首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Identification of trees with key microhabitats as well as knowledge of their ecological formation is important for the conservation of epiphytic bryophytes and lichens on beech. Based on the hypothesis that certain types of stem damage are crucial for the occurrence of epiphytes of conservation concern, we surveyed 145 beech trees (57-280 years) for different types of stem damage and analysed their relationship to other tree characteristics, epiphyte species and wood-inhabiting fungi in a forest landscape on acid soils.Three main types of stem damage were identified; canker, rot hole and surface rot. The incidence of rot holes was highest on trees with a low growth rate during the last 50 years, but was unrelated to tree size or age per se. Bark pH was significantly higher below than above rot holes, whereas no such relationship was found for cankers. Wood mould from rot holes had a very high pH, explaining the higher bark pH below this type of damage. The number of epiphyte species of conservation concern was strongly positively related to rot holes and high bark pH. Cankers had a weaker, yet significant positive effect. The fungus Psathyrella cernua was associated with the rot holes and is suggested to be a key species involved in creating this microhabitat.We conclude that slow-growing trees with rot holes are important for the conservation of epiphytes and should be selected as retention trees in managed forests. The study also highlights a potential for habitat restoration by inducing artificial damage and inoculation of decay fungi in beech trees.  相似文献   

2.
In the boreal forest landscape, aspen has been effectively selected against in favour of conifers. The decrease in aspen is of particular concern since it has more host-specific species associated with it than any other boreal tree species. Recently forest management systems have begun to include green-tree retention in order to maintain structural diversity. We initiated this study in order to investigate whether retained aspen trees provide suitable habitats for epiphytic lichens and, if so, whether this varies according to species characteristics, such as morphology and photobiont. We chose to investigate the abundance and vitality of five species: three foliose cyanobacterial lichens (Collema curtisporum, Collema furfuraceum and Leptogium saturninum) and two crustose green-algal lichens (Biatora epixanthoides and Mycobilimbia carneoalbida). These lichens were examined on aspen within forest stands and on remnant aspen in clear-cuts at eight localities, in northern Sweden. Our results show that the response to exposure following clear-felling differs between species according to their morphology. The two crustose lichens were more abundant in the forest stands compared to the clear-cuts. In the clear-cuts, they mainly occurred on the northern sides of the trunks. Even 24 years after cutting, the three cyanolichens were equally or even more abundant on trees in the clear-cuts than in the forest stands. However, they were mainly found on the northern sides of the remnant aspen. We suggest that remnant aspen trees may function as suitable substrate and as stepping stones for colonisation of new stands, at least for the cyanolichens studied here.  相似文献   

3.
We have studied the spatial and temporal patterns of a boreal forest landscape in northeastern China using aerial photographs from 1955 (before logging) through 1980. The primary forest landscape is a complex mosaic of four tree species, and three age classes for each tree species, for a total of eighteen patch types. In addition, the complexity of the primary forest landscape shows great variation in the number, size and areal composition of patches. The forest landscape has been fragmented obviously by deforestation. There is an average increase in patch number from 291.6 to 438.0 patches per 10 000 ha, and an average decrease in patch size from 34.3 to 22.8 ha. Most of the logged areas are small in size, an average of 10.9 ha. The areal composition of different patch types has been changed greatly since the 1950s. The hardwood forest areas (especially) have increased significantly (p=0.05); coniferousLarix gmelinii decreased significantly (p=0.05), andPinus sylvestris var.mongolica remained about the same. The area of old-age class in the dominant species,Larix gmelinii, has decreased significantly (p=0.05). In addition, young and middle age classes of all tree species occupy a larger proportion of the area in 1980 than in 1955. Due to deforestation and recovery, therefore, many of these ecosystems are in early succession stages.  相似文献   

