hoffmeister). 15N-labeled radish (Raphanus sativus cv. Adagio L.) residue was placed on top or incorporated into the loamy (Fluvaquent) soil. When residue was incorporated, only A. caliginosa significantly (p < 0.01) increased cumulative N2O emissions from 1350 to 2223 μg N2O-N kg−1 soil, with a corresponding increase in the turnover rate of macroaggregates. When residue was applied on top, L. rubellus significantly (p < 0.001) increased emissions from 524 to 929 μg N2O-N kg−1, and a significant (p < 0.05) interaction between the two earthworm species increased emissions to 1397 μg N2O-N kg−1. These effects coincided with an 84% increase in incorporation of residue 15N into the microaggregate fraction by A. caliginosa (p = 0.003) and an 85% increase in incorporation into the macroaggregate fraction by L. rubellus (p = 0.018). Cumulative CO2 fluxes were only significantly increased by earthworm activity (from 473.9 to 593.6 mg CO2-C kg−1 soil; p = 0.037) in the presence of L. rubellus when residue was applied on top. We conclude that earthworm-induced N2O emissions reflect earthworm feeding strategies: epigeic earthworms can increase N2O emissions when residue is applied on top; endogeic earthworms when residue is incorporated into the soil by humans (tillage) or by other earthworm species. The effects of residue placement and earthworm addition are accompanied by changes in aggregate and SOM turnover, possibly controlling carbon, nitrogen and oxygen availability and therefore denitrification. Our results contribute to understanding the important but intricate relations between (functional) soil biodiversity and the soil greenhouse gas balance. Further research should focus on elucidating the links between the observed changes in soil aggregation and controls on denitrification, including the microbial community.  相似文献   

5.
Temperature fluctuations are a fundamental entity of the soil environment in the temperate zone and show fast (diurnal) and slow (seasonal) dynamics. However, responses of soil ecosystem engineers, such as earthworms, to annual temperature dynamics are virtually unknown. We studied growth, mortality and cocoon production of epigeic earthworm species (Lumbricus rubellus and Dendrobaena octaedra) exposed to temperature fluctuations in root-free soil of a mid-European beech-oak forest. Both earthworm species (3 + 3 individuals of each species) were kept in microcosms containing soil stratified into L, F + H and Ah horizons. In the field, earthworm responses to smoothing of diurnal temperature fluctuations were studied, simulating possible global change. In the laboratory, earthworm responses to seasonal (±5 °C of the annual mean) and diurnal temperature fluctuations (±5 °C of the seasonal levels) were analyzed in a two-factorial design. Both experiments lasted 12 months to differentiate between seasonal and diurnal responses. In the third experiment overwintering success of both earthworm species was investigated by comparing effects of constant temperature regime (+2 °C), and daily or weekly temperature fluctuations (2 °C ± 5 °C).Temperature regime strongly affected population performance of the earthworms studied. In the field, smoothed temperature fluctuations beneficially affected population development of both earthworm species (higher biomass, faster maturity and reproduction, lower mortality). Consequently, density of both species increased faster at smoothed than at ambient temperature conditions. In the laboratory, responses of L. rubellus and D. octaedra to temperature treatments differed; however, in general, earthworms benefited from the absence of diurnal fluctuations. Total earthworm numbers were at a maximum at constant temperature and lowest in the treatment with both diurnal and seasonal temperature fluctuations. However, after one year L. rubellus tended to dominate irrespective of the temperature regime. In the overwintering experiment L. rubellus sensitively responded to even short-term winter frost and went extinct after one week of frost whereas D. octaedra much better tolerated frost conditions. Earthworms of both species which survived frosts were characterized by a significant body weight decrease during the period of frosts and fast recovery in spring suggesting a different pattern of individual resource expenditure as compared with constant +2 °C winter regime. Contrasting trends in the population dynamics of L. rubellus and D. octaedra during the frost-free period and during winter suggest that in the long-term temperature fluctuations contribute to the coexistence of decomposer species of similar trophic position in the forest litter. The results are discussed in context of consequences of climate change for the functioning of soil systems.  相似文献   

