首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study assessed the first-year effect of three ecosystem restoration treatments (prescribed fire, mechanical thinning, and their combination) on soil enzyme activity, soil N transformations, and C:N ratios of soil organic matter and mineral soil in eight North American forested ecosystems. The ecosystems we studied were part of the larger Fire and Fire Surrogate (FFS) network, and all had a history of frequent fire that has been altered by almost a century of organized fire suppression. Across all eight sites there were no statistically significant effects of the three manipulative treatments on phosphatase activity or chitinase activity; in contrast, at the network-scale phenol oxidase activity was reduced by fire alone, relative to the control. There was no significant network-scale effect of the three treatments on net N mineralization or net nitrification. Soil C:N ratio increased modestly after mechanical thinning, but not after prescribed fire or the combination of fire and thinning. There was a statistically significant reduction in forest floor C:N ratio as a result of all three treatments. Ordination of the differences between the treated and control areas indicated that fire alone resulted in greater changes in phenol oxidase activity and net nitrification than did the other two treatments. Large-scale restoration treatments such as those utilized in this study produce modest proximate effects on soil microbial activity and N transformations.  相似文献   

2.
Direct estimates of C:N ratios of ectomycorrhizal (EM) mycelia growing in situ in forest soils have been obtained for the first time. The mycelial samples were collected from sand-filled mesh bags that were buried in the soil and incubated for 12-18 months in two Norway spruce forests in southern Sweden. At harvest the mesh bags were heavily colonized and the mycelia were extracted from the sand with water. The collected mycelia had earlier been identified as belonging to EM fungi based on their C isotopic composition. The mean value of the C:N ratio for mycelia was 20.2±0.8 (n=25). EM mycelia collected at different soil depths (5, 15 and 30 cm) had similar C:N ratios. C:N ratios of microbial biomass obtained by fumigation-extraction of similar soils have usually been lower (6-13) so possible differences in the extraction efficiency of C and N from bacteria and fungi are discussed.  相似文献   

3.
The phosphorus (P) content of crop residues and its availability to a subsequent crop can range from agronomically insignificant, to quantities in excess of crop P requirement. However, the contribution of crop residues to the P nutrition of subsequent crops has not been widely recognised, and simple predictive tools are lacking. By reviewing the published literature in which quantitative measurements of P transformations from plant residues applied to soil have been reported, we have evaluated the contribution of crop residue-derived P to the P nutrition of subsequent crops, assessed the key factors involved and summarised the knowledge as an empirical model. The contribution of crop residues to P availability is likely to be significant only under conditions where large amounts of crop residues of relatively high P concentration are applied to soil. Crop residues with low P concentration, such as cereal stubble (eg. due to re-translocation of a large proportion of stubble P into grain), will not make an agronomically significant contribution to soil P availability, but may reduce P availability due to assimilation in the microbial biomass. However, a productive green manure crop may release sufficient P to meet the requirements of a subsequent cash crop. The release of P from crop residues is significantly reduced in systems where the P-status of crops and soils is low, which reinforces the reliance on external P inputs for sustained crop productivity. The large variability in the potential contributions of plant residues to the P nutrition of subsequent crops suggests that there is a strong need to integrate model predictions of organically-cycled P with fertiliser management strategies.  相似文献   

