首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
超声波土壤含水量检测装置的模型建立与验证   总被引:4,自引:3,他引:1  
李君  徐岩  姜锐  杨洲  陆华忠 《农业工程学报》2017,33(13):127-133
为探究利用超声波脉冲速度检测土壤体积含水量的可行性,以广东省红壤、赤红壤、水稻土为研究对象,设计了一种超声波土壤含水量检测装置,并利用ZBL-U510型非金属超声波检测仪在3种不同温度环境下(10、20、30℃)对不同含水量的土壤样本进行声速测定,构建了土壤体积含水量与超声波差值声速的温度效应数学模型。结果表明:超声波在水稻土中的传播速度比红壤、赤红壤快,且温度对超声波声速随土壤体积含水量变化节律的影响不同。20℃环境下超声波在土壤中的传播速度最快,10℃其次,30℃最慢。采用Richards模型表征土壤体积含水量与超声波差值声速关系的预测误差在3%左右,采用分段结构温度效应模型的预测误差在5%以内,证明该文提出的超声波脉冲速度-土壤体积含水量的温度效应模型可用于动态温度条件下的土壤含水量预测。该研究可为超声波技术在土壤水分检测领域的应用研究提供参考。  相似文献   

2.
不同土壤类型对硫酸钾镁肥中钾、镁、硫吸附特性研究   总被引:1,自引:1,他引:0  
在水稻土、红壤、潮土中分别加入不同浓度的硫酸钾镁肥溶液,研究3种土壤在不同浓度硫酸钾镁肥下pH值的变化及对K、Mg、S吸附的能力。结果表明:在3种土壤中加入硫酸钾镁肥都使土壤pH值下降,下降速度是红壤>水稻土>潮土。3种土壤对K的吸附能力较强,可用一元线性方程拟合,在0~354 mg kg-1的K加入量范围内,吸附率在50.4%~74.1%;对S的相对吸附率居中,可用一元二次方程拟合,在0~311 mg kg-1的S加入量范围内,吸附率在35.6%~88.1%;对Mg的吸附能力极弱。3种土壤对K、S吸附能力大小顺序为:潮土>红壤>水稻,对镁吸附能力大小顺序为:潮土>水稻土>红壤。土壤田间施用硫酸钾镁肥量应根据不同土壤对养分的吸附能力大小进行相应的调整。  相似文献   

3.
南方典型土壤水力特征差异性分析   总被引:12,自引:6,他引:6  
为探究南方地区典型土壤水力性质的差异,采用压力膜法、定水头渗透法和一维水平土柱吸渗法对粘性潮土、沙性潮土、红壤、水稻土和紫色土5种南方典型土壤的水动力学参数进行室内测定,对比分析了各土壤水力特征的差异及其产生的原因。结果表明:土壤质地和粘粒含量是影响土壤水力特征的主要因素;粘性潮土、沙性潮土属于级配良好土,而红壤、紫色土、水稻土属于级配不良土,粘性潮土、沙性潮土、红壤、紫色土、水稻土饱和导水率依次增大,分别为1.75×10~(-3),3.15×10~(-3),4.77×10~(-3),11.02×10~(-3),11.87×10~(-3) cm/min;相对水稻土和沙性潮土而言,其他3种试验土持水性较高。土壤有效水含量为沙性潮土粘性潮土水稻土紫色土红壤,其有效水孔隙体积分别占其总孔隙体积的48%,29%,27%,18%和17%。非饱和条件下,沙性潮土和红壤中的水分运动速率较快,远高于粘性潮土中的水分运动速率,约为其6.8倍。土壤质地、颗粒级配、粘粒和有机质含量不同是造成土壤水力特性差异的因素,其中土壤质地和颗粒级配为南方典型土壤水力特性差异的主要影响因素。  相似文献   

