首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 521 毫秒
1.
During the past 60 years there has been a considerable decline in pH in mineral soil beneath spruce and beech stands at Tönnersjöheden Experimental Forest in south-west Sweden. In this report an attempt is made to estimate the corresponding declines in base cation pools. The exchangeable storage of Na, K, Ca and Mg in soil, down to 70 cm depth, is calculated to have decreased by 57–60 per cent for beech and by 56–74 per cent for the spruce stands during the period 1927–1984. The calculated cation depletions are compared with estimated nutrient uptake in biomass, base cation release by weathering and leaching losses due to percolation of strong mineral acids and organic anions during the period. The biological acidification may explain about 50–60 per cent of the total losses of base cations from soil, the cation accumulation in biomass then explain 41–43 per cent units for beech and 34–45 per cent units for spruce. The estimated losses of base cations due to acid rain correspond to an amount of cations similar to that accumulated in the spruce biomass during one generation.  相似文献   

2.
Balances of annual element fluxes within forest ecosystems in the Solling region Based on measurements of element fluxes the annual changes of element storage within the compartments ?Stand”?, ?Humus layer”? and ?Mineral soil”? are calculated for a beech and a spruce stand. In spite of high rates of N-deposition insufficient N supply especially for the beech stand is obvious. The H+ buffering capacity of the stands is very limited and is greater for the spruce than for the beech stand. The accumulation of C, N, P and Ca within the humus layer of both stands seems to be due to far reaching changes of decomposition conditions caused by acid precipitation. The mineral soil reacts as a sink for H+ and S and as a source for Ca, Mg, Mn and Al. From the cation-anion-balance for the changes of element storage the annual H+-production within the mineral soil was calculated. The sum of H+ ions produced ecosystem internal within the humus layer and the mineral soil ist greater for spruce than for beech. For the spruce stand the total H+-load from deposition and from internal sources is about twice as big as the one of the beech stand.  相似文献   

3.
Bacterial communities play an essential role in the sustainability of forest ecosystems by releasing from soil minerals the nutritive cations required not only for their own nutrition but also for that of trees. If it is admitted that the nutritional needs of trees vary during seasons, the seasonal dynamics of the mineral weathering bacterial communities colonizing the tree rhizosphere remain unknown. In this study, we characterized the mineral weathering efficacy of bacterial strains, from the rhizosphere and the adjacent bulk soil at four different seasons under two different tree species, the evergreen spruce and the deciduous beech, using a microplate assay that measures the quantity of iron released from biotite. We showed that the functional and taxonomic structures of the mineral weathering bacterial communities varied significantly with the tree species as well as with the season. Notably, the Burkholderia strains from the beech stand appeared more efficient to weather biotite that the one from the spruce stand. The mineral weathering efficacy of the bulk soil isolates did not vary during seasons under the beech stand whereas it was significantly higher for the spring and summer isolates from the spruce stand. The weathering efficacy of the rhizosphere isolates was significantly higher for the autumn isolates compared to the isolates sampled in the other seasons under the beech stand and in summer compared to the other seasons under spruce. These results suggest that seasonal differences do occur in forest soil bacterial communities and that evergreen and deciduous trees do not follow the same dynamic.  相似文献   