6.
Invasive earthworms can have significant impacts on C dynamics through their feeding, burrowing, and casting activities, including the protection of C in microaggregates and alteration of soil respiration. European earthworm invasion is known to affect soil micro- and mesofauna, but little is known about impacts of invasive earthworms on other soil macrofauna. Asian earthworms (Amynthas spp.) are increasingly being reported in the southern Appalachian Mountains in southeastern North America. This region is home to a diverse assemblage of native millipedes, many of which share niches with earthworm species. This situation indicates potential for earthworm-millipede competition in areas subject to Amynthas invasion.In a laboratory microcosm experiment, we used two 13C enriched food sources (red oak, Quercus rubra, and eastern hemlock, Tsuga canadensis) to assess food preferences of millipedes (Pseudopolydesmus erasus), to determine the effects of millipedes and earthworms (Amynthas corticis) on soil structure, and to ascertain the nature and extent of the interactions between earthworms and millipedes. Millipedes consumed both litter species and preferred red oak litter over eastern hemlock litter. Mortality and growth of millipedes were not affected by earthworm presence during the course of the experiment, but millipedes assimilated much less litter-derived C when earthworms were present.Fauna and litter treatments had significant effects on soil respiration. Millipedes alone reduced CO2 efflux from microcosms relative to no fauna controls, whereas earthworms alone and together with millipedes increased respiration, relative to the no fauna treatment. CO2 derived from fresh litter was repressed by the presence of macrofauna. The presence of red oak litter increased CO2 efflux considerably, compared to hemlock litter treatments.Millipedes, earthworms, and both together reduced particulate organic matter. Additionally, earthworms created significant shifts in soil aggregates from the 2000-250 and 250-53 μm fractions to the >2000 μm size class. Earthworm-induced soil aggregation was lessened in the 0-2 cm layer in the presence of millipedes. Earthworms translocated litter-derived C to soil throughout the microcosm.Our results suggest that invasion of ecosystems by A. corticis in the southern Appalachian Mountains is unlikely to be limited by litter species and these earthworms are likely to compete directly for food resources with native millipedes. Widespread invasion could cause a net loss of C due to increased respiration rates, but this may be offset by C protected in water-stable soil aggregates.  相似文献   

7.
The near infrared reflectance spectroscopy (NIRS) method was used in the present study to compare earthworm-made soil aggregates to aggregates found in the surrounding bulk soil. After initially assessing the daily cast production of Metaphire posthuma, boxes with soil incubated with M. posthuma and control soils were subjected to wetting in order to reorganize the soil structure. After two months of incubation, soil aggregates produced by earthworms (casts and burrows), soil aggregates that were appeared to be unaffected by earthworms (bulk soil without visible trace of earthworm bioturbation from the earthworm treatment) and soil aggregates that were entirely unaffected by earthworms (control – no earthworm – treatment) were sampled and their chemical signatures analyzed by NIRS. The production of below-ground and surface casts reached 14.9 g soil g worm?1 d?1 and 1.4 g soil g worm?1 d?1, respectively. Soil aggregates from the control soils had a significantly different NIRS signature from those sampled from boxes with earthworms. However, within the earthworm incubation boxes the NIRS signature was similar between cast and burrow aggregates and soil aggregates from the surrounding bulk soil. We conclude that the high cast production by M. posthuma and the regular reorganization of the soil structure by water flow in and through the soil lead to a relatively homogenous soil structure. Given these results, we question the relevance of considering the bulk soil that has no visible activity of earthworm activity as a control to determine the effect of earthworms on soil functioning.  相似文献   

