首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
坡面薄层水流流速的测量对研究地表水文过程具有重要意义。电解质脉冲法将边界条件用脉冲函数近似得到解析解,进而估算流速,引起误差。本研究在脉冲法的基础上改进,在测量系统中增加一组探针用于测量实际的边界函数。利用测得的边界条件数据,计算出模型边界条件的参数,进而将系统的真实边界条件的解与实测数据拟合,用最小二乘法计算流速。结果表明:两种真实边界条件法估算的流速没有显著差别,与流量法测量结果也一致,在短距离时真实边界条件法比脉冲法有较高的精度。由此说明,采用真实边界条件法和系统测量流速是可行的。  相似文献   

2.
坡面薄层水流优势流速研究   总被引:4,自引:0,他引:4  
降雨形成的径流是产生坡面土壤侵蚀的主要动力来源,径流流速是土壤侵蚀模型的重要参数之一.为研究电解质示踪法测量坡面水流流速过程中电解质优势流速和水流流速的关系,本研究利用实验水槽,在坡度4°、8 °、12°,流量12、24、48 L/min条件下,于距离电解质注入位置0.3、0.6、0.9、1.2、1.Sm处放置探针测量电解质传递过程,计算不同工况下各测量断面的电解质优势流速.结果表明:流量对电解质优势流速的影响大于坡度对其影响,电解质优势流速随距离增加而增大,采用指数函数拟合计算得到的电解质优势流速随距离的变化过程,得到稳定的电解质优势流速,即水流优势流速,其范围在0.241 ~0.568 m/s之间.随坡度和流量的增大,水流优势流速均增大.流量对水流优势流速增长的影响大于坡度对其的影响.不同坡度和流量条件下,水流优势流速与平均流速基本一致,二者的比值为1.007,水流优势流速与最大流速的比值为0.774,平均流速与最大流速的比值为0.776,符合坡面薄层水流的流态.结果可为研究坡面薄层水流动力过程提供新的计算方法和参考数据.  相似文献   

3.
坡面薄层水流流速测量的比较研究   总被引:6,自引:6,他引:0       下载免费PDF全文
在室内模拟水槽中分别用质心运动学原理、电解质脉冲法和流量法3种方法测量不同坡度、不同泥沙含量条件下的薄层水流流速。比较以上3种测量结果发现在下垫面无渗透时,即加入的盐液没有损失时,电解质脉冲法测量坡面薄层水流流速与质心运动速度及流量法测量结果基本是一致的。在泥沙含量较大时,电解质脉冲法测量结果的误差较大,流量对测量结果影响不显著;随着测量距离的延长,测量误差变小,这可能是随着测量距离的增加,加入电解质的时间与测量时间之比减小,从而使假设加入的电解质为电解质脉冲更加合理。总的来说,电解质脉冲法在实验条件下测量坡面薄层水流流速是可行的。  相似文献   

4.
坡面薄层水流流速研究   总被引:2,自引:1,他引:1       下载免费PDF全文
准确测量坡面薄层水流流速是分析和计算水动力学参数的前提,也是建立土壤侵蚀模型的基础。设置5个坡度(5°,10°,15°,20°,25°)和4个放水流量(2,4,8,16L/min),采用长12m、宽0.1m、高0.3m的水槽对坡面薄层水流流速进行了测量。通过记录水流前锋(前沿)流过水槽的时间计算水流的前沿流速,并采用染色剂示踪法和电解质脉冲法测量水流的平均表层流速和平均流速,与前沿流速进行对比。结果表明:试验的前沿流速为0.237~1.290m/s,且随着坡度和流量的增大呈增大趋势,流量对前沿流速的影响大于坡度的影响,前沿流速可以用坡度和流量的幂函数形式进行预测;将前沿流速与染色剂示踪法测得的平均表层流速和电解质脉冲法测得的平均流速进行对比,发现前沿流速与平均表层流速和平均流速均具有良好的一致性,但平均表层流速的数值远大于前沿流速,其相对误差为-15.018%~-27.825%,2种流速之间可以用系数0.758进行转换;前沿流速与平均流速的数值非常接近,且相对误差随着流量和坡度的增大逐渐减小,2种流速之间的转换系数为0.946。前沿流速与其他2种流速的经验系数主要受雷诺数的影响,所建立的等式可以较好地模拟2种经验系数。研究结果可为坡面薄层水流流速的研究提供参考。  相似文献   