4.
The present study investigates the response of the Collembola community to replacement of beech by spruce or by mixed stands of beech and spruce in the Solling mountains (Germany). The study was carried out in three beech (Fagus sylvatica), spruce (Picea abies) and mixed stands of beech and spruce arranged in three blocks. The density, diversity and community structure of Collembola as well as microbial and abiotic parameters in the organic layers and mineral soil of the three spruce, three beech and three mixed stands were investigated. Major results are: (i) Collembola communities did not differ strongly between stand types and were dominated by Folsomia quadrioculata and Mesaphorura species, (ii) neither total abundance of Collembola nor densities of the hemiedaphic species F. quadrioculata, Parisotoma notabilis and Isotomiella minor significantly responded to stand type, (iii) in the mixed stands the fungal biomass was increased leading to high densities of fungal feeding Collembola (e.g. Mesaphorura sp.) and high species numbers of Collembola, (iv) the density of the epedaphic and partly herbivorous group Entomobryidae/Tomoceridae in the spruce stands exceeded that in the mixed and beech stands; presumably this was due to the higher diversity of the ground vegetation in the spruce stands. Canonical correspondence analysis (CCA) of the collembolan communities of L/F and H/Ah horizons also indicated that most of the epedaphic species were associated with the spruce stands. Moreover, results of the CCA indicated that soil pH is an important structuring force for collembolan communities. Overall, results suggest that stand type impact collembolan communities, presumably via changes in the amount and quality of food resources, such as fungal biomass and living plant material. However, differences in collembolan community structure between the investigated stand types were moderate supporting earlier findings that Collembola generally respond little to changes in the vegetation structure.  相似文献   

5.
The Al chemistry of soil solutions was evaluated in two forest ecosystems in the North-German Solling area which is heavily impacted by acidic deposition. The principal H+ buffering process in these soils is the release of Al ions. Within the stand of Norway spruce, Al concentrations increase with soil depth up to 370 umol/L. Ca/Al ratios of the soil solution decrease with depth and suggest high risk of Al toxicity to tree roots and potential antagonistic effects for ion uptake. The Al concentrations of the soil solution in the upper horizons do not appear to be in equilibrium with mineral phases of Gibbsite, Alunite and Jurbanite as suggested by the depth gradients and temporal patterns in ion activity products. Depletion of extractable soil Al in the upper horizons is occuring. The release of Al to the soil solution under these conditions seems to be restricted by kinetic constraints.  相似文献   

6.
Stand structure and tree species composition influence not only the volume flux of soil water but also the concentration of dissolved minerals in the soil solution. We found much higher element fluxes under spruce than under beech stands. This is mainly caused by different activities of nitrate in the soil solution and by different deposition rates of nitrogen and acids from the atmosphere which were ±60% lower in beech stands than in spruce stands. In old spruce stands, the acid output with the seepage water was more or less equal to the input, whereas in beech stands most of the acid deposition was buffered. The nitrogen balance in beech stands was characterized by a net uptake of about 60% to 75% of the input. In spruce stands only 40% of the nitrogen input was incorporated. In a clear-cut, a high mobilization rate of nitrate was found in the first 5 years, resulting in nitrate concentrations above the threshold for drinking water quality. The cutting of even a single tree in a spruce stand caused heavy mineralization and nitrification for at least 2 years, which indicates that the system is near nitrogen saturation.  相似文献   

7.
Are Indicators for Critical Load Exceedance Related to Forest Condition?   总被引:1,自引:0,他引:1  
The aim of this study was to evaluate the suitability of the (Ca?+?Mg?+?K)/Al and the Ca/Al ratios in soil solution as chemical criteria for forest condition in critical load calculations for forest ecosystems. The tree species Norway spruce, Sitka spruce and beech were studied in an area with high deposition of sea salt and nitrogen in the south-western part of Jutland, Denmark. Throughfall and soil water were collected monthly and analysed for pH, NO3-N, NH4-N, K, Ca, Mg, DOC and Altot. Organic Al was estimated using DOC concentrations. Increment and defoliation were determined annually, and foliar element concentrations were determined every other year. The throughfall deposition was highest in the Sitka spruce stand (maximum of 40 kg N ha?1yr?1) and lowest in the beech stand (maximum of 11 kg N ha?1yr?1). The Sitka spruce stand leached on average 12 kg N ha?1yr?1 during the period 1988–1997 and leaching increased throughout the period. Only small amounts of N were leached from the Norway spruce stand whereas almost no N was leached from the beech stand. For all tree species, both (Ca?+?Mg?+?K)/Al and Ca/Al ratios decreased in soil solution at 90 cm depth between 1989 and 1999, which was mainly caused by a decrease in concentrations of base cations. The toxic inorganic Al species were by far the most abundant Al species at 90 cm depth. At the end of the measurement period, the (Ca?+?Mg?+?K)/Al ratio was approximately 1 for all species while the Ca/Al ratio was approximately 0.2. The lack of a trend in the increment rates, a decrease in defoliation as well as sufficient levels of Mg and Ca in foliage suggested an unchanged or even slightly improved health condition, despite the decreasing and very low (Ca?+?Mg?+?K)/Al and Ca/Al ratios. The suitability of these soil solution element ratios is questioned as the chemical criteria for soil acidification under field conditions in areas with elevated deposition rates of sea salts, in particular Mg.  相似文献   