4.
In the boreal forest landscape, aspen has been effectively selected against in favour of conifers. The decrease in aspen is of particular concern, since it has more host-specific species associated with it than any other boreal tree species. Recently, forest management systems have begun to include green-tree retention in order to maintain structural diversity. Earlier studies have focused on the importance of remnant aspen trees for lichen species prevalence. We have focused on the occurrence of free-living photobionts, i.e. cyanobacteria and green-algae, since a successful establishment of sexually dispersed lichens will depend upon the presence of the photobiont. Our study shows that the abundances of Gloeocystis, Nostoc, Scytonema and Trentepohlia increased with stand age, while the abundance of Trebouxia decreased. The response to clear-felling differed between genera. The two cyanobacterial genera were able to persist in clear-cuts, although they were more abundant on the northern side of the remnant trees. The green-algae showed no consistent pattern, Trentepohlia was affected while Trebouxia was unaffected. Our study indicates that the prerequisites for new-establishment for spore dispersed lichen species, on remnant aspen, may be fulfilled in terms of availability of free-living photobionts on the northern side of the trunks. In support of this interpretation we found that the occurrence of cyanolichens was positively correlated with the occurrence of free-living cyanobacteria in the clear-cuts. We conclude that tree retention is likely to provide a useful tool for increasing biodiversity in managed forest landscapes provided that source populations still exist in the surrounding landscape.  相似文献   

5.
The effects of forest continuity at local scale for red-listed and indicator species of epiphytic lichens and bryophytes were investigated in 150 Fagus sylvatica stands in southern Sweden. Stands having forest continuity (n = 106) had continuous forest cover more than 350 years, whereas stands lacking continuity (n = 44) had forest cover less than 160 years. Forest continuity was identified by comparing a sequence of historical maps with a modern survey of beech forests. In the field woody beech substrates were searched for the epiphytes of interest. A number of environmental and spatial variables were inventoried and compiled for each stand. In all 64 species (51 lichens, 13 bryophytes) were found in the stands having continuity, and 21 (14 lichens, 7 bryophytes) in the stands lacking continuity. Controlling for the different number of surveyed stands, stands having continuity had significantly more species of lichens, but not of bryophytes. In the stands lacking continuity we did not find lichens associated with the very late succession stage. The quantity of substrates, stand age and forest continuity were the three most important factors explaining species richness as well as composition of studied epiphytes. The effect of continuity was probably due to a combination of a higher substrate quality, mainly old beeches, and a longer time available for colonization. Also, we found strong positive correlations between number of indicator and red-listed epiphyte species. In short-term conservation old stands having continuity, containing suitable substrates and indicator species are target areas.  相似文献   

6.
Live retention trees are expected to support the recovery of epiphytes in regenerating stands by retaining a part of the populations in cutover sites and receiving propagules from adjacent forests. So far, the research has been focused on immediate post-harvesting mortality caused by microclimatic stress while a broader perspective on epiphyte community dynamics is lacking. We studied lichen and bryophyte communities on the trunks of retention trees and adjacent forest trees in Estonia, where significant desiccation (particularly of bryophytes) had been documented within 2-3 years after timber harvesting. The resampling 5-6 years after harvesting indicated that, during the 3 years passed, (1) lichen species richness per surviving tree increased and bryophyte species richness stabilised, (2) there were no clear successional changes in the composition of the communities and (3) retention trees were more frequently colonised than forest trees. Most epiphyte extinctions between the sampling years were related to the death of trees (particularly in the forests because of harvesting) and stochastic disappearances of the smallest populations. Also, retention trees were very rarely colonised by species of conservation concern. We conclude that, in addition to addressing the microclimatic stress in the first post-harvesting years, crucial elements in sustaining epiphytic bryophyte and lichen populations in green-tree retention systems include careful selection of the retention trees and a supportive reserve network. The selection of the trees should assure representativity and long-term survival of local populations, while reserves should host the most demanding species and be stable colonisation sources in general.  相似文献   

7.
In the Nordic countries, sets of Indicator (Signal) species, predominantly cryptogams, have been used as one measure to find forest stands which may harbour Red List species. Such data could potentially also be used to prioritise among stands for protection as nature reserves. We studied if the number of Signal species indicates the number of Red List species in oak-rich mixed forest in south Sweden. We also explored if species richness of the investigated groups is correlated with the number of Red List or Signal species. In 25 stands, we surveyed epiphytic and epixylic bryophytes and lichens, ground-floor bryophytes, and wood-living fungi. We studied correlations for two datasets; (1) all forest species and (2) deciduous forest specialists. When relating the number of Signal species to the number of Red List species for each taxon and in total, a significant correlation was found for temperate deciduous forest lichens. The number of Signal species was further significantly correlated to total species richness for lichens (all forest species) and for wood-living fungi (both datasets). The number of Red List lichens was correlated to total lichen richness (deciduous forest species). Signal species seem not to be unequivocal in prioritising potential reserves among valuable oak-rich woodlands and surveys by Red List species experts may be needed. Signal species may be more useful for finding relatively valuable sites in a matrix of production forest. Moreover, Signal species seem to be useful surrogates for total cryptogam species richness.  相似文献   