4.
王小云  温腾 《土壤通报》2017,(3):604-610
以我国小兴安岭地区凉水国家级自然保护区30年林龄的人工红松林为研究对象,建立对照(0 kg hm~(-2)a~(-1))、低氮(20 kg hm~(-2)a~(-1))、中氮(40 kg hm~(-2)a~(-1))和高氮(80 kg hm~(-2)a~(-1))四种模拟氮沉降水平的样地;采用室内培养试验,研究了短期模拟氮沉降对人工红松林土壤氮净矿化、净硝化速率和氧化亚氮排放的影响。结果表明,与对照处理相比,经过2年的模拟氮沉降处理,土壤的净矿化、净硝化速率都有降低趋势。与对照相比,低氮、中氮、高氮土壤净矿化速率分别降低了16.9%、20.6%和25.2%,土壤净硝化速率分别降低了16.7%、20.9%和25.5%,但是处理间差异没有达到显著水平。净硝化速率与净矿化速率呈显著正相关关系(P0.05),表明净矿化速率降低减少铵态氮供应量可能是氮沉降处理降低净硝化速率重要原因。另外,模拟氮沉降处理导致土壤p H降低也不利于硝化作用。中氮和高氮处理土壤氧化亚氮累积排放量分别比对照高84%和40%,但是差异不显著。高的氮沉降量使硝化过程中氧化亚氮的排放比例增加,可能是中氮和高氮处理下净硝化速率下降而土壤氧化亚氮排放量却增加主要原因。研究结果表明,氮沉降会影响我国小兴安岭地区森林土壤氮矿化和硝化过程,但是由于实验开展观测时间较短,其影响规律还需长期实验验证。  相似文献   

5.
The potential impact of timber harvesting in the boreal forest on aquatic ecosystem water quality and productivity depends in part on the production of nutrients within the soil of the harvested catchment. Nitrogen supplied by organic matter decomposition is of particular interest because of the important role that N plays in biotic processes in surface waters, and in forest nutrition in general. Logging slash quality and input to the forest floor has the potential to influence N availability after harvest on clearcut sites. Net production of organic and inorganic-N and microbial biomass C and N concentrations were determined during a 90-day laboratory incubation at constant temperature and moisture. Incubated soils included F horizon and shallow mineral soil horizons (0-5 cm) from unharvested and full-tree harvested (2 and 12 growing seasons since harvest) boreal forest sites at the Esker Lakes Research Area (ELRA), in northeastern Ontario, Canada. In an ancillary experiment, black spruce foliage was added to unharvested forest floor material after 30 days during a 90-day laboratory incubation to simulate the influence of logging slash from full-tree harvesting on C and N dynamics. Twelve-year old clearcut F horizon material released on average 75 and 5 times more -N and 3 and 2 times as much inorganic-N than soil collected from unharvested and 2-year-old clearcuts, respectively. This increase in -N accumulation during the incubation was accompanied by decreases in both exchangeable -N and microbial biomass C and N levels. Net daily changes in microbial biomass N were significantly related to organic and inorganic-N accumulation or loss within the F horizon. Mineral soil release of inorganic-N was lower than release from the forest floor. Nitrate-nitrogen accumulation was lower, and -N accumulation was higher in mineral soil from unharvested sites when compared to 12-year-old clearcuts. Calculated harvest response ratios indicated that incubated mineral soil from the 12-year-old clearcut sites released significantly greater amounts of -N than 2-year-old clearcuts. Incorporation of black spruce needles into F horizon material reduced the production of organic and inorganic-N and increased microbial biomass N. Laboratory incubations of F horizon and shallow mineral soil from 12-year-old clearcuts suggested that these boreal soils have the capacity for increased inorganic-N production compared to uncut stands several years after harvesting. This has the potential to increase N availability to growing boreal forest plantations and increase N leaching due to greater -N levels in the forest soil.  相似文献   