8.
Biochar application to soil has significant potential as a climate change mitigation strategy, due to its recalcitrant C content and observed effect to suppress soil greenhouse gas emissions such as nitrous oxide (N2O). Increased soil aeration following biochar amendment may contribute to this suppression.Soil cores from a Miscanthus X. giganteus plantation were amended with hardwood biochar at a rate of 2% dry soil weight (22 t ha−1). The cores were incubated at three different temperatures (4, 10 and 16 °C) for 126 days, maintained field moist and half subjected to periodic wetting events. Cumulative N2O production was consistently suppressed by at least 49% with biochar amendment within 48 h of wetting at 10 and 16 °C. We concluded that hardwood biochar suppressed soil N2O emissions following wetting at a range of field-relevant temperatures over four months. We hypothesised that this was due to biochar increasing soil aeration at relatively high moisture contents by increasing the water holding capacity (WHC) of the soil; however, this hypothesis was rejected.We found that 5% and 10% biochar amendment increased soil WHC. Also, 10% biochar amendment decreased bulk density of the soil. Sealed incubations were performed with biochar added at 0–10 % of dry soil weight and wetted to a uniform 87% WHC (78% WFPS). Cumulative N2O production within 60 h of wetting was 19, 19, 73 and 98% lower than the biochar-free control in the 1, 2, 5 and 10% biochar treatments respectively. We conclude that high levels of biochar amendment may change soil physical properties, but that the enhancement of soil aeration by biochar incorporation makes only a minimal contribution to the suppression of N2O emissions from a sandy loam soil. We suggest that microbial or physical immobilisation of NO3 in soil following biochar addition may significantly contribute to the suppression of soil N2O emissions.  相似文献   

9.
Soil organic matter (SOM) plays a central role in the functioning of ecosystems, and is beneficial from agronomic and from environmental point of view. Alternative cultural systems, like direct seeding mulch-based cropping (DMC) systems, enhance carbon (C) sequestration in agricultural soils and lead to an increase in soil macrofauna. This study aimed at evaluating in field mesocosms the effects of earthworms on SOM dynamics and aggregation, as influenced by residue quality and management.In the highlands of Madagascar, buckets were filled with 2 mm-sieved clayey Inceptisol. The effects of earthworm addition (Pontoscolex corethrurus), residue addition (rice, soybean, and no addition), and localization of the residues (mulched or buried) were studied. After 5 months, soil from mesocosms with earthworms had significantly lower C concentration and higher proportion of large water-stable macroaggregates (>2000 μm) than those without earthworms, because of the production of large macroaggregates by earthworms. Earthworm effect on soil aggregation was greater with rice than with soybean residues. Casts (extracted from mesocosms with earthworms) were slightly enriched in C and showed significantly higher mineralization than the non-ingested soil (NIS), showing that at the time scale of our study, the carbon contained in the casts was not protected against mineralization. No difference in microbial biomass was found between casts and NIS.Complementary investigations are necessary to assess long-term effects of earthworm addition on SOM dynamics, the conditions of occurrence of physical protection, and the impact of earthworms on the structure of the microbial community.  相似文献   

10.
Trace metals and metalloids (TMM) in forest soils and invasive earthworms were studied at 9 sites in northern New England, USA. Essential (Cu, Mo, Ni, Zn, Se) and toxic (As, Cd, Pb, Hg, U) TMM concentrations (mg kg−1) and pools (mg m−2) were quantified for organic horizons (forest floor), mineral soils and earthworm tissues. Essential TMM tissue concentrations were greatest for mineral soil-feeding earthworm Octolasion cyaneum. Toxic TMM tissue concentrations were highest for organic horizon-feeding earthworms Dendobaena octaedra, Aporrectodea rosea and Amynthas agrestis. Most earthworm species had attained tissue concentrations of Pb, Hg and Se potentially hazardous to predators. Bioaccumulation factors were Cd > Se > Hg > Zn > Pb > U > 1.0 > Cu > As > Mo > Ni. Only Cd, Se, Hg and Zn were considered strongly bioaccumulated by earthworms because their average bioaccumulation factors were significantly greater than 1.0. Differences in bioaccumulation did not appear to be caused by soil concentrations as earthworm TMM tissue concentrations were poorly correlated with TMM soil concentrations. Instead, TMM bioaccumulation appears to be species and site dependent. The invasive A. agrestis had the greatest tissue TMM pools, due to its large body mass and high abundance at our stands. We observed that TMM tissue pools in earthworms were comparable or exceeded organic horizon TMM pools; earthworm tissue pools of Cd were up 12 times greater than in the organic horizon. Thus, exotic earthworms may represent an unaccounted portion and flux of TMM in forests of the northeastern US. Our results highlight the importance of earthworms in TMM cycling in northern forests and warrant more research into their impact across the region.  相似文献   

11.