4.
再生水盐分在亚热带不同土壤中的迁移特性及其差异   总被引:5,自引:3,他引:2  
为了合理评价再生水灌溉盐分对土壤环境的影响,分析盐溶液淋溶亚热带土壤流出液盐分变化规律及其对土壤化学性质的影响差异,该文采用定水头入渗法,模拟不同浓度钠盐溶液淋溶黏性潮土、沙性潮土、红壤、紫色土、水稻土等5种亚热带地区土壤,并观测土壤流出液电导率(EC)和pH值的差异。试验结果表明:1)高浓度盐溶液对黏粒含量较高的红壤、紫色土、黏性潮土的穿透能力弱于黏粒含量较低的水稻土和沙性潮土。同等浓度水平处理达到相同的穿透程度,酸性土壤(红壤、紫色土、水稻土)能承受更多的低质水量。2)盐分在土壤中的迁移速度主要由土壤理化性质决定,土壤黏粒含量、交换性铝含量会显著减缓盐分在土壤中的迁移能力,而土壤粉粒含量、EC、pH值以及交换性钙、镁含量会促进盐分在土壤中的迁移。盐分更容易穿透碱性土壤(黏性潮土和沙性潮土)而流出,碱性土壤流出液相对EC最大变化速率比酸性土壤高36%。基于Boltzmann函数拟合表明,入渗水盐浓度及土壤理化性质对模型参数有显著影响(P<0.05)。3)土壤化学性质受入渗液盐分浓度的影响程度不仅与土壤本身的化学性质有关,也与土壤质地中的粉粒、黏粒含量有极显著的关系(P<0.01)。各浓度盐溶液对碱性土壤的pH值影响不明显,对酸性土壤的pH值影响较大,其流出液pH值减少1.6~2.6个单位,其中红壤的pH值变化最大,其次为紫色土。入渗液EC高于4.77 dS/m的处理对土壤流出液的稳定pH值影响增幅不明显。因此,利用低质水灌溉时要依据土壤理化性质合理限定水中盐浓度。  相似文献   

5.
土壤水分对包膜尿素养分释放特性的影响   总被引:1,自引:0,他引:1  
试验采用土壤培养的方法,以释放期分别为60 d(肥料A)和90 d(肥料B)的两种肥料作为供试肥料,研究了土壤绝对含水量、干湿交替、相对含水量和水势因素对3种土壤中包膜尿素养分释放特性的影响。结果表明:在3种土壤中,土壤绝对含水量从50 g/kg增到200 g/kg时,包膜尿素养分释放率均随土壤水分含量的增加而显著增加,此时水分因素是控制包膜尿素养分释放的主要因素。在干湿交替条件下,两种供试肥料间释放率的差异变大,其中肥料B在潮土中释放速率较其他两种土壤中下降更多。当相对含水量在0%~50%田间持水量范围内,或水势在60~100k Pa范围内时,供试肥料在红壤中的释放显著低于潮土和水稻土,这与红壤中黏粒含量高有关;当相对含水量大于100%田间持水量时,或水势低于60 k Pa时,土壤水分和土壤类型对包膜尿素养分释放的影响基本不再显著。常用的Sugihara方程可以较好地拟合包膜尿素在试验设定水分条件下的养分释放特性,相关系数r0.95。3种不同土壤水分参数均可以用来预测包膜尿素的释放率和释放期,其中水势(x)与包膜尿素释放期(y)的拟合效果最好,关系式为y=64.79e~(0.0066x),r=0.91。  相似文献   

6.
金霉素在不同耕作土壤中的吸附-解吸行为   总被引:3,自引:0,他引:3  
刘新程  董元华 《土壤学报》2009,46(5):861-868
用批平衡吸附试验研究了金霉素在河南封丘潮土、南京黄棕壤、常熟水稻土和江西鹰潭红壤4种土壤中的吸附行为。结果表明,金霉素的土壤吸附-解吸行为均可用Freundlich模型和Langmuir模型进行良好的线性拟合。其Kf值差异较大,分别为潮土1135Lkg-1,黄棕壤1250Lkg-1,水稻土2618Lkg-1和红壤4315Lkg-1,显示金霉素在4种土壤中的吸附行为存在较大的差异。此外,金霉素在4种土壤上的解吸过程存在明显的滞后现象。研究还表明4种土壤中金霉素的吸附参数Kf值与土壤pH呈显著负相关。  相似文献   