6.
In temperate forest soils, N net mineralization has been extensively investigated during the growing season, whereas N cycling during winter was barely addressed. Here, we quantified net ammonification and nitrification during the dormant season by in situ and laboratory incubations in soils of a temperate European beech and a Norway spruce forest. Further, we compared temperature dependency of N net mineralization in in situ field incubations with those from laboratory incubations at controlled temperatures. From November to April, in situ N net mineralization of the organic and upper mineral horizons amounted to 10.9 kg N (ha · 6 months)–1 in the spruce soil and to 44.3 kg N (ha · 6 months)–1 in the beech soil, representing 65% (beech) and 26% (spruce) of the annual above ground litterfall. N net mineralization was largest in the Oi/Oe horizon and lowest in the A and EA horizons. Net nitrification in the beech soil [1.5 kg N (ha · 6 months)–1] was less than in the spruce soil [5.9 kg N (ha · 6 months)–1]. In the range of soil temperatures observed in the field (0–8°C), the temperature dependency of N net mineralization was generally high for both soils and more pronounced in the laboratory incubations than in the in situ incubations. We suggest that homogenization of laboratory samples increased substrate availability and, thus, enhanced the temperature response of N net mineralization. In temperate forest soils, N net mineralization during the dormant season contributes substantially to the annual N cycling, especially in deciduous sites with large amounts of litterfall immediately before the dormant season. High Q10 values of N net mineralization at low temperatures suggest a huge effect of future increasing winter temperature on the N cycle in temperate forests.  相似文献   

7.
Marine benthic macrophytes were examined as possible nitrogen (N) sources for agriculture in Greece in terms of N mineralization and available standing stocks. Net N mineralization patterns were determined over a 30‐week incubation period under aerobic conditions. Ulva sp., Cystoseira barbata C. Agardh, and Posidonia oceanica (L.) Delile storm‐cast material (SC) and harvested leaves (L) were incorporated into acidic, slightly acidic after liming, and alkaline soils and incubated at 35°C. From the initial stage until the 12th week of incubation, ammonification was higher than nitrification in most cases. The decreasing order of mineralized N originating from macrophytes was: Ulva sp. > P. oceanica (SC) > C. barbata > P. oceanica (L). Rates of net N mineralization of the macrophytes were the highest in the alkaline soil, whereas the lowest values were recorded in the strongly acidic soil. Application of Ca into the acidic soil revealed a considerable increase of N mineralization. Immobilization and ammonification were observed after incorporation of Ulva sp. into the acidic soil. As Ulva sp. proved to be the only potential alternative N source for arable crops, its standing stocks in two geographically different Greek lagoons, the Vassova Lagoon (N Greece) and Papas Lagoon (S Greece) were estimated. It was estimated that 2 ha of Ulva could supply adequate N to cultivate approximately 1 ha cotton. Posidonia and Cystoseira did not show potential as an alternative N source for agriculture and especially in plant nutrition.  相似文献   

8.
《Soil biology & biochemistry》2004,36(10):1569-1576
Three Bohemian Forest catchments, Plešné, ?erné and ?ertovo, were studied. These catchments have similar climatic conditions, relief and vegetation, but differ in their bedrock composition. The granitic bedrock in the Plešné catchment was more susceptible to phosphorus (P) leaching under acid conditions than was the mica schist bedrock in the other catchments. The goal of this study was to determine if higher P leaching from the Plešné catchment was associated with differences in microbial P transformations and enzymatic P hydrolysis. Phosphorus and nitrogen contents in soil microbial biomass (PMB, NMB; chloroform fumigation), C mineralisation rate (Cmin; CO2 production by GC) and phosphatase activity (MUF-phosphate), were measured in three successive years. Phosphatase activity, PMB, and Cmin were used to characterise the enzymatic hydrolysis of organic P, microbial P accumulation, and microbial mineralisation rates of organic compounds, respectively. Soil chemical properties were characterised by C, N and P content, pH, and by oxalate-extractable P, Fe and Al. Spatial variability in NMB, PMB, Cmin and phosphatase activity within the catchment was higher (coefficient of variation, CV<50%) than their temporal variability (CV<30%). Multivariate analysis revealed a significant soil layer effect but not that of catchment. When soil layers were evaluated separately, a difference between the Plešné and ?erné or ?ertovo catchments was found in litter and mineral layers, even though the variability within one catchment was high. Within soil profile, phosphatase activity was positively correlated with Ctot, NMB and Cmin (r2=0.89-0.92) being very correlated with PMB (r2=0.99). Phosphatase activity was higher in the litter (14.0 nmol g−1 h−1) and humus (8.65 nmol g−1 h−1) layers of Plešné than in the same layers of the ?erné (9.65 and 6.40 nmol g−1 h−1) and ?ertovo (12.8 and 6.0 nmol g−1 h−1) soils. Similarly, PMB in the litter and humus layers of Plešné soil (161 and 93 μg g−1) was higher than PMB of the same layers of the ?erné (120 and 66 μg g−1) and ?ertovo (148 and 89 μg g−1) soils. High MUFP hydrolysis rate: Cmin molar ratio (0.16-1.17 M of P per 1 M of respired C) indicated that potential enzymatic P hydrolysis exceeded estimated microbial P demand (0.034 M of P per 1 M of respired C) in all catchments. The results suggest that higher microbial P transformations and enzymatic P hydrolysis could contribute to enhanced P leaching from the Plešné catchment, which could be enhanced by the lower Fe content in the soil of this catchment as compared to the ?erné and ?ertovo catchments.  相似文献   

