首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 428 毫秒
1.
Information on decomposition and nutrient release from leaf litter of trees in agroforestry parkland systems in Sub-Saharan Africa is scarce despite the significant role of these trees on soil fertility improvement and maintenance. Decomposition and nutrient release patterns from pruned leaves of the two most common species of parklands of the semi-arid zone of West Africa: Vitellaria paradoxa C.F. Gaertn (known locally as karité) and Parkia biglobosa (Jacq.) Benth. (known locally as néré), were investigated by a litter-tube study in Burkina Faso. Litter quality, methods of leaf exposure to the soil and combination with fertilizers were the factors studied. Leaves of néré had a higher nutrient content (C, N, P, Ca) and contained more ash and lignin than leaves of karité. Karité leaves had a greater content of K, cellulose and polyphenols. The pruned leaves of karité and néré showed two distinct decomposition patterns. Néré leaves decomposed more rapidly, with less than 32% of the initial weight remaining after the rainy season (4 months) while karité leaves decomposed more slowly with 43% of the leaf litter remaining after the rainy season. Addition of urea and compost did not significantly affect the rate of decomposition. Significant interaction was observed between species and method of leaf exposure for the first sampling date. Leaf litter of néré buried in soil gave the highest weight loss (34% of the initial mass in 1 month) compared with exposed leaf litter of néré and karité, and buried leaf litter of karité. Except for N, nutrient release patterns were similar for both species but the nutrient release rates were higher for néré leaves compared with karité leaves. N was immobilised in karité leaves most likely due to low N and high phenolic content. The rate of nutrient release from karité leaves followed the general trend K>P>N.  相似文献   

2.
In peatlands the reduced decomposition rate of plant litter is the fundamental mechanism making these peat-accumulating ecosystems effective carbon sinks. A better knowledge of litter decomposition and nutrient cycling is thus crucial to improve our predictions of the effects of anthropogenic perturbation on the capacity of peatlands to continue to behave as carbon sinks. We investigated patterns of plant litter decomposition and nutrient release along a minerotrophic-ombrotrophic gradient in a bog on the south-eastern Alps of Italy. We determined mass loss as well as P, N, K, and C release of seven vascular plant species and four moss species after 1 year in both native and transplanted habitats. Hence, differences in litter decay were supposed to reflect the degree of adaptability of microbial communities to litter quality. Polyphenols/nutrient and C/nutrient quotients appeared as the main parameters accounting for decomposition rates of Sphagnum litter. In particular, litter of minerotrophic Sphagnum species decomposed always faster than litter of ombrotrophic Sphagnum species, both in native and transplanted habitats. Decomposition rates of vascular plant litter in native habitats were always higher than the corresponding mass loss rates of Sphagnum litter. Minerotrophic forbs showed the fastest decomposition both in native and transplanted habitats in accordance with low C/P and C/N litter quotients. On the other hand, C/P quotient seems to play a primary role also in controlling decomposition of graminoids. Decomposition of deciduous and evergreen shrubs was negatively related to their high lignin content. Nitrogen release from Sphagnum litter was primarily controlled by C/N quotient, so that minerotrophic Sphagnum litter released more N than ombrotrophic Sphagnum litter. Overall, we observed slower N release from litter of ombrotrophic vascular plant species compared to minerotrophic vascular plant species. No single chemical parameter could predict the variability associated with different functional groups. The release of K was very high compared to all the other nutrients and rather similar between ombrotrophic and minerotrophic litter types. In Sphagnum litter, a higher C/P quotient was associated with a slower P mineralisation, whereas a faster P release from vascular plant litter seems primarily associated with lower C/P and polyphenols/P quotients.  相似文献   