7.
我国4种土壤磷素淋溶流失特征   总被引:5,自引:1,他引:4  
磷素是水体富营养化的主要限制因子,地表水磷的污染负荷主要来源于农业面源污染。采集黑土、潮土、红壤和水稻土4种土壤,采用土柱模拟的试验方法,研究磷素在4种土壤剖面中空间分布特征,以及土壤渗漏液中TP、TDP的含量、动态变化以及流失量特征。结果表明:(1)不同类型土壤全磷和有效磷含量差异性显著,由高到低依次为水稻土潮土黑土红壤;黑土、红壤和水稻土土壤全磷和有效磷含量都表现出,随土壤深度的增加,不断降低;而潮土剖面呈上下层高,中间低的分布格局。(2)4种土壤渗漏液中占主导的磷形态不一致,潮土以MRP占主导,黑土和水稻土以DOP为主,而红壤则以PP为主。土壤磷素动态变化方面,潮土表现为TP含量先减后增再减,TDP含量先增后减;黑土表现为TP含量先增后减,TDP含量持续下降;红壤和水稻土TP和TDP含量变化不显著。(3)相关分析表明,4种土壤中Olsen-P与渗漏液中TP呈指数关系,具有极显著相关性。(4)4种土壤TP、TDP下渗流失量都以潮土最高,其次是黑土和水稻土,红壤流失量最小,磷素流失以TDP为主。  相似文献   

8.
文倩  李青松  孙水娟 《水土保持研究》2012,19(5):90-94,99,2
应用RS,GIS,Fragstats软件研究了醴陵市土壤类型和景观格局、景观指数的关系。结果表明:(1)醴陵市主要土壤类型是红壤和水稻土;景观类型以林地和水田为主,各景观分布的主要土壤类型为红壤与水稻土,景观斑块类型在各土壤类型区存在明显差异;(2)土地利用景观多样性指数和均匀度为:紫色土>水稻土>红壤>河潮土>黄壤,优势度则相反;(3)各土壤类型区形状指数变化很小,分维数一致;(4)各土壤类型区的廊道密度指数为:紫色土>水稻土>河潮土>红壤>黄壤,差异较大。  相似文献   

9.
安徽省几种主要土壤有机碳含量及其组分研究   总被引:2,自引:0,他引:2  
研究了安徽省4种主要类型土壤(砂姜黑土、潮土、水稻土和红壤)有机碳(SOC)、可溶性有机碳(DOC)和微生物量碳(MBC)的含量剖面分布及其相互关系.结果表明,4种土壤SOC,DOC和MBC含量存在明显差异,但其剖面分布规律基本一致,表层含量较高.随着土壤层次加深而依次递减;表层土壤SOC含量顺序为:水稻土>砂姜黑土>潮土>红壤,DOC含量顺序为:砂姜黑土>潮土>水稻土>红壤,MBC含量顺序为:潮土>砂姜黑土>红壤>水稻土.DOC和MBC分别只占SOC的4.92%~18.97%和1.86%~5.68%.土壤SOC,DOC与MBC之间存在着密切的关系,3者之间的相关性均分别达到了10%,5%或1%的显著或极显著水平.  相似文献   