9.
 The amount, quality and turnover of soil P is heavily influenced by changes in soil management. The objective of this study was to investigate the effects of deforestation and pasture establishment on the concentrations, forms and turnover rate of soil P in mountain soils of the Alay Range, Khyrgyzia. A sequential extraction was applied to distinguish soil P pools. We used particle-size fractionation to follow the dynamics of different P pools in soils under forest and pasture and 31P-NMR spectroscopy to investigate the structure of alkali-soluble P forms. In the A horizons of the forest soils, total soil P concentration was 1093 mg kg–1, organic P (Po) representing 46% of the total P. Deforestation followed by pasture establishment not only increased significantly (P<0.01) the total P concentration (1560 mg kg–1) but also the contribution of Po to total P was increased by 17%. Pasture soils had significantly higher P pools than forest soils except highly labile inorganic P (Pi NaHCO3) and primary Pi (Pi HCldil). Both in forest and pasture soils stable P increased with decreasing particle size (coarse sand 50%, clay 80% of total P) and primary P decreased with decreasing particle size. Phosphate monoesters and diesters represented 80% of P identified by 31P NMR. Low monoester to diester ratios in the alkali extracts of forest and pasture soils indicate low microbial activity. This is consistent with high C/Po ratios and high stable Po concentrations in the fine earth of forest and pasture. Received: 10 March 1999  相似文献   

10.
Summary Amendment of soils with arginine resulted in immediate liberation of ammonia. The rate was linear for several hours, and was strongly reduced by toluene treatment or under anaerobic conditions. Together with a strong stimulation of respiration by arginine these results demonstrate that arginine ammonification is due to living microorganisms. Arginine ammonification was strongly related to respiration and correlated significantly with the carbon content of the soil, but not or only poorly with soil pH, ammonia content, percentage clay or the number of microorganisms.  相似文献   

11.
ABSTRACT

There are many nitrogen (N) pools in soil, so their availability and different status can give information about bulk soil response to N deposition. However, the different size of N pools in forest soils and the relationship between them have not been well studied under N deposition when considering the role of litter. Here soil in an N-deposition experiment carried out for 5 years in a broad-leaved forest was used as an object to study the response of N pools to N deposition by stepwise extraction using water or solutions containing 0.5 M K2SO4, 2.5 M H2SO4 (LPI), or 13 M H2SO4 (LPII), and calculation of recalcitrant (RC) N pool. Under N control (CT), soil with the presence of litter had a higher N of 23.8–106.8% in the first four pools, but lower of 80.6% in recalcitrant N pool compared with soil with the absence of litter. In the absence of litter, N addition increased soil N in labile pool but decreased N in the RC pool compared to CT and these impacts were greater at high added N (HN) than low-added N (LN) rates. However, in the presence of litter, LN increased the amount of N in the K2SO4- extracted pool and HN reduced that in the water extracted pool. Additionally, LN and HN increased TN in the RC pool and HN increased the total soluble N (TSN) in the LPI and LPII pool. N changes in the water extraction pool were attributed to inorganic N, whereas they were NH4 + and soluble organic N (SON) in the K2SO4-extracted, LPI, and LPII pools. In the presence of litter, HN increased the SON concentration in the K2SO4, LPI, and LPII extractions; thus, SON may be a potentially important N form for N availability. These results suggested that N additions improve the accumulation of N in RC pool with the presence of litter. The different effects of N additions on soil N pool or N form in each pool depend on litter present or not.  相似文献   