Purpose

There is a growing interest in the use of soil enzymes as early indicators of soil quality change under contrasting agricultural management practices. In recent years, there has been increasing interest in the use of biochar to improve soil properties and thus soil quality. In addition, earthworms can also be used to ameliorate soil properties. However, there is no literature available on how biochar and earthworms interact and affect soil enzymes. The general objective of the present study was to test the suitability of adding biochar and earthworms in two tropical soils with low fertility status in order to improve their characteristics and productivity.

Materials and methods

Biochars were prepared from four different materials [sewage sludge (B1), deinking sewage sludge (B2), Miscanthus (B3) and pine wood (B4)] on two tropical soils (an Acrisol and a Ferralsol) planted with proso millet (Panicum milliaceum L.). In addition, in order to investigate the interaction between earthworms and biochar, earthworm Pontoscolex corethrurus was added to half of the mesocosms, while excluded in the remaining half. The activities of invertase, β-glucosidase, β-glucosaminidase, urease, phosphomonoesterase and arylsulphatase were determined. The geometric mean of the assayed enzymes (GMea) was used as an integrative soil quality index.

Results and discussion

Overall, earthworms and especially biochar had a positive effect on soil quality. GMea showed B1, B2 and B3 performing better than B4; however, results were soil specific. Plant productivity increased under both biochar and earthworm addition. Fruit productivity and plant growth was enhanced by B1 and B2 but not by B3 or B4.

Conclusions

Enhancements of productivity and soil enzymatic activities are possible in the presence of earthworms and the combination of the practices earthworm and biochar addition can be suggested in low fertility tropical soils. However, scientists should proceed carefully in the selection of biochars as the results of this study show a high specificity in the biochar–soil interaction.  相似文献   

12.
Despite the cutback of the use of antifouling paints containing tributyltin (TBT), harbour sediments are still “hot spots” for organotin pollution, which is one of the most toxic substances for aquatic organisms. Harbours have to be freed constantly of suspended sediments, to guarantee unhindered shipping. The deposition of these TBT contaminated sediments on rinsing fields is supposed to comprise a minimisation of the risk potential for humans and environment. To investigate if TBT contaminated sediment might present a hazard to the existing soil fauna, a risk assessment with earthworms was performed. The original TBT contaminated sediment induced 94% mortality, compared to 2% in the uncontaminated standard Lufa soil. It was assumed that the high salinity (23 dS/m) was the reason for the mortality rather than the TBT concentration of 600 μg/kg soil (dry weight). To reduce the soil salinity, the TBT substrate was first washed with deionised water and then mixed with the uncontaminated artificial OECD soil (=TBTmix), which resulted, however, in a lower TBT concentration (132 μg/kg soil dw.). The uncontaminated OECD reference soil resulted in high earthworm mortality (34%). Despite the reduced salinity (10 dS/m) and lower TBT concentration, the TBTmix substrate induced high mortality rates (42%), reduced reproduction (17% compared to the control) and resulted in a significant substrate avoidance of 92%. Consequently, the landfilling of the TBT contaminated harbour sludge might (i) present a hazard to the existing soil fauna at the rinsing fields due to high salinity and the TBT contamination, and (ii) a quick recolonisation of the contaminated substrate by earthworms can not be expected.  相似文献   