8.
Chinese village fengshui forests (VFF) are small remnant forest patches that coexist with natural villages. The indigenous residents protect the forest patches under traditional Chinese geomancy beliefs (namely fengshui). However, the VFF community features and conservation values and relationships with the indigenous people remain poorly understood. In this study, we evaluated tree species diversity conservation of regional VFF patches by sampling a 1200 m2 transect within each patch. We also tested our hypothesis that patch size did not significantly impact interior forest community features of well-protected VFF patches. Thirty-two well-protected VFF patches in the Pearl River Delta, China were investigated. The average coefficient of similarity between transects (CS) was employed to evaluate community heterogeneity. Five forest community parameters (tree species richness per 1200 m2, tree stem density, tree basal area density, Shannon–Wiener diversity index (SWI), and Simpson diversity index (SI)) were measured and compared with regional well-developed evergreen broadleaved, coniferous and coniferous-broadleaved mixed forests. The relationships between the five parameters versus patch size and elevation were analyzed. A total of 266 tree species comprised of 57 families were recorded in 32 transects, of which 258 (97%) species were indigenous and eight (3%) were exotic. Ten tree species were endangered, rare or nationally protected by the Chinese government, and 57 species were endemic to China. The average CS was 0.38; and the average five forest community parameter values were as follows: 46.8 for tree species richness; 3403 plants/ha for stem density, 49.1 m2/ha for basal area, 4.04 for SWI and 0.90 for SI. These values were consistent with well-developed evergreen broadleaved forests and greater than coniferous and coniferous-broadleaved forests. No significant correlation was detected between the five community parameters and patch area or elevation. We conclude that VFF patches preserve abundant tree species and heterogeneous habitats, which are important for maintaining regional biodiversity. The interior community features of VFF patches were not significantly affected by patch size. We recommend protection of both large and small VFF patches, which can be substantially enhanced by the preservation of associated traditional relic village cultures.  相似文献   

9.
With the growing interest in silvicultural techniques that more closely emulate natural disturbance regimes, there is a need to better understand how partial harvesting affects the soil microbial community in stands with varying ecological characteristics, e.g., tree species composition. Four and a half and 5.5 years post-harvest, we used phospholipid fatty acid (PLFA) and substrate-induced respiration (SIR) analyses to compare the microbial biomass and microbial community structure of forest floors from stands dominated by white spruce (Picea glauca; SPRUCE) or by trembling aspen (Populus tremuloides; ASPEN) and from mixed-species (MIXED) stands in northern Alberta, Canada, that had been clearcut, partial-cut with 20% retention, partial-cut with 50% retention or left uncut (controls). PLFA and SIR analyses revealed that ASPEN forest floors supported a larger microbial biomass with a very different community structure than MIXED or SPRUCE forest floors. The microbial community structure of these soils appeared to be strongly affected by the presence of white spruce and the composition of the understory vegetation. There were no effects of timber harvesting detected within or across stand types on any of the variables measured, with the exception of the PLFA 16:1ω5, which was relatively more abundant in the clearcuts and 50% retention treatments than in the uncut controls, perhaps in response to an increased forest floor pH and grass cover in the disturbed areas. The resilience to timber harvesting of the forest floors from these stands may be the result of efforts to minimize soil disturbance during harvesting and to allow vegetation to regenerate naturally. From the perspective of the forest floor microbial community, partial harvesting does not appear to have any benefit over clearcut harvesting at these boreal forest sites.  相似文献   