8.
Tree species can affect the sink and source strength of soils for atmospheric methane and nitrous oxide. Here we report soil methane (CH4) and nitrous oxide (N2O) fluxes of adjacent pure and mixed stands of beech and spruce at Solling, Germany. Mean CH4 uptake rates ranged between 18 and 48 μg C m?2 hour?1 during 2.5 years and were about twice as great in both mixed and the pure beech stand as in the pure spruce stand. CH4 uptake was negatively correlated with the dry mass of the O horizon, suggesting that this diminishes the transport of atmospheric CH4 into the mineral soil. Mean N2O emission was rather small, ranging between 6 and 16 μg N m?2 hour?1 in all stands. Forest type had a significant effect on N2O emission only in one mixed stand during the growing season. We removed the O horizon in additional plots to study its effect on gas fluxes over 1.5 years, but N2O emissions were not altered by this treatment. Surprisingly, CH4 uptake decreased in both mixed and the pure beech stands following the removal of the O horizon. The decrease in CH4 uptake coincided with an increase in the soil moisture content of the mineral soil. Hence, O horizons may maintain the gas diffusivity within the mineral soil by storing water which cannot penetrate into the mineral soil after rainfall. Our results indicate that conversion of beech forests to beech–spruce and pure spruce forests could decrease soil CH4 uptake, while the long‐term effect on N2O emissions is expected to be rather small.  相似文献   

9.
We performed seepage water studies in three forested study areas in Southern Bavaria, Germany in order to identify forest management effects on nitrate concentrations. In total 95 stands representing different age classes (up to 100 years), tree species (mainly spruce and beech) and regeneration methods (from clearcut to single tree selection) were included. In the period between 1998 and 2000, water samples were taken from below the rooting zone with tension lysimeters and nitrate concentration was determined. Average nitrate concentrations were calculated for each stratum (stand age, tree species, regeneration method). These data were combined with forest inventory data in order to predict regional nitrate leaching. Nitrate concentrations were generally higher in mature spruce stands than in mature beech stands. In spruce stands, we observed a clear age-related pattern, with negligible nitrate concentrations in stands younger than 40 years and higher concentrations in older stands. In beech stands nitrate concentrations were low and independent of age. In clearcut areas nitrate concentrations were significantly higher than in areas treated with small-scale regeneration methods. Forest management effects were highest in the study area with the highest N-input and lowest in the study area with the lowest N-input and highest N-retention capacity. In general changes of forest management have mainly long-term effects. The reduction of nitrogen deposition remains a crucial factor in avoiding increased nitrate leaching into forest groundwater resources.  相似文献   

10.

We performed seepage water studies in three forested study areas in Southern Bavaria, Germany in order to identify forest management effects on nitrate concentrations. In total 95 stands representing different age classes (up to 100 years), tree species (mainly spruce and beech) and regeneration methods (from clearcut to single tree selection) were included. In the period between 1998 and 2000, water samples were taken from below the rooting zone with tension lysimeters and nitrate concentration was determined. Average nitrate concentrations were calculated for each stratum (stand age, tree species, regeneration method). These data were combined with forest inventory data in order to predict regional nitrate leaching. Nitrate concentrations were generally higher in mature spruce stands than in mature beech stands. In spruce stands, we observed a clear age-related pattern, with negligible nitrate concentrations in stands younger than 40 years and higher concentrations in older stands. In beech stands nitrate concentrations were low and independent of age. In clearcut areas nitrate concentrations were significantly higher than in areas treated with small-scale regeneration methods. Forest management effects were highest in the study area with the highest N-input and lowest in the study area with the lowest N-input and highest N-retention capacity. In general changes of forest management have mainly long-term effects. The reduction of nitrogen deposition remains a crucial factor in avoiding increased nitrate leaching into forest groundwater resources.