10.
为分析不同土壤类型的性质、界定易风蚀性土壤类型并探索其特征,选取豫东北黄泛区为研究区域,采用野外取样、室内试验分析结合的方法测定土壤颗粒粒径、可蚀性因子K值等指标,界定区域易风蚀性土壤类型,并分析其空间分布特征。结果表明:(1)从土类看,豫东北黄泛区4种土类,以潮土为主,占区域面积的65.57%;从亚类看,共11种土壤亚类,以小两合土、沙土为主,占区域面积的59.76%。(2)土壤颗粒粒径组成上,沙土、草甸风沙土、盐化潮土、淤土等类型以砂粒为主;其余类型以粉粒为主。沙土、草甸风沙土、灌淤潮土、盐化潮土等类型易蚀颗粒含量较高,处于28.30%~31.36%范围内。草甸碱土、两合土、小两合土的土壤可蚀性因子K值相对较高,范围为0.038~0.041。(3)综合考虑易蚀颗粒含量≥25%和可蚀性属中等及以上2个指标,将沙土、草甸风沙土、灌淤潮土、盐化潮土、脱潮土界定为区域易风蚀性土壤。易风蚀性土壤面积占研究区的41.79%,主要分布在中牟县、祥符区、尉氏县等区域。研究结果可为黄泛区后续土壤研究及风蚀防治提供参考和科学依据。  相似文献   

11.
干旱区盐渍土介电常数特性研究与模型验证   总被引:5,自引:3,他引:2  
常用的土壤介电模型一般都是针对非盐渍化土壤提出来的,对于干旱区盐渍化土壤,模型对于介电常数虚部的描述与实际测量情况有一定差距。为了更好地深入研究干旱区盐渍化土壤介电常数特性,该文选择盐渍土介电模型(修正的含水含盐土壤Dobson介电模型)作为典型研究区盐渍化土壤介电常数的基础模型,模拟分析土壤介电常数对模型参数的响应,在野外实测数据的支持下验证了盐渍土介电模型的适用性。研究结果表明:1)在低频区域(0.5相似文献   

12.
遥感监测介电常数与土壤含水率关系模型   总被引:4,自引:4,他引:0  
为了获取大范围地表土壤水分时空分布信息,该文开展了微波辐射计/散射计监测介电常数与土壤体积含水率之间的关系研究。微波观测的信号与目标的介电常数密切相关,而土壤含水率是决定土壤介电常数的决定性因素,这是利用微波遥感监测土壤水分的物理基础。该研究针对土壤介电常数到土壤水分之间的转换问题,利用Dobson半经验模型建立模拟数据库,用建立的模拟数据库对Hallikainen关系式进行最小二乘回归法标定,建立了适用于微波辐射计SMOS(频率1.4GHz)、AMSR-E(频率6.9GHz)和微波散射计ERS-WCS/METOP-ASCAT(频率5.3GHz)监测的介电常数到土壤体积含水率转换的简化模型。利用模拟数据和实测数据的联合验证结果表明,简化模型具有良好的精度和实用性。  相似文献   

13.
透射式探地雷达探测土壤含水率   总被引:2,自引:1,他引:1  
探地雷达可以进行土壤含水率的快速探测,但普通反射式雷达容易受反射层位难确定的影响造成探测误差。该研究使用透射式探地雷达对不饱和含水壤土及砂土所构建的物理模型进行透射式探测,通过起跳时间对比标定的方法,精确计算了介质中雷达波波速和土壤的相对介电常数。最后通过统计分析,发现以Topp模型公式形式为基础的三次多项式具有最高拟合优度,并修正了Topp公式中的参数后,分别建立起非饱和壤土和砂土体积含水率与介电常数的经验公式及其适用范围。最后,通过试验对比验证了该方法对砂土含水率的测量相对误差为13.20%,较时域反射TDR(time domain reflectometry)方法低14.34%,壤土为9.48%,较TDR方法低15.79%,测量精度明显高于TDR方法。因此该方法可替代TDR方法用于特定条件下土壤含水率的准确检测。  相似文献   