13.
The objective of this study was to determine the impact of earthworm bioturbation on the distribution and availability of zinc in the soil profile.Experiments were carried out with Allolobophora chlorotica and Aporrectodea caliginosa in 24 perspex columns (∅ 10 cm), filled with 20-23 cm non-polluted soil (OM 2%, clay 2.9%, pH 0.01 M CaCl2 6.4), that was covered by a 3-5 cm layer of aged zinc spiked soil (500 mg Zn/kg dry soil) and another 2 cm non-polluted soil on top. After 80 and 175 days, columns were sacrificed and each cm from the top down to a depth of 15 cm was sampled. Earthworm casts, placed on top of the soil, were collected. Each sample was analyzed for total and CaCl2-exchangeable zinc concentrations.Effects of earthworm bioturbation were most pronounced after 175 days. For A. chlorotica, total and CaCl2-exchangeable zinc concentrations in the polluted layers were lower with than without earthworms. Total zinc concentrations in the non-polluted layers were higher in columns with earthworms. Casts of A. chlorotica collected on the soil surface showed slightly higher total zinc concentrations than non-polluted soil. Casts were found throughout the whole column. For A. caliginosa there were no differences in total zinc concentration between columns with and without earthworms. CaCl2-exchangeable zinc concentrations in the polluted layers were lower for columns with earthworms. Casts were mainly placed on top of the soil and contained total zinc concentrations intermediate between those in non-polluted and polluted soil layers.This study shows that different endogeic earthworm species have different effects on zinc distribution and availability in soils. A. chlorotica transfers soil throughout the whole column, effectively mixing it, while A. caliginosa decreases metal availability and transfers polluted soil to the soil surface.  相似文献   

14.
Earthworms are important engineering species of many terrestrial ecosystems as they play a significant role in regulating C turnover. The effects of earthworms on moderating C decomposition processes differ across species and with interactions between species, which is not fully understood. We carried out an experiment to study the interactions of Lumbricus rubellus and Octolasion lacteum, and their effects on soil respiration. Laboratory mesocosms were set up using tulip poplar (Liriodendron tulipifera) leaf litter and varying densities of earthworms in single and combined species treatments. CO2 efflux rate was used as an indicator of C decomposition rates, and measured with CO2 sensors every five days over one month. L. rubellus induced higher leaf consumption rate and higher CO2 efflux than O. lacteum; meanwhile O. lacteum grew more than L. rubellus. Both litter consumption rate and growth rate of earthworms decreased with increasing earthworm density. Soil CO2 efflux increased with increasing earthworm density (from ∼1-2 μg CO2 g−1 hr−1 with no earthworms to ∼ 4 μg CO2 g−1 hr−1 with 8 earthworms). Combining the two species had a synergistic effect on leaf litter consumption, and neutralizing effects on soil respiration. The data suggest that the strength of intra- and inter-specific interactions among earthworm ecological groups varies at different absolute and relative densities, leading to altered leaf litter decomposition and C cycling.  相似文献   

15.
We studied the effects of maize residue application on some life-cycle parameters of the earthworm Aporrectodea trapezoides in saline agricultural soils with electrical conductivity (EC) ranging from 1.58 to 7.35 dS m−1. This experiment was carried out under controlled laboratory conditions for 150 days. Results showed that soil salinity significantly affected the growth and reproduction of earthworms, decreasing survival, numbers and mean fresh weights of adults, juveniles and cocoons. Maize residue application gave a greater survival of earthworms at all salinity levels, but the differences were only significant at an EC of 7.35 dS m−1, although the mean weight of adult earthworms was significantly increased by maize residue application at all salinity levels. At an EC of 1.58 dS m−1 and 3.35 dS m−1, the application of maize residues gave significantly higher numbers of cocoons and juveniles, but in soils with 5.26 dS m−1 and 7.35 dS m−1 earthworms did not produce any cocoons over the experimental period, irrespective of maize residue application. These results indicated that maize residue application alleviated the negative effects of soil salinity on the growth and reproduction of A. trapezoides up to 3.35 dS m−1, above which maize residues only increased the growth but not on the reproduction of earthworms.  相似文献   

