首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.

Purpose  

The present study was carried out to identify and quantify the aluminum species present in the bulk and rhizospheric soil solution of the spontaneous vegetation colonizing the dump (Calluna vulgaris, Erica cinerea) and slope (C. vulgaris, E. cinerea, Salix atrocinerea) of an abandoned Cu mine in Touro (Galicia, NW Spain).  相似文献   

2.
Knowledge of soil water repellency distribution, of factors affecting its occurrence and of its hydrological effects stems primarily from regions with a distinct dry season, whereas comparatively little is known about its occurrence in humid temperate regions such as typified by the UK. To address this research gap, we have examined: (i) water repellency persistence (determined by the water drop penetration time method, WDPT) and degree (determined by the critical surface tension method, CST) for soil samples (0–5, 10–15 and 20–25 cm depth) taken from 41 common soil and land‐use types in the humid temperate climate of the UK; (ii) the supposed relationship of soil moisture, textural composition and organic matter content with sample repellency; and (iii) the bulk wetting behaviour of undisturbed surface core samples (0–5 cm depth) over a period of up to 1 week. Repellency was found in surface samples of all major soil textural types amongst most permanently vegetated sites, whereas tilled sites were virtually unaffected. Repellency levels reached those of the most severely affected areas elsewhere in the world, decreased in persistence and degree with depth and showed no consistent relationship with soil textural characteristics, organic matter or soil moisture contents, except that above a water content of c. 28% by volume, repellency was absent. Wetting rate assessments of 100 cm3 intact soil cores using continuous water contact (–20 mm pressure head) over a period of up to 7 days showed that across the whole sample range and irrespective of texture, severe to extreme repellency persistence consistently reduced the maximum water content at any given time to well below that of wettable soils. For slightly to moderately repellent soils the results were more variable and thus hydrological effects of such repellency levels are more difficult to predict. The results imply that: (i) repellency is common for many land‐use types with permanent vegetation cover in humid temperate climates irrespective of soil texture; (ii) supposedly influential parameters (texture, organic matter, specific water content) are poor general predictors of water repellency, whereas land use and the moisture content below which repellency can occur seem more reliable; and (iii) infiltration and water storage capacity of very repellent soils are considerably less than for comparable wettable soils.  相似文献   

3.
One mechanism in the restoration of severely degraded soil by vegetation might be the movement of dissolved organic carbon (DOC) to macropore and aggregate surfaces. We propose that this lowers the soil wetting rate and subsequently its slaking resistance by creating a partially hydrophobic surface. In this study, we determined how wetting and drying (w/d) cycles redistribute DOC to soil surfaces, and how DOC affects hydrophobicity where it accumulates, in relation to the soil surface area to volume ratio and to different types of vegetation planted to restore a severely degraded soil. Repacked soil cores that simulate different soil aggregate sizes were tested. The results showed that w/d cycles increase surface DOC concentration through a depletion of DOC in the interior of the soil. Correspondingly, w/d cycles enhanced hydrophobicity, measured as a water repellency index, R, from 1.5–2.3 to 3.6–7.6, the values affected significantly by the type of vegetation. This index (R) did not change for a control soil with no vegetation. The link between the amount of DOC and water repellency was weak (coefficient of determination r2 = 0.06–0.26), indicating that DOC quality was probably more important than its quantity. Although increasing the core size resulted in a greater accumulation of DOC on the drying surface of the core, the impact of this on water repellency was minimal. Incubation caused a decrease in the amount of DOC, but had minimal influence on water repellency. This work improves the understanding of changes in soil wetting and soil stabilization under processes of natural weathering and vegetation restoration.  相似文献   

4.

Purpose  

Aluminium partitioning in the solid fraction and aluminium in solution in the bulk and rhizospheric soil of different plant species colonising an abandoned Cu mine slope (Calluna vulgaris, Erica cinerea and Salix atrocinerea) and mine dump (C. vulgaris and E. cinerea) were investigated. The aim of the study was to determine the changes that the species induce in the Al forms in the rhizosphere in order to adapt to heterogeneous substrates.  相似文献   

5.
Considerable soil water repellency has been observed at a wide range of locations worldwide. The soil exhibiting water repellency is found within the upper part of the soil profile. The reduced rate of water infiltration into these soils leads to severe runoff erosion, and reduction of plant growth. Soil water repellency is promoted by drying of soil, and can be induced by fire or intense heating of soil containing hydrophobic organic matter. Recent studies outside soil science have shown how enhancement of the natural water repellency of materials, both porous and granular, by surface texture (i.e. surface roughness, pattern and morphology) into super‐hydrophobicity is possible. The similarities between these super‐hydrophobic materials and observed properties of water‐repellent soil are discussed from a non‐soil scientist, materials‐based perspective. A simple model is developed for a hydrophobic granular surface and it is shown that this can provide a mechanism for enhancement of soil water repellency through the relative size and spacing of grains and pores. The model provides a possible explanation for why soil water repellency should be more prevalent under dry conditions than wet. Consequences for water runoff, raindrop splash and soil erosion are discussed.  相似文献   