14.
非饱和土双应力变量广义土水特征曲线理论模型构建   总被引:3,自引:2,他引:1  
土水特征曲线(soil-water characteristic curve,SWCC)方程是非饱和土力学中最重要的土性表征手段之一。该文评价当前经典的SWCC方程,指出其未具有包容复杂因素的能力,具有灵活性的优点但却同时具有对试验数据量依赖性高的缺点,不能处理多孔隙尺度集群土体固-液-气共同运动及作用的水力-力学耦合效应问题。建立双应力变量广义SWCC概念图示并定义相对体积含水比,基于Fredlund双应力变量理论及van Genuchten土-水表征方程,构建考虑土体变形及多孔隙分布形态的双应力状态变量的广义SWCC方程。相较于2个参数的Brooks等的方程、3个参数的van Genuchten方程以及4个参数的Fredlund等的方程,广义SWCC方程仅3个参数,其中2个参数在双对数坐标系的"相对体积含水比-吸力"平面中进行最小二乘法线性拟合得到,仅1个参数需非线性最小二乘法拟合得到。该模型可利用不同应力状态下的至少3个土水试验数据点,绘制出1条具有适宜精度的单峰SWCC;方程考虑了多峰孔隙概率密度函数分布及土体变形因素,实现了从应力历史推广到应力状态的广义情况,为定量描述不同孔隙结构土体双应力状态下的持水特性、渗透特性和强度特性提供了一条途径。  相似文献   

15.
Time‐domain reflectometry (TDR) is being used increasingly for measuring the moisture content of porous media. However, successful application for measuring water in soil has been limited to non‐deformable soils, and it would be a valuable extension of the technique if it could be used for soils that shrink on drying. We have recently investigated its application to soils rich in clay and organic matter and peats. Here we propose a method for determining moisture content in deformable soils based on the relation between the dielectric constant, K, and the volumetric moisture content, Θ, measured by TDR. Parallel TDR probes with a length of 15 cm and a spacing of 2 cm were placed horizontally in soil cores with a diameter of 20 cm and height of 10 cm taken from a forest. The soil is very porous with large proportions of both silt and clay. The sample weight and travel time of the electromagnetic wave guided by parallel TDR probes were simultaneously measured as a function of time, from saturation to oven‐dryness during which the core samples shrank considerably. Vertical and horizontal components of shrinkage were also measured to take the air‐exposed region of TDR probe into account in the determination of K. The effect of deformation on volumetric moisture content was formulated for two different expressions, namely actual volumetric moisture content (AVMC) and fictitious (uncorrected) volumetric moisture content (FVMC). The effects of air‐exposure and expressions of volumetric moisture content on the relation between K andΘ were examined by fitting the observations with a third‐order polynomial. Neglecting the travel time in the air‐exposed part or use of the FVMC underestimated the Θ for a given K. The difference was more pronounced between AVMC and FVMC than between two different dielectric constants, i.e. accounting for air‐exposure, Kac, and not accounting for air‐exposure, Kau. When the existing empirical models were compared with the fitted results, most underestimated the relation based on the AVMC. This indicates that published empirical models do not reflect the effect of deformation on the determination of Θ in our forest soil. Correct use of the Θ expression has more impact on determining moisture content of a deformable soil than the accommodation of travel time through the air‐exposed region of TDR probe.  相似文献   

16.
黄土高原土壤水分的自动监测——TDR系统及其应用   总被引:21,自引:1,他引:21  
TDR(Time Domain Reflectory)——时域反射仪是一种用于测量土壤水分的仪器 ,这是一种利用电磁脉冲方法 ,根据电磁波在介质中传播速度来测试介质的介电常数从而测定土壤水分的仪器。本文介绍了一套 TDR系统的组成和测量方法 ,并对测量结果进行了室内和野外校正 ,结果表明 ,野外校正比较符合实际情况 ,可以作为黄土高原地区进行 TDR校正的参考。由于具有快速、准确等优点 ,能自动、连续地监测土壤含水量 ,TDR是一种值得推广的土壤水分测定仪器  相似文献   