3.
Peatlands represent massive global C pools and sinks. Carbon accumulation depends on the ratio between net primary production and decomposition, both of which can change under projected increases of atmospheric CO2 and N deposition. The decomposition of litter is influenced by 1) the quality of the litter, and 2) the microenvironmental conditions in which the litter decomposes. This study aims at experimentally testing the effects of these two drivers in the context of global change. We studied the in situ litter decomposition from three common peatland species (Eriophorum vaginatum, Polytrichum strictum and Sphagnum fallax) collected after one year of litter production under pre-treatment conditions (elevated CO2: 560 ppm or enhanced N: 3 g m−2 y−1 NH4NO3) and decomposed the following year under treatment conditions (same as pre-treatment). By considering the cross-effects between pre-treatments and treatments, we distinguished between the effects on mass loss of 1) the pre-treatment-induced litter quality and 2) the treatment conditions under which the litters were decomposing. The combination between CO2 pre-treatment and CO2 treatment reduced Polytrichum decomposition by −24% and this can be explained by litter quality-driven decomposition changes brought by the pre-treatment. CO2 pre-treatment reduced Eriophorum litter quality, although this was not sufficient to predict decomposition. The N addition pre-treatment reduced the decomposition of Eriophorum, due to enhanced lignin and soluble phenols concentrations in the initial litter, and reduced litter-driven losses of starch and enhanced litter-driven losses of soluble phenols. While decomposition indices based on initial litter quality provide a broad explanation of quantitative and qualitative decomposition, they can only be taken as first approximations. Indeed, the microbial ATP activity, the litter N loss and resulting litter quality, were strongly altered irrespective of the compounds' initial concentration and by means of processes that occurred independently of the initial litter-qualitative changes. The experimental design was valuable to assess litter- and ecosystem-driven decomposition pathways simultaneously or independently. The ability to separate these two drivers makes it possible to attest the presence of litter-qualitative changes even without any litter biochemical determinations, and shows the screening potential of this approach for future experiments dealing with multiple plant species.  相似文献   

4.
Cellulose and lignin degradation dynamics was monitored during the leaf litter decomposition of three typical species of the Mediterranean area, Cistus incanus L., Myrtus communis L. and Quercus ilex L., using the litter bag method. Total N and its distribution among lignin, cellulose and acid-detergent-soluble fractions were measured and related to the overall decay process. The litter organic substance of Cistus and Myrtus decomposed more rapidly than that of Quercus. The decay constants were 0.47 year−1, 0.75 year−1 and 0.30 year−1 for Cistus, Myrtus and Quercus, respectively. Lignin and cellulose contents were different as were their relative amounts (34 and 18%, 15 and 37%, 37 and 39% of the overall litter organic matter before exposure, for Cistus, Myrtus and Quercus, respectively). Lignin began to decrease after 6 and 8 months of exposure in Cistus and Myrtus, respectively, while it did not change significantly during the entire study period in Quercus. The holocellulose, in contrast, began to decompose in Cistus after 1 year, while in Quercus and Myrtus immediately. Nitrogen was strongly immobilized in all the litters in the early period of decay. Its release began after the first year in Cistus and Myrtus and after 2 years of decomposition in Quercus. These litters still contained about 60, 20 and 90% of the initial nitrogen at the end of the experiment (3 years). Prior to litter exposure nitrogen associated with the lignin fraction was 65, 54 and 37% in Cistus, Myrtus and Quercus, while that associated with the cellulose fraction was 30, 24 and 28%. Although most of the nitrogen was not lost from litters, its distribution among the litter components changed significantly during decomposition. In Cistus and Myrtus the nitrogen associated with lignin began to decrease just 4 months after exposure. In Quercus this process was slowed and after 3 years of decomposition 8% of the nitrogen remained associated with lignin or lignin-like substances. The nitrogen associated with cellulose or cellulose-like substances, in contrast, began to decrease from the beginning of cellulose decomposition in all three species. At the end of the study period most of the nitrogen was not associated to the lignocellulose fraction but to the acid-detergent-soluble substance (87, 88 and 84% of the remaining litter nitrogen).  相似文献   