  相似文献   

11.
Reinvestigation of soil profiles, down to 70 cm depth in mineral soil, sampled for measurements in 1927 revealed a general decrease in pH for spruce and hardwood stands with 0.3 to 0.9 units. The pH-changes in the top soil can partly be explained by biological acidification, increasing with stand age. Stand age and species composition have less influence in deeper soil horizons and much of the acidification there is ascribed to acid deposition.  相似文献   

12.
To assess the impact of acid deposition on the long-term sustainability of nine oak, pine and spruce stands on sandy to loamy sandy parent material in Sweden, Denmark and The Netherlands, a dynamic soil acidification model (ReSAM) was applied. Two deposition scenarios for the period 1990–2090 were used: a business as usual scenario (BAU) and a restrictive critical load scenario (CL). The BAU scenario leads to a strong decrease in both Al concentrations and pH in the topsoil of the Dutch and the Danish sites due to a decrease in the amount of amorphous Al compounds. The decline in pH leads to an enhanced release of base cations by silicate weathering. Despite the ongoing acidification, base saturation increases during the simulation period, due to both the increase in base cation weathering and an increased input from mineralization with the ageing of the tree stands. No change in Al concentration is predicted for northern Sweden as deposition levels are below critical loads. Soil chemistry at the recently replanted Swedish sites is dominated by changes in N cycling instead of by deposition. The CL scenario leads, especially after 2010, to a stronger decline in Al concentration compared with the BAU scenario, which is mainly caused by a reduction of the acid input. Up to 2010, a considerable acid input to the soil system is maintained as N supply is larger than the consumption of N by the trees. Despite the reduction of the deposition of S and N to critical loads, the readily available cation pools are still declining on the Danish and Dutch sites in 2090. It is concluded that deposition levels above critical loads lead to exhaustion of the pool of amorphous Al compounds and a decline in pH. Base saturation does not decline due to an increase in mineralization with stand age and an increase in weathering rate due to the decline in pH.  相似文献   

13.
The content of 4 polycyclic aromatic hydrocarbons (PAH) 3.4-benzopyrene, fluoranthene, benzo(ghi)perylene and indeno(1,2,3-cd)perylene was measured within the humus layer and the mineral soil of a spruce and a beech forest ecosystem. The results indicate high contents of PAH in the humus layer of both stands. The spruce stand showed higher contents and storages of PAH than the beech stand.  相似文献   

14.
Effect of natural organic soil solutes on weathering rates of soil minerals   总被引:6,自引:0,他引:6  
The rate at which minerals in the soil weather is affected by pH and concentration of organic solutes (DOC). The rates of release of Al, Ca, Fe, K, Mg, Na, P and Si from a mineral soil sample to solutions of natural organic solutes and HCI (control) were determined at pH 3 and 4 for up to 17 weeks. Soil solutions were collected by centrifuging materials of O horizons from various soil types under four tree species (spruce, birch, oak, beech) and passed through a cation-exchange resin to yield H+-saturated organic solutes. The acceleration of the elements' release by the organic solutes was shown directly by the relative ligand effect (RLE), that is, the release rate in the organic solute solution divided by the release rate in the HCI solution (control) at the same pH. The RLE was greater at pH 4 than at pH 3, and it decreased for the elements in the order Fe > Ca > Mg > Al ≈ Si > K ≈ Na. This indicates that natural organic solutes are more important weathering agents at higher than lower pH and for weathering of mafic minerals rich in Ca, Fe and Mg than of felsic minerals such as K- and Na-feldspars. For all elements and at both pHs, RLE was strongly correlated with the concentration of DOC, which was also closely correlated with titratable acidity of the organic solutes. The important effect of soil type and tree species in producing weathering-promoting organic solutes therefore seems to be expressed through the concentration and not the composition of the organic soil solutes.  相似文献   