17.
土壤表层水汽传输阻抗是估算区域蒸散的关键参数之一,但其与土壤水热参数的数量关系的研究在高寒系统中十分薄弱。利用涡度相关系统观测的2014/2015年度高寒草甸非植被生长季(11月-翌年4月)的土壤蒸发数据,基于Penman-Monteith方程反推得出非生长季土壤表层阻抗的昼(9:00-18:00)变化特征,并研究其与土壤5cm温度和土壤5cm含水量的关系。结果表明,非生长季土壤表层阻抗表现出单峰型日变化特征,其最大值一般出现在15:00前后。逐时土壤表层阻抗与土壤5cm温度呈极显著幂函数阈值关系(R2=0.38,P0.01,N=115),即土壤温度为–4.25℃时土壤表层阻抗最大;与土壤5cm含水量呈极显著指数负相关(R2=0.12,P0.01,N=115)。非生长季逐日土壤表层阻抗的变化无明显季节规律,与土壤5cm温度(R2=0.69,P0.01,N=10)和土壤5cm含水量(R2=0.27,P0.01,N=10)均表现为极显著指数负相关。相关分析表明,非生长季土壤蒸发主要受太阳总辐射(R20.50,P0.01)的控制。研究结果表明土壤温度而非土壤含水量主导着高寒草甸非生长季土壤表层阻抗的变化。  相似文献   

18.
Ground-penetrating radar (GPR) is widely used for assessment of soil moisture variability in field soils. Because GPR does not measure soil water content directly, it is common practice to use calibration functions that describe its relationship with the soil dielectric properties and textural parameters. However, the large variety of models complicates the selection of the appropriate function. In this article an overview is presented of the different functions available, including volumetric models, empirical functions, effective medium theories, and frequency-specific functions. Using detailed information presented in summary tables, the choice for which calibration function to use can be guided by the soil variables available to the user, the frequency of the GPR equipment, and the desired level of detail of the output. This article can thus serve as a guide for GPR practitioners to obtain soil moisture values and to estimate soil dielectric properties.  相似文献   

19.
Measurement of volumetric water content by TDR in saline soils   总被引:4,自引:0,他引:4  
Time-domain reflectometry (TDR) evaluates the bulk dielectric constant, K, of the soil by measuring the travel time of an electromagnetic pulse through a sensor, and through it estimates the volumetric water content. We show that for saline soils the effects of conductivity and frequency on the travel time cannot be neglected and that, as a result, TDR systematically overestimates the water content in saline soils. Simultaneously the bulk electrical conductivity of soils can be estimated by TDR. The equivalent impedance after multiple reflections is related to the bulk electrical conductivity, σ This relation differs from sensor to sensor and requires calibration for each individual sensor. A method is proposed for correcting the volumetric water content in saline soils. First, the bulk electrical conductivity, o, is estimated from the equivalent impedance at a specific equivalent distance of cable, several times the actual length of the sensor. The zero-salinity dielectric constant, KO, of this soil is obtained by correcting the apparent K as a function of the measured bulk electrical conductivity. The volumetric water content is estimated from Ko. The correction of K is a function of the equivalent frequency of the electromagnetic pulse. The imaginary part of the dielectric constant is primarily due to ohmic losses. The model, which calculates the velocity of propagation of the electromagnetic pulse and which takes into consideration the imaginary part, performs reasonably well. An empirical approach based on calibration gave slightly better results.  相似文献   

20.
Moisture content and bulk density largely characterize physical and mechanical soil status and behaviour. A nondestructive determination of these soil properties is essential. Time domain reflectometry (TDR), although widely accepted for determination of volumetric water content, θ, has its limitations, and recently a frequency domain (FD) sensor has been developed and tested. An equation relating relative permittivity, ?′, to gravimetric water content, w, and bulk density, p, was established for three soil types (sand, sandy loam and clay). If ?′ and w are known, our model can be used to calculate bulk density and associated volumetric water content, θ, keeping in mind that θ= pw. Utilization is found in long-term monitoring of moisture fluctuations or short-term detection of traffic-induced soil compaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号