10.
The species richness and frequency of occurrence of bryophytes within taxonomic and functional groups was examined in relation to the size of 20 old-growth patches (size range: 0.6-63.6 ha) remaining after logging in temperate rainforests of coastal British Columbia. At the centre of each remnant patch, bryophytes were sampled in sixty-three 10 cm × 30 cm microplots on three substrate-types (forest floor, downed logs and tree bases). Generalized linear models demonstrated that the species richness and frequencies of some bryophyte functional groups were related to patch size. In particular, some dispersal-limited groups (perennial stayers) and microclimate-sensitive groups (closed canopy species, epixylic (log-dwelling) species, and liverworts) showed significant declines in either richness or frequency as patch size decreased. In contrast, colonists and open canopy species showed little association with patch size. Many, but not all, of the significant patch size relationships disappeared when the three smallest patches (0.6-1.8 ha) were eliminated from the analysis. These results suggest that patches sized 3.5 ha or larger may provide habitat capable of sustaining a diverse array of bryophyte functional groups in temperate rainforest landscapes.  相似文献   

11.
We compared species richness and abundance of birds between five patches under selective Alnus exploitation and five patches that have not been harvested for at least 10 years prior to our study, during the early dry season (April-July 2001), in Cotapata National Park. Using “point counts” we recorded birds and their distribution in two (<1.5 m and >1.5 m) forest layers. Simultaneously we evaluated the floristic structure (size [dbh] distribution, basal area, tree density, tree height, and vegetation cover) and composition (diversity) on three transects placed within each Alnus patch. Both bird diversity and vegetation cover were significantly higher in not presently used patches but only for the higher layer of the forest, whereas plant diversity was higher in presently used patches. Lack of differences between the two types of Alnus patches in any of the vegetation parameters measured in the lower layer was coupled with an indistinct avifauna. Small changes in habitat characteristics following a perturbation like selective logging have the potential to affect richness and abundance of birds, at least within the habitats directly affected by the perturbation.  相似文献   

12.
We examine the effects of matrix type on forest bird species richness in historically fragmented forests of the KwaZulu-Natal midlands, South Africa. Bird species-area relationships for forest fragments within natural grassland were compared with those surrounded by plantation forestry (Pinus spp.). While fragments in grasslands displayed a species-area effect, no such effect (slope ∼0) was detected for fragments in plantations. The critical fragment size to avoid an island effect on species richness was 302 ha for fragments in grasslands, and contained 51 of the 61 forest bird species encountered. Small forest fragments (<50 ha) within grasslands were less species-rich than those surrounded by plantation, while the reverse was true for forests larger than 50 ha. Bird density was significantly lower in larger forest patches within plantation when compared to those in grassland. However, a slight decline in species density with increasing species richness in a patch (i.e. weak density compensation) characterised only those bird assemblages surrounded by a grassland matrix, suggesting these are approaching species saturation. Commercial plantations may increase the likelihood of colonisation of, and immigration from, small forest fragments by birds, reducing the incidence of area-dependent extinction in small fragments, but may also result in lower species richness in larger fragments. The latter is likely a consequence of the promotion by plantations of a wider distribution of generalist species in, and the loss of some specialised or rare species from, large patches. Management options are to avoid planting plantations near large forest patches and to increase the size of small patches where possible. Where afforestation is unavoidable, placing plantations in the vicinity of small forest patches rather than large forest patches may be preferable.  相似文献   

13.
Collection of plants and seeds from wild populations threatens a large number of cycad species. We investigated to what extent individual life history stages contribute to population growth (λ) and compared two species with major differences in life histories in the African genus Encephalartos: Encephalartos cycadifolius, a highly persistent grassland species that resprouts after fire, and Encephalartos villosus, a relatively fast growing, non-sprouting forest species. Several harvesting scenarios impacting different sized individuals were simulated to determine the sensitivity of the two functional types to harvesting. In both species λ was most sensitive to changes in abundance of adult plants. The harvesting of seeds had minimal impact on population growth rates, whereas harvesting of adult plants led to rapid population decline. This response from two very different functional types suggests that the conservation of adult plants is critical for all cycad species. Despite similar responses to adult mortality, the two species had substantially different population growth rates. This determined recovery time after harvesting of adult individuals. Encephalartos cycadifolius is typical of highly persistent plant species associated with low levels of recruitment and unable to recover from even small losses of adults within a reasonable conservation time frame (<100 years). Our results suggest that the ability to recover from loss of individuals is an important factor that should be considered when assessing the vulnerability of wild populations to threats.  相似文献   