15.
There is a concern that soil acidification by acidic deposition, along with the resulting depletion of the labile pool of nutrient cations (e.g. Ca, Mg) and enhanced leaching of Al from soil may contribute to forest dieback. The molar ratios of Ca/Al or (Ca+Mg+K)/Al in the soil solution have been widely used as a criterion for risk of tree damage due to acidification. Intensity and quality of the crown and branch structure transformation due to formation of secondary shoots in successive series is a very sensitive indicator of long-term tree damage, and the subsequent regenerative processes. Soil water chemistry and crown structure transformation of Norway spruce were observed at 16 forest plots within the Czech Republic with the following results: parameters, expressing degradation processes in the crown (defoliation of primary structure), regeneration processes (percentage of secondary shoots) or synthetic stages of crown structure transformation showed high correlation with soil water (Ca+Mg+K)/Al ratio in organic horizons. No relationships were found for mineral horizons. The correlations between soil water and crown status parameters were considerably stronger when using the (Ca+Mg+K)/Al ratio rather than the Ca/Al ratio.  相似文献   

16.
The computer simulation model SOILEQ was used to estimate soil solution chemistry over a 7 week period from October 3 to November 14, 1988 in the soils of a sugar maple forest located near St. Hippolyte, Quebec, Canada. Model parameters for pH-dependent CEC and exchangeable cations were calculated from laboratory measurements while soil solution chemistry, including Al solubility, at the start of the simulation was taken from values obtained from lysimeter samples. Model predictions were compared with values obtained from 12 sets of soil solution collectors over the same time period. Predicted values of Ca, Mg and K in the mineral soil horizons at 25-, 75- and 125-cm depths generally fall within the 95% confidence interval of the median for the measured values. Simulated values of pH and inorganic Al are not as close to the measured values. Some error due to drift is apparent, most notably for base cations in solutions leaving the organic surface horizons, and may be attributable to decomposition of organic matter, not included in the simulation model. The results indicate that other mechanisms that release H* (nitrification, for example) and base cations (mineral weathering or mineralization of organic matter) need to be considered.  相似文献   

17.
Studies of biogeochemical cycling and soil acidification have been carried out in even aged stands of Norway spruce, sitka spruce, Douglas fir, beech and oak under the frame of “The Element Cycling Project”. Deposition of excess nitrogen to forests is important as a potential acidifying input. In Denmark, reduced vitality in Norway spruce has promoted extensive planting of sitka spruce. However, several spruce aphid infestations have caused defoliation in many sitka spruce stands. The objectives of this study were to evaluate the effects of deposition and increased litterfall due to spruce aphid infestations on nitrogen transformations in the forest floor in sitka spruce stands on different soil types. The deposition of throughfall nitrogen range from 19 to 35 kg/ha/year. Fluxes of nitrogen in litterfall ranged from 21 to 77 kg/ha/year, whereas nitrogen leaching range from 1 to 57 kg/ha/year. Leaching was lowest at the infertile sites, but increased with magnitude of deposition and aphid infestations. Proton production according to the nitrogen transformations was largest at the fertile site most often affected by infestations. Huge amounts of bird droppings, honey dew and input of easily available nutrients by canopy leaching probably induced litter decomposition and formation of NO 3 ? in the soil water.  相似文献   