12.
Measurements of N transformation rates in tropical forest soils are commonly conducted in the laboratory from disturbed or intact soil cores. On four sites with Andisol soils under old-growth forests of Panama and Ecuador, we compared N transformation rates measured from laboratory incubation (at soil temperatures of the sites) of intact soil cores after a period of cold storage (at 5 °C) with measurements conducted in situ. Laboratory measurements from stored soil cores showed lower gross N mineralization and NH4+ consumption rates and higher gross nitrification and NO3 immobilization rates than the in-situ measurements. We conclude that cold storage and laboratory incubation change the soils to such an extent that N cycling rates do not reflect field conditions. The only reliable way to measure N transformation rates of tropical forest soils is in-situ incubation and mineral N extraction in the field.  相似文献   

13.
The effect of harvesting bamboo savanna on the dynamics of soil nutrient pools, N mineralization, and microbial biomass was examined. In the unharvested bamboo site NO inf3 sup- -N in soil ranged from 0.37 to 3.11 mg kg-1 soil and in the harvested site from 0.43 to 3.67 mg kg-1. NaHCO3-extractable inorganic P ranged from 0.55 to 3.58 mg kg-1 in the unharvested site and from 1.01 to 4.22 mg kg-1 in the harvested site. Over two annual cycles, the N mineralization range in the unharvested and harvested sites was 0–19.28 and 0–24.0 mg kg-1 soil month-1, respectively. The microbial C, N, and P ranges were 278–587, 28–64, and 12–26 mg kg-1 soil, respectively, with the harvested site exhibiting higher values. Bamboo harvesting depleted soil organic C by 13% and total N by 20%. Harvesting increased N mineralization, resulting in 10 kg ha-1 additional mineral N in the first 1st year and 5 kg ha-1 in the 2nd year following the harvest. Microbial biomass C, N and P increased respectively by 10, 18, and 5% as a result of bamboo harvesting.  相似文献   

14.
Nitrification occurs slowly in many acid Scots pine forest soils. We examined if bacterial community structure and interactions between members of the bacterial community in these forest soils prohibit growth of ammonia-oxidising microorganisms and their nitrifying activity. Native and gamma-irradiated Scots pine forest soils known to have low net nitrification rates were augmented with fresh soils or soil slurries from nitrifying Scots pine forest soil, and vice versa. Augmentation of native non-nitrifying soils with nitrifying soils induced net nitrification, although no significant changes in bacterial community structure, as measured by 16S rRNA gene-based denaturing gradient gel electrophoresis (DGGE), were observed. In sterilised soils, the inoculum, i.e. native nitrifying soil or non-nitrifying soil, determined the occurrence of net nitrification and bacterial community structure, and not the origin of the sterilised soils. Our results demonstrate that low net nitrification rates in acid Scots pine forest soils cannot be (solely) explained by unfavourable abiotic soil conditions, but that still uncaptured biotic factors contribute to suppression of nitrification.  相似文献   