5.
Condensed tannins (CT) can strongly affect litter decomposition, but their fate during the decomposition process, in particular as influenced by detritivore consumption, is not well understood. We tested the hypothesis that litter CT are reduced by the gut passage of two functionally distinct detritivores of Mediterranean forests, the millipede Glomeris marginata, and the land snail Pomatias elegans, as a fixed proportion of initial litter CT, but more so in Pomatias since snails are known to have a more efficient enzymatic capacity. Contrary to our hypothesis, both detritivore species reduced litter CT to near zero in their faecal pellets irrespective of the wide range in initial leaf litter CT concentrations of 9-188 mg g−1 d m among three Mediterranean tree species (Pistacia terebinthus, Quercus ilex, Alnus glutinosa) and different decomposition stages of their litter. The almost complete disappearance of CT even from some litter types highly concentrated in CT, due to either degradation by gut microorganism or complexation of CT into insoluble high molecular weight structures, suggests a high “de-tanning” efficiency across functionally distinct detritivore species. The transformation of CT-rich litter into virtually CT-free faecal pellets by detritivores might be highly relevant for the subsequent decomposition process in ecosystems with a high macrofauna abundance and CT-rich plant species such as Mediterranean forests.  相似文献   

6.
Initial decomposition rates, changes in organic chemical components (acid-insoluble fraction, holocellulose, polyphenols, soluble carbohydrates) and nutrient dynamics (K, Mg, Ca, P, N) were examined for fine roots and leaves of Japanese cypress (Chamaecyparis obtusa). Litterbag experiments designed to evaluate the relative effects of litter type and position of litter supply in the soil were carried out, considering that root and leaf litter typically occupy different locations and have different substrate qualities. Litterbags of roots and leaves were placed at two positions (on the soil surface and in the humus layer), and collected every 3 months over one year. The mass loss rate and N release were slower during root decomposition in the humus layer than during leaf decomposition on the soil surface. These differences between root and leaf decomposition were mainly caused by the litter type, and the effect of the position on decomposition was relatively small. Root litter was less influenced by position related effects, such as differences in humidity, than leaf litter, and this recalcitrant trait to environmental effects may be responsible for the slower mass loss rate and N release in root decomposition. The results of the present study suggest that fine roots are persistent in the soil and serve an important role in N retention in forest ecosystems because of their litter substrate quality.  相似文献   

7.
Soil respiration is the largest terrestrial source of CO2 to the atmosphere. In forests, roughly half of the soil respiration is autotrophic (mainly root respiration) while the remainder is heterotrophic, originating from decomposition of soil organic matter. Decomposition is an important process for cycling of nutrients in forest ecosystems. Hence, tree species induced changes may have a great impact on atmospheric CO2 concentrations. Since studies on the combined effects of beech-spruce mixtures are very rare, we firstly measured CO2 emission rates in three adjacent stands of pure spruce (Picea abies), mixed spruce-beech and pure beech (Fagus sylvatica) on three base-rich sites (Flysch) and three base-poor sites (Molasse; yielding a total of 18 stands) during two summer periods using the closed chamber method. CO2 emissions were higher on the well-aerated sandy soils on Molasse than on the clayey soils on Flysch, characterized by frequent water logging. Mean CO2 effluxes increased from spruce (41) over the mixed (55) to the beech (59) stands on Molasse, while tree species effects were lower on Flysch (30-35, mixed > beech = spruce; all data in mg CO2-C m−2 h−1). Secondly, we studied decomposition after fourfold litter manipulations at the 6 mixed species stands: the Oi - and Oe horizons were removed and replaced by additions of beech -, spruce - and mixed litter of the adjacent pure stands of known chemical quality and one zero addition (blank) in open rings (20 cm inner diameter), which were covered with meshes to exclude fresh litter fall. Mass loss within two years amounted to 61-68% on Flysch and 36-44% on Molasse, indicating non-additive mixed species effects (mixed litter showed highest mass loss). However, base cation release showed a linear response, increasing from the spruce - over the mixed - to the beech litter. The differences in N release (immobilization) resulted in a characteristic converging trend in C/N ratios for all litter compositions on both bedrocks during decomposition. In the summers 2006 and 2007 we measured CO2 efflux from these manipulated areas (a closed chamber fits exactly over such a ring) as field indicator of the microbial activity. Net fluxes (subtracting the so-called blank values) are considered an indicator of litter induced changes only and increased on both bedrocks from the spruce - over the mixed - to the beech litter. According to these measurements, decomposing litter contributed between 22-32% (Flysch) and 11-28% (Molasse) to total soil respiration, strengthening its role within the global carbon cycle.  相似文献   