6.
以菜子湖地区退耕还湖后苔草、芦苇和酸模植被群落下的湿地土壤为研究对象,分析了3种植被群落类型对湿地土壤有机质、全磷、速效磷含量及其在土壤剖面分布特征的影响。结果表明:(1)0-6cm土层土壤有机质含量表现为:酸模>苔草>芦苇,而6-13cm,13-25cm,25-40cm,40-55cm土层均表现为:芦苇>苔草>酸模,总体表现为随着土壤剖面深度增加而下降(2)土壤全磷含量均为0-6cm土层全磷含量较高,6-13cm土层含量最低,全磷含量总体表现为随着剖面深度的增加而递增,递增趋势的强弱表现为:酸模>苔草>芦苇(3)土壤速效磷含量除酸模在0-6cm土层显著大于苔草和芦苇外,其它各个层次间土壤有效磷含量无显著性差异,总体上均表现为随土层加深而下降的趋势(4)除酸模在0-6cm和6-13cm土层的土壤磷素有效率显著高于苔草和芦苇外,其它不同土壤层次间无显著差异。(5)不同植被群落凋落物和根系分布特征差异是引起退耕后湿地土壤剖面有机质和磷素分布差异的主要原因,而水产养殖农家肥投放也促进了湿地表层土壤养分积累。  相似文献   

7.
Soil salinity and arbuscular mycorrhizal fungi (AMF) influence the soil hydrophobicity. An experiment was performed to determine the effects of soil salinity and AMF species on soil water repellency (SWR) under wheat (Triticum aestivum L.) crop. Six AMF treatments, including four exotic species (Rhizophagus irregularis, Funneliformis mosseae and Claroideoglomus claroideum, a mix of three species), one mix native AMF species treatment and an AMF-free soil in combination with four salinity levels (1, 5, 10, and 15 dS m?1) were used. The soil repellency index (RI) increased with salinity increment ranging from 2.4 to 10.5. The mix of three exotic and native AMF treatments enhanced the RI significantly compared to AMF-free soil in all salinity levels with one exception for native treatment at 1 dS m?1. Among individual AMF species, the C. claroideum treatment at 10 dS m?1 increased the RI by 67% compared to AMF-free soil. The native AMF treatment was more efficient in root colonization, glomalin production and SWR development at 10 and 15 dS m?1, compared to exotic species. In addition to the net positive effect of salinity on SWR, the AMF influences on the RI were greatly dependent on salinity levels.  相似文献   

8.
Water repellency (WR) is a property affected by fire and of crucial importance in the hydrological behaviour of soils after burning. In dry Mediterranean areas knowledge of the factors that control the development of water repellency by fire is of particular interest. We examined such factors in two calcareous soils, a Regosol and a Luvisol, representative of forest areas of southeast Spain. Heating temperature (200–500°C), vegetation type (Rosmarinus officinalis, Pinus halepensis and Brachypodium retusum), quantity of vegetation litter (control, low and high) and type of soil were selected as factors for assessing the WR induced by fire. The two soils exhibited markedly different WR responses after heating, the Regosol being much more susceptible than the Luvisol. Characteristics such as organic matter and clay content seem to determine the different WR responses to heating. We found that the type and quantity of vegetation litter also control the persistence of induced WR. In general, the order of increasing WR was Brachypodium < Pinus < Rosmarinus, and larger amounts of litter induced more WR. Maximum values of WR, most of them classified as severe (901−3600 s), were found in the range of 300−350°C, whereas beyond this temperature WR was destroyed. These results show that water repellency induced by combustion could be limited by environmental factors such as vegetation type and availability of litter, and that soil type and its characteristics also play a decisive role.  相似文献   

9.
Water repellency can reduce the infiltration capacity of soils over timescales similar to those of precipitation events. Compaction can also reduce infiltration capacity by decreasing soil hydraulic conductivity, but the effect of compaction on soil water repellency is unknown. This study explores the effect of compaction on the wettability of water repellent soil. Three air‐dry (water content ~4 g 100 g?1) silt loam samples of contrasting wettability (non‐repellent, strongly and severely water repellent) were homogenized and subjected to various pressures in the range 0–1570 kPa in an odeometer for 24 h. Following removal, sample surface water repellency was reassessed using the water drop penetration time method and surface roughness using white light interferometry. An increase in compaction pressure caused a significant reduction in soil surface water repellency, which in turn increases the soil's initial infiltration capacity. The difference in surface roughness of soils compacted at the lowest and highest pressures was significant (at P > 0.2) suggesting an increase in the contact area between sessile water drops and soil surfaces was providing increased opportunities for surface wetting mechanisms to proceed. This suggests that compaction of a water repellent soil may lead to an increased rate of surface wetting, which is a precursor to successful infiltration of water into bulk soil. Although there may be a reduction in soil conductivity upon compaction, the more rapid initiation of infiltration may, in some circumstances, lead to an overall increase in the proportion of rain or irrigation water infiltrating water repellent soil, rather than contributing to surface run‐off or evaporation.  相似文献   

10.
G.C. Fisher  Oi-Lai Yam 《Geoderma》1984,32(4):339-345
Aqueous extracts of leaves and shoots of Calluna vulgaris, Erica tetralix, and Betula pendula were reacted with iron compounds in the laboratory. Extracts of B. pendula were found to be most active in solubilizing iron. The iron mobilizing capacity of extracts of C. vulgaris depended upon plant age, season, and soil conditions. C. vulgaris shoots were found to be more readily leached of their soluble organic matter than those of B. pendula but yielded little soluble inorganic material. C. vulgaris extracts were the most acid (pH 4.2–4.5) of those examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号