15.
Abstract

Iron oxide is the most important electron acceptor in paddy fields. We aimed to suppress the methane emission from paddy fields over the long term by single application of iron materials. A revolving furnace slag (RFS; 245 g Fe kg-1) and a spent disposable portable body warmer (PBW; 550 g Fe kg-1) were used as iron materials. Samples of a soil with a low iron level (18.5 g Fe kg-1), hearafter referred to as “a low-iron soil” and of a soil with a high iron level (28.5 g Fe kg-1), hearafter referred to as “an iron-rich soil,” were put into 3 L pots. At the beginning of the experiment, RFS was applied to the pots at the rate of 20 and 40 t ha-1, while PBW was applied at the rate of 10 t ha-1 only, and in the control both were not applied. Methane and nitrous oxide emissions from the potted soils with rice plants were measured by the closed chamber method in 2001 and 2002. When RFS was applied at the rates of 20 and 40 t ha-1 to the low-iron soil, the total methane emission during the cultivation period significantly decreased by 25–50% without a loss of grain yield. Applied iron materials clearly acted as electron acceptors, based on the increase in the amount of ferrous iron in soil. However, the suppressive effect was not evident in the iron-rich soil treated with RFS or PBW. On the other hand, nitrous oxide emission increased by 30–95%. As a whole, when the total methane and nitrous oxide emissions in the low-iron soil were converted to total greenhouse gas emissions expressed as CO2- C equivalents in line with the global warming potential, the total greenhouse gas emissions decreased by about 50% due to the application of RFS.  相似文献   

16.
Summary Based on the reduction of dimethylusulfoxide (DMSO) to dimethylsulfide (DMS) by microorganisms, a simple, rapid, sensitive and inexpensive method for the determination of microbial activity in soil samples was developed. When DMSO was added to samples, DMS appeared immediately in the gas phase, which was quantitatively analyzed by gas chromatography. The DMS liberation rate was constant for several hours. The reaction immediately starts and its linearity indicate that neither the physiological state nor the number of organisms were changed by the assay. DMSO reduction is widespread among microorganisms; out of 144 strains tested (both fungi and bacteria) only 5 were unable to carry out this reaction. The reaction in soil samples was strongly inhibited by toluene, cyanide, azide, or by fumigation, but was considerably stimulated by glucose. These findings demonstrate that the reaction was due to the activity of microorganisms. The DMSO reduction in different soil samples was significantly correlated with arginine ammonification and heat output (r>0.9). A good correlation was observed with the organic-matter content (r = 0.74), but not with microbial numbers, clay content, or the pH of the soil. Standard deviations of less than 10% were routinely found. Furthermore, the method is sufficiently sensitive to allow measurements of activity in very small samples (< 0.1 g). For example, a microbial activity profile can be established for a single soil aggregate, revealing marked differences in activity on the outside and in the interior.  相似文献   

17.
Summary Information on the mineralization of inorganic phosphate (Pi) from organically bound P (Po) during decomposition of forest floor and soil organic matter is vital for understanding P supply in forest ecosystems. Carbon (C) and phosphorus (P) fluxes were determined for forest floor samples from three Pinus radiata plots which had received no P (Control), 62.5 kg P ha–1 (Low P) and 125 kg P ha–1 (High P) 20 years before sampling. The P concentration of the forest floor samples had increased with fertilizer application, and the C:P ratio ranged between 585 and 1465. During a 9-week laboratory incubation 8.2–19.0% of the forest floor C was evolved as CO2-C. The amount of CO2 evolved from the forest floor of the Control plot was more than twice the amounts from the Low P and High P plots. There was little change in net P mineralization in the Control and Low P treatments throughout the incubation, but it increased slightly for the High P samples, suggesting a critical forest floor C:P ratio of 550 for net P mineralization. Changes in the 32P-specific activities of the Pi and microbial P pools during incubation, and concurrent changes in microbial-32P and 32Pi, indicated internal P cycling between these pools. The rate of internal P cycling varied with forest floor quality, and was highest in the High P forest floor. The High P samples had microbial C:P ratios of 22 : 1 which remained constant during the incubation, suggesting the microorganisms had adequate P levels. Received: 2 July 1997  相似文献   