16.
Earthworms are important regulators of soil structure and soil organic matter (SOM) dynamics; however, quantifying their influence on SOM cycling in tropical ecosystems remains little studied. Simulated rainfall was used to disrupt casts produced by Amynthas khami and their surrounding soil (control) into a range of small sized aggregates (50-250, 250-500, 500-2000 and 2000-5000 μm). To gain insight into how earthworms influence SOM biogeochemical composition in the aggregates, we carried out elemental and stable isotope analysis, and analytical pyrolysis (Py GC/MS). We also characterized their lignin component after oxidation with cupric oxide (CuO).The C content of smaller size fractions (<500 μm) in the control soil was higher than in the larger fractions. Our study therefore suggests that the aggregate hierarchy concept, which is used to understand soil aggregates and SOM dynamics in temperate soils, may not be applicable to the tropical Acrisol studied here. Earthworms modified SOM organization in soil aggregates. Although the isotope analyses were useful for highlighting SOM enrichment in the earthworm casts, aggregate fractions could not be classified according to particle size. Molecular analyses were necessary to indicate that SOM in all size fractions of casts consisted of relatively undecomposed material. Protection of the most labile SOM structures occurred in the smallest aggregate size fraction (50-250 μm). Py GC/MS showed that earthworm casts and control aggregates <2000 μm could be clearly distinguished according to the molecular properties of their SOM. Aggregates larger than 2000 μm, however, were most probably composed of all fractions and were not different. As a consequence, our results indicate that studies to determine the impact of earthworms on SOM turnover in soil are spatially dependant on the scale of observation.  相似文献   

17.
Studies have reported that biochar is a sustainable amendment that improves the chemical and physical properties of soil.In this study,an incubation experiment was conducted to investigate the effects of different application rates of biochar on the cracking pattern and shrinkage characteristics of lime concretion black soil after three wetting and drying cycles.Biochar derived from the corn straw and peanut shell mixture was applied to the soil at rates of 0,50,100,and 150 g kg~(-1)dry weight,representing the treatments T_(0),T_(50),T_(100),and T_(150),respectively.During the wetting and drying cycles,the cracking pattern and shrinkage characteristics of the unamended and amended soil samples were recorded.Application of biochar significantly increased soil organic carbon content in the samples.During soil desiccation,biochar significantly reduced the rate of water loss.Cracks propagated slowly and stopped due to the relatively higher water content in the soil applied with biochar.The cracking area density(ρ_c),equivalent width,fractal dimension,and cracking connectivity index decreased during the drying process with increasing application rate of biochar.Theρ_(c )value of the T_(50),T_(100),and T_(150) treatments decreased by 33.6%,52.1%,and 56.9%,respectively,after three wetting and drying cycles,whereas the T_(0) treatment exhibited a marginal change.The coefficient of linear extensibility,an index used to describe onedimentional shrinkage,of the unamended soil sample(T_(0))was approximately 0.23.Application of 100 and 150 g kg~(-1)biochar to the soil significantly reduced the shrinkage capacity by 41.45%and 45.54%,respectively.The slope of the shrinkage characteristics curve,which indicates the ralationship between soil void ratio and moisture ratio,decreased with increase in the application rate of biochar.Furthermore,compared with the T_(0) treatment,the proportional shrinkage zone of the shrinkage characteristic curve of the T_(50),T_(100),and T_(150) treatments decreased by 5.8%,13.1%,and 12.1%,respectively.Differences were not observed in the moisture ratio at the maximum curvature of the shrinkage characteristic curve among the treatments.The results indicate that biochar can alter the cracking pattern and shrinkage characteristics of lime concretion black soil.However,the effects of biochar on the shrinkage of lime concretion black soil are dependent on the number of wetting and drying cycles.  相似文献   