14.
Thirty lichen and 25 bryophyte species have been recorded from the buttresses of Eucalyptus obliqua, the dominant tree in wet sclerophyll forest at the Warra Long-Term Ecological Research Site in southern Tasmania. The flora, characterised by four major associations, is very distinctive, containing a relatively high number of eucalypt specialists, particularly among the lichens. A general trend towards increasing species richness with increasing tree diameter is apparent and is attributed mainly to increasing habitat diversity on the buttresses. The increase in species occurs without the loss of pioneers; thus succession involves addition rather than replacement of species. The relationships between epiphytes, tree age and forest age are complicated by the periodic occurrence of fires in the forest. Nevertheless, potential oldgrowth indicators are identified and the possible effects of current silvicultural practices on the conservation of the species are discussed.  相似文献   

15.
Since pristine Atlantic Forest remnants are vanishing, and biological reserves are in short, conservation of biodiversity will largely depend on proper management of the anthropogenic matrix. Here, we test (1) the effectiveness of ecologically-managed tree monocultures in maintaining Araucaria Forest biodiversity, (2) how this effectiveness change among taxa, and (3) we discuss management principles that can be used by the forestry industry in order to contribute positively to biodiversity conservation. The study was conducted in the São Francisco de Paula National Forest, southern Brazil, an environmental mosaic composed mostly of patches of Araucaria Forest and ecologically-managed monocultures of Araucaria, Pinus and Eucalyptus. Using standardized sampling methods in these four main habitats, we have recorded the richness and species composition of small mammals, birds, leaf-litter frogs, butterflies, galling insects, spiders, opiliones, flatworms, woody plants, epiphytic angiosperms, epiphytic ferns, lichens, and fruit-body producing fungi. Overall, we recorded 506 species in Araucaria Forest, 181 (36%) of which were exclusive of this habitat while 325 (64%) could be found in at least one monoculture. Distribution patterns of species richness and number of records across taxonomic groups showed that a large biodiversity can be found inside ecologically-managed plantations of Araucaria, Pinus, and Eucalyptus. For all studied taxa, except for epiphytic angiosperms and fruit-body producing fungi, more than half of the Araucaria Forest species could be found living on monocultures. We discuss how the actual management practices of the forest industry can be improved to contribute positively to the conservation of the Atlantic Forest biodiversity.  相似文献   

16.
The potential as indicators of species richness were investigated for 178 species belonging to six ecologically defined species groups (epiphytic bryophytes on nutrient-rich bark, epiphytic macrolichens on nutrient rich bark, pendant lichens on conifer trees, bryophytes on siliceous rocks, bryophytes on dead conifer wood, and polypore fungi on dead conifer wood), using species data from 0.25 ha plots from three different coniferous forest areas (ca. 200 ha each). A species was defined as a potential indicator species for a species group within a study area if its distribution was statistically significantly nested within the species-plot matrix ranked according to species richness, and if the plot frequency of the species was less than 25%.Only two species were identified as potential indicators within all three areas and on average ≈80% of the potential indicator species were lost from one area to another. The results indicate that inconsistency between areas in the species’ frequency distributions and their position in nested hierarchies may strongly reduce the general predictive power of indicator species of species richness, even if significantly nested patterns are found at the community level. We suggest that indicators related to amount and quality of habitats may be an alternative to lists of indicator species of species richness.  相似文献   

17.
Forest fragmentation is a common disturbance affecting biological diversity, yet the impacts of fragmentation on many forest processes remain poorly understood. Forest restoration is likely to be more successful when it proceeds with an understanding of how native and exotic vertebrates utilize forest patches of different size. We used a system of forest fragments isolated by volcanic activity 153 years ago in Hawaii to examine how long-term fragmentation, as well as fragment size and structural features affect the richness of native and exotic bird species. The total number of bird species increased rapidly with forest fragment size, with most of the native species pool found in patches <3 ha. Smaller fragments were dominated by native bird species with several exotic bird species found only in the largest fragments, suggesting that exotic bird species in this landscape show greater area-sensitivity than native species. We used airborne scanning light detection and ranging (LiDAR) to assess whether fragment area was correlated with estimates of fragment vegetation volume as well as measures of tree height. Fragment area was highly correlated with vegetation volume, maximum tree height, and canopy height heterogeneity, and these variables were strong predictors of bird richness, demonstrating that remote sensing can provide key insights into the relationship between fragment structural attributes and biodiversity indicators. Overall, this work demonstrates the value of conserving small remnant mid-elevation forest patches for native birds in Hawaii. This work also provides insight into how newly created forest patches might be used by native and exotic bird species in Hawaii.  相似文献   