18.
According to the current trends in forest management, endeavors are made to adjust the species composition to the site conditions and to increase the biodiversity. Changes in the species composition of forest stands lead to modifications of soil properties and nutrients cycle. The objective of the study was to evaluate the effect of monocultures (beech and pine) and mixed-species stands (pine-beech) on soil properties, particularly accumulation of soil organic carbon. We aim to demonstrate how different vegetation types influence soil properties in surface horizons of soil. The study sites are located in Germany and Poland under different tree stands Pinus sylvestris L., Fagus sylvatica L., and mixed-species stand. Contents of organic carbon and nitrogen, pH, and soil texture were analyzed. The studies conducted confirmed the positive effect of beech and mixed-species stands on acidification of surface soil horizons. We ordered the stands tested according to acidification effect on soils: pine stand > mixed stand > beech stand, which is consistent with previous studies. The most beneficial impact on the accumulation of organic carbon was observed in mixed-species stands in which beech and pine were found. Lower carbon-to-nitrogen (C/N) ratios confirm the high rate of organic matter decomposition and lower C/N ratio was reported in soil under beech stand in comparison to pine stands.  相似文献   

19.
To investigate soil changes from forest conversion and regeneration, soil net N mineralization, potential nitrification, microbial biomass N, L‐asparaginase, L‐glutaminase, and other chemical and biological properties were examined in three adjacent stands: mature pure and dense Norway spruce (Picea abies (L.) Karst) (110 yr) (stand I), mature Norway spruce mixed with young beech (Fagus sylvatica) (5 yr) (stand II), and young Norway spruce (16 yr) (stand III). The latter two stands were converted or regenerated from the mature Norway spruce stand as former. The studied soils were characterized as having a very low pH value (2.9 – 3.5 in 0.01 M CaCl2), a high total N content (1.06 – 1.94 %), a high metabolic quotient (qCO2) (6.7 – 16.9 g CO2 kg–1 h–1), a low microbial biomass N (1.1 – 3.3 % of total N, except LOf1 at stand III), and a relatively high net N mineralization (175 – 1213 mg N kg–1 in LOf1 and Of2, 4 weeks incubation). In the converted forest (stand II), C : N ratio and qCO2 values in the LOf1 layer decreased significantly, and base saturation and exchangeable Ca showed a somewhat increment in mineral soil. In the regenerated forest (stand III), the total N storage in the surface layers decreased by 30 %. The surface organic layers (LOf1, Of2) possessed a very high net N mineralization (1.5 – 3 times higher than those in other two stands), high microbial biomass (C, N), and high basal respiration and qCO2 values. Meanwhile, in the Oh layer, the base saturation and the exchangeable Ca decreased. All studied substrates showed little net nitrification after the first period of incubation (2 weeks). In the later period of incubation (7 – 11 weeks), a considerable amount of NO3‐N accumulated (20 – 100 % of total cumulative mineral N) in the soils from the two pure spruce stands (I, III). In contrast, there was almost no net NO3‐N accumulation in the soils from the converted mixed stand (II) indicating that there was a difference in microorganisms in the two types of forest ecosystems. Soil microbial biomass N, mineral N, net N mineralization, L‐asparaginase, and L‐glutaminase were correlated and associated with forest management.  相似文献   

20.
Soil acidification and consequent Al release is a problem particularly under forests in mountainous areas of the Czech Republic. It is controlled by a number of factors, like acid deposition, forest type, parent rock, altitude, etc. The Jizera Mountains region presents an area heavily influenced by acidification and forest decline. This paper focused on the effect of stand factors on spatial distribution of soil characteristics of the surface organic (O) and sub-surface (B) horizons from 98 sites using a combination of principal component analysis (PCA) and geostatistics. In the PCA, five principal components (PC) describing more than 70% of total variation were selected. The properties of the O and B horizons (pH, C, N, and S content, potentially dangerous Al forms) were in most cases separated, suggesting different processes and effects in each horizon. Spatial variation of PC scores was analysed using variograms, maps of their distribution were created using kriging. Spatial correlation with stand factors (altitude, slope aspect, forest type and age, soil unit, liming, and grass cover) was analysed using cross-variograms. The surface horizons are more sensitive to external influence (acid deposition, liming, grass expansion) and their spatial variation is stronger. The B horizons are more influenced by forest type (beech vs. spruce) and age, and by soil units (cambic vs. spodic horizons). The effect of stand factors is complex and often indirect. Nevertheless, used combination of pedometrical methods provided concise information about spatial variation and relationships between soil characteristics and the effect of stand factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号