18.
The benefits of adding composted organic materials to soils to enhance carbon storage could be countered by the mobilisation of some harmful pollutants commonly found in frequently degraded urban soils. Therefore non-composted materials could be a safer option. In the present study, carbon and trace element fluxes in soil pore water were studied in response to the surface mulch addition and the incorporation into an urban soil of greenwaste compost versus two non-composted amendments; a woody oversize material and biochar following inoculation with the vertical burrowing earthworm Lumbricus terrestris. The aim was to establish (i) to what extent the non-composted amendments impacted on mobility of soluble trace elements in the soil, compared to the composted amendment, and (ii) if/how this was regulated by earthworm activity.Both composted and non-composted amendments enhanced dissolved organic carbon (DOC) in soil pore water to ∼100-300 mg l−1 in the upper depth of the soil profile above which they were applied as a mulch and similarly within the mesocosms in which they were mixed. Dissolved organic carbon, dissolved nitrogen (DTN) and trace metals, especially Cu and Pb, where enhanced to the greatest extent by greenwaste compost, because of strong co-mobilisation of metals by DOC. Biochar enhanced As and Cu mobility in the field profile and, additionally Pb in the mesocosms, with no effect on Cd. The woody, oversize amendment neither greatly increased DOC nor As, Cu, Pb or Zn mobility although, unlike the other amendments, earthworms increased DOC and Cd mobility when soils were amended with this material.This study concludes that non-composted amendments had a lower impact on DOC and thus trace element co-mobility than the composted greenwaste in this urban soil, whilst the general influence of earthworms was to reduce DOC and hence associated trace element mobility. In wider environmental terms the addition of non-composted materials to some urban soils, versus composted greenwaste could reduce the risk of mobilising potentially harmful elements, whilst usefully improving soil quality.  相似文献   

19.
Earthworm activity has been reported to lead to increased production of the greenhouse gas nitrous oxide (N2O). This is due to emissions from worms themselves, their casts and drilosphere, as well as to general changes in soil structure. However, it remains to be determined how important this effect is on N2O fluxes from agricultural systems under realistic conditions in terms of earthworm density, soil moisture, tillage activity and residue loads. We quantified the effect of earthworm presence on N2O emissions from a pasture after simulated ploughing of the sod (‘grassland renovation’) for different soil moisture contents during a 62-day mesocosm study. Sod (with associated soil) and topsoil were separately collected from a loamy Typic Fluvaquent. Treatments included low (L), medium (M) and high (H) moisture content, in combination with: only soil (S); soil+incorporated sod (SG); soil+incorporated sod+the anecic earthworm Aporrectodea longa (SGE). Nitrous oxide and carbon dioxide (CO2) fluxes were measured for 62 d. At the end of the incubation period, we determined N2O production under water-saturated conditions, potential denitrification and potential mineralization of the soil after removing the earthworms. Cumulative N2O and CO2 fluxes over 62 d from incorporated sod were highest for treatment HSGE (973 μg N2O-N and 302 mg CO2-C kg−1 soil) and lowest for LSG (64 μg N2O-N and 188 mg CO2-C kg−1 soil). Both cumulative fluxes were significantly different for soil moisture (p<0.001), but not for earthworm presence. However, we observed highly significant earthworm effects on N2O fluxes that reversed over time for the H treatments. During the first phase (day 3-day 12), earthworm presence increased N2O emissions with approximately 30%. After a transitional phase, earthworm presence resulted in consistently lower (approximately 50%) emissions from day 44 onwards. Emissions from earthworms themselves were negligible compared to overall soil fluxes. After 62 d, original soil moisture significantly affected potential denitrification, with highest fluxes from the L treatments, and no significant earthworm effect. We conclude that after grassland ploughing, anecic earthworm presence may ultimately lead to lower N2O emissions after an initial phase of elevated emissions. However, the earthworm effect was both determined and exceeded by soil moisture conditions. The observed effects of earthworm activity on N2O emissions were due to the effect of earthworms on soil structure rather than to emissions from the worms themselves.  相似文献   

20.
The gut load and gut transit time (GTT) of the endogeic earthworm Hormogaster elisae in laboratory cultures at 18 °C and 23 ºC were studied. The GTT, 5.25 h ± 0.40 at 18 ºC and 3.63 h ± 0.46 at 23 ºC, was determined by staining the soil with alimentary colouring (tartrazine). The gut load was calculated with two methods: earthworm mass difference, before and after voiding the gut, and dry mass of the gut content. The gut load ranged between 168 and 261 mg wet mass g live earthworm mass–1 (mass difference method) or 137–196 mg dry mass g live earthworm mass–1 (dry mass method). With the obtained data a potential annual soil turnover for H. elisae was calculated: 211–470 kg wet soil mass kg live earthworm mass–1 year–1 (mass difference method) or 176–325 kg dry soil mass kg live earthworm mass–1 year–1 (dry mass method).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号