18.
Management of forest for timber values presents potential threats for forest floor bryophytes, as localized disturbances are applied across landscapes. Dispersal limitation may exacerbate local extirpation, by preventing recolonization within a cut-block rotation period. Populations of forest floor bryophytes that persist under those patches of tree canopy remaining after clear-cutting could reduce dispersal distances and thereby contribute to conservation of species across the landscape. We examined bryophyte guilds (liverworts, forest-habitat mosses and colonist-pioneer mosses) and community composition in relation to habitat quality (microclimate and substrate) in five treatment classes in New Brunswick Acadian forest, 4 years after harvest. Four potential refugium classes with intact substrate were examined: three were characterized by remnant canopy height, one was treeless. These were compared to clear-cut areas with substrate disturbance. Microclimate (temperature, total daily photosynthetically active radiation and vapour pressure deficit) differed significantly between areas with and without remnant canopy, but differed little among refugium classes. This suggests that any remnant canopy moderates microhabitat relative to treeless areas. Liverworts and forest-habitat mosses were more frequent under remnant canopy than in open and clear-cut areas, with 25 species present only under remnant canopy. Environmental variation explained approximately 24% of bryophyte pattern, highlighting the potential influence of the pre-harvest community, which we could not document. In the absence of substrate disturbance, patches of remnant canopy provide potential refugia for some forest-habitat bryophytes. Characteristics of effective refugia (size and shape) should be determined by assessments of their impacts on: (i) change in bryophyte communities in refugia relative to natural dynamics and (ii) recolonization of adjacent areas.  相似文献   

19.
The Maulino forest is a unique temperate ecosystem restricted to a small range of the coast of central Chile. This forest harbors many endemic species, and is threatened due to intensive deforestation and fragmentation. Currently the Maulino forest is composed of a suite of small fragments scattered in a landscape dominated by exotic plantations. The fragmentation of the Maulino forest has resulted in a higher abundance of granivores in small forest fragments compared with continuous forest. In order to determine if fragmentation-induced changes in granivore abundance affects the granivory of different size seeds, we experimentally assessed seed predation of a large-seeded species [Nothofagus glauca (Phil.) Krasser] and a small-seeded species [Nothofagus obliqua (Mirbel) Oersted] in the edges and interior of one continuous (large) forest and three small fragments (∼3 ha) surrounded by plantations of the exotic tree Pinus radiata. To determine what kind of granivores are preying upon seeds, seeds of both species were excluded from and exposed to large and small granivores. Granivory was higher in small fragments than in continuous forest, higher in the edges than in the forest interior, and higher upon large than on small seeds. Rodents, which were more abundant in forest fragments, were the main consumers. Thus, fragmentation indeed affects granivory increasing the consumption of seeds by predators inhabiting the Maulino forest remnants or coming from the matrix. This change may affect the future structure of the tree community in forest fragments.  相似文献   

20.
The effect of tree species, stand structure, landscape and historical variables was studied on the species composition, species richness and cover of epiphytic bryophyte assemblages in mixed deciduous-coniferous forests of Western Hungary. Stand and tree level assemblages were analyzed by ordinations and generalized linear modeling in 35 70-110 year old stands of different management regimes.Bryophytes showed a considerable preference to different host trees, so that stand level diversity of bryophyte assemblages was determined mainly by tree species diversity, and their composition by tree species composition. Cover and diversity of epiphytic bryophytes were the highest on oaks (Quercus petraea and Quercus robur), and the lowest on Scotch pine (Pinus sylvestris). The presence of sapling (shrub) layer increased, whereas a large number of medium sized trees decreased bryophyte species richness in this study. Tree size was much less influential which is explained by the lack of large, veteran trees. Forest management maintaining tree species diversity, structural heterogeneity and temporal continuity of the stands could considerably contribute to the conservation of this organism group. Selective cutting is more appropriate for these conservational purposes than shelterwood management system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号