18.
Abstract

The rate and timing of manure application when used as nitrogen (N) fertilizer depend on N‐releasing capacity (mineralization) of manures. A soil incubation study was undertaken to establish relative potential rates of mineralization of three organic manures to estimate the value of manure as N fertilizer. Surface soil samples of 0–15 cm were collected and amended with cattle manure (CM), sheep manure (SM), and poultry manure (PM) at a rate equivalent to 200 mg N kg?1 soil. Soil without any amendment was used as a check (control). Nitrogen‐release potential of organic manures was determined by measuring changes in total mineral N [ammonium‐N+nitrate‐N (NH4 +–N+NO3 ?–N)], NH4 +–N, and accumulation of NO3 ?–N periodically over 120 days. Results indicated that the control soil (without any amendment) released a maximum of 33 mg N kg?1soil at day 90, a fourfold increase (significant) over initial concentration, indicating that soil had substantial potential for mineralization. Soil with CM, SM, and PM released a maximum of 50, 40, and 52 mg N kg?1 soil, respectively. Addition of organic manures (i.e., CM, SM, and PM) increased net N released by 42, 25, and 43% over the control (average). No significant differences were observed among manures. Net mineralization of organic N was observed for all manures, and the net rates varied between 0.01 and 0.74 mg N kg?1 soil day?1. Net N released, as percent of organic N added, was 9, 10, and 8% for CM, SM, and PM. Four phases of mineralization were observed; initial rapid release phase in 10–20 days followed by slow phase in 30–40 days, a maximum mineralization in 55–90 days, and finally a declined phase in 120 days. Accumulation of NO3 ?–N was 13.2, 10.6, and 14.6 mg kg?1 soil relative to 7.4 mg NO3 ?–N kg?1 in the control soil, indicating that manures accumulated NO3 ?–N almost double than the control. The proportion of total mineral N to NO3 ?–N revealed that a total of 44–61% of mineral N is converted into NO3 ?–N, indicating that nitrifiers were unable to completely oxidize the available NH4 +. The net rates of mineralization were highest during the initial 10–20 days, showing that application of manures 1–2 months before sowing generally practiced in the field may cause a substantial loss of mineralized N. The rates of mineralization and nitrification in the present study indicated that release of inorganic N from the organic pool of manures was very low; therefore, manures have a low N fertilizer effect in our conditions.  相似文献   

19.
An excess of available nitrogen (N) in vineyard soil is considered detrimental for vine growth, making a thorough assessment of N mineralization dynamics in vineyard soils before the addition of winery waste necessary. This study assesses the changes in N mineralization in acid vineyard soils amended with bentonite winery waste (BW). Non-amended soil (control), BW and soil-waste mixtures (SBWM) with a low (+L) or high (+H) dose of BW were incubated for six weeks. After 7, 14, 21 and 42 days of incubation, the control soils, BW and SBWM were analysed for net ammonified N, net nitrified N and net mineralized N. Parameters related to the kinetics of N mineralization were also determined. The addition of BW increased the potentially mineralizable N (N0) in the amended soils (58–144% for the highest BW dose), although the mineralization rate was governed by the soil characteristics. Mineralizable N was only a small fraction (<4%) of the total organic nitrogen added to the soil through the BW addition, mainly due to the dominance of the nitrification process in the BW amended soils. These experimental results suggest that the addition of BW may be a suitable amendment for nitrogen fertilization in acid vineyard soil.  相似文献   

20.
土壤中无机氮的微生物同化和非生物固定作用研究进展   总被引:8,自引:0,他引:8  
程谊  张金波  蔡祖聪 《土壤学报》2012,49(5):1030-1036
土壤中无机氮的迅速固持有利于土壤氮的持留,从而减少NO3-淋溶、NH3挥发以及N2O和NO排放损失。本文综述了土壤中无机氮的微生物同化和非生物固定作用,指出了无机氮微生物同化和非生物固定在氮循环中的重要意义,初步讨论了生物过程和非生物过程固定无机氮的机制和影响因素。但是对于非生物固定NO3--N,其机理目前还不清楚。从现有的文献报道来看,能够解释非生物固定NO3--N机制的仅有铁环假说。然而,铁环假说尚未得到完全证实,有待于深入的研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号