8.
Recent studies have demonstrated that mass loss, nutrient dynamics, and decomposer associations in leaf litter from a given plant species can differ when leaves of that species decay alone compared to when they decay mixed with other species’ leaves. Results of litter-mix experiments have been variable, however, making predictions of decomposition in mixtures difficult. It is not known, for example, whether interactions among litter types in litter mixes are similar across sites, even for litter mixtures containing the same plant species. To address this issue, we used reciprocal transplants of litter in compartmentalized litterbags to study decomposition of equal-mass litter mixtures of sugar maple (Acer saccharum Marshall) and red oak (Quercus rubra L.) at four forest sites in northwestern Connecticut. These species differ significantly in litter quality. Red oak always has higher lignin concentrations than maple, and here C:N is lower in oak leaves and litter, a pattern often observed when oak coexists with maple. Overall, we observed less mass loss and lower N accumulation in sugar maple and red oak litter mixtures than we predicted from observed dynamics in single-species litterbags. Whether these differences were significant or not depended on the site of origin of the leaves (P<0.02), but there was no significant interaction between sites of decay and the differences in observed and predicted decomposition (P>0.2) . Mixing of leaf litter types could have significant impacts on nutrient cycling in forests, but the extent of the impacts can vary among sites and depends on the origin of mixed leaves even when the species composition of mixes is constant.  相似文献   

9.
We examined the quality and decomposition of naturally abscised leaves of silver birch (Betula pendula) seedlings subjected to three different levels of fertilization under ambient and elevated levels of temperature and CO2. At the end of the second growing season, the chemical composition of the litter collected from the seedlings was analyzed. Whole-leaf samples from pooled litter from each of the four replicates from each treatment were put in mesh bags and transferred to ambient climate in the field. The remaining mass of litter was measured by sampling bags in May and October throughout the four-year incubation period. Fertilization with all nutrients decreased the initial carbon and tannin contents of litter, and increased the proportion of the fast-decomposing fraction, but still fertilization slowed down the decomposition of this fraction. Initially, the estimated proportion of the fast-decomposing fraction was smallest in elevated CO2 + temperature, and largest in ambient climate. During decomposition, elevated growth-temperature slowed down decomposition of the fast fraction under ambient CO2 but increased it under elevated CO2. The changes in litter decomposition rates found over four years were not very large. However, we conclude that the interactions of different factors lead to different results than if the factors had been studied separately, and future studies should take interactions into account.  相似文献   

10.
We used oligotrophic, P-limited herbaceous wetlands of northern Belize as a model system, on which to document and explain how changes in nutrient content along a salinity gradient affect activities of extracellular enzymes involved in macrophyte decomposition. To determine what is more important for decomposition, the initial litter quality, or site differences, we used reciprocal litter placement in a combined “site quality” and “litter quality” experiment running from August 2003 to April 2004. The experiment was set up in long-term control and nutrient addition plots (P, N, and NP) established in 2001 in 15 limestone-based inland marshes with a wide range of water conductivities (200-6000 μS) and a uniform pH (7.0-7.7) dominated by emergent macrophytes, Eleocharis spp. There were no differences among the plots in total sediment N and water NH4-N, but total and KCl-extractable sediment P and water PO4-P were significantly higher in P and NP plots throughout the duration of the experiment. The initial litter N content was slightly but significantly different between control and N plots versus P and NP plots (5.7 and 7.1 mg g−1, respectively). The difference was much bigger for litter P content, 0.1 and 0.7 mg g−1, respectively. Enzyme activities of alkaline phosphatase, leucine-aminopeptidase, arylsulfatase, and β-glucosidase were measured fluorometrically in Eleocharis litter in both the litterbag experiment and the naturally decomposing material. Total phospholipid fatty acid (PLFA) content in litter samples was used as a measure of microbial biomass present. Phosphatase always exhibited the highest activity of the enzymes studied, followed by leucine-aminopeptidase, arylsulfatase and β-glucosidase. There were no significant differences between enzyme activities from litterbags and the unconfined litter. Phosphatase activity was significantly suppressed in P-addition plots under all salinity levels while the activities of the remaining enzymes were significantly higher in P-enriched plots. There was a strong correlation between decomposition coefficient k-values and most of the enzymes as well as between the amount of PLFA and enzyme activities. PLFA, arylsulfatase, and litter C/P were the best predictors of k-values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号