5.
流速是表征水流水力学特性的重要物理量。为了准确获取薄层水流流速,基于热红外成像技术、计算机视觉识别技术,设计了一种薄层水流流速测量系统。该系统通过对热示踪剂的自动控制以及对其热成像图的瞬时采集、影像校正、噪点去除、质心确定等手段,获取薄层水流的流速等参数,从而实现对坡面薄层水流流速的动态观测。该系统精确度和准确度高,可从不同时间和空间尺度上更加准确地观测热示踪剂动态运移过程。系统的测量标准差为0.020 m/s,观测精度可达到98.33%,观测的时间分辨率为1/9 s,空间分辨率为2 mm。为了验证该系统的准确度,以流量法为基准,与传统示踪法(染料示踪法、盐示踪法)比较,结果表明,该系统的准确度高于染料示踪法和盐示踪法。其中热红外成像观测系统的相对误差均在?10%以内;染料示踪法的相对误差均大于10%;盐示踪法52%的相对误差在?10%以内。利用热红外成像系统获取的影像,可对不同时刻示踪段水流的发生、发展的过程进行追溯,也可以测量示踪剂沿水流方向的运移速度及垂直于水流方向的扩散速度,计算热示踪剂的弥散系数等。该技术可应用于降雨侵蚀、径流冲刷等方面的研究,对于进一步深化土壤侵蚀过程与机理研究具有重要的意义。  相似文献   

6.
基于薄层水流中的热传递过程,提出测量水流流速的示踪方法,并设计对应的测量系统。在室内试验坡面上,设计不同试验工况(坡度为5°,10°,20°,流量为2,5,8 L/min),以盐示踪法为对照,研究热示踪测量薄层水流流速的可行性及其影响因素。结果表明,测量系统能准确地测得热示踪剂的运移过程;热与盐2种示踪剂测得流速范围为0.408~1.522 m/s,线性拟合斜率为1.006,R2为0.993,表明两者具有显著的线性关系,热示踪法具有较高的可靠性;由于物理属性差异,部分水力工况下示踪剂的释放方式对盐和热的测量结果影响显著,表明此时2种示踪剂测量流速的代表性不同;可采用盐与热联合示踪的方法,取二者测量结果的均值作为薄层水流的平均流速,以提高测量结果的代表性。研究结果可为复杂下垫面、盐渍化和禁用化学成分等特殊坡面上薄层水流流速的准确测量提供新方法和理论参考。薄层水流流速的准确测量对地表水文和土壤侵蚀领域的研究具有重要意义。  相似文献   

7.
坡面薄层水流流速是重要的水动力学参数之一,研究其分布规律对于理解坡面土壤侵蚀机理具有重要意义。该研究采用盐与热联合示踪的方法,对不同粗糙下垫面的坡面薄层水流流速进行测量,探究下垫面对薄层水流剖面流速分布的作用规律。在3种坡度(5°、10°和20°)下,以下垫面条件(有机玻璃、80目即0.16 mm砂纸和24目即0.53 mm砂纸)、流量(2、5和8 L/min)和示踪剂类型(盐和热)为试验因素,以每个坡长(2、3和4 m)处的水流流速为试验指标进行多因素间的完全试验。结果表明,当下垫面一定,水深为粗糙高度的2~4倍,且水流为层流流态时,盐与热联合示踪的方法可用于表征薄层水流的剖面流速分布;下垫面粗糙高度和水深对薄层水流剖面流速分布具有显著影响(P<0.05)。3种垫面下,2种示踪剂测得流速具有显著的线性相关关系,其线性拟合直线斜率分别为1.015、1.094和1.078,决定系数R2分别为0.892、0.824和0.760。随下垫面粗糙度增加,2种示踪剂测得流速差异呈增大的趋势;床面粗糙高度的增加,加大了对水流的扰动作用,增加了水流的紊动程度,进而影响盐与热2种示踪剂测量水流流速差异性。研究结果可为进一步理解坡面薄层水流的动力过程提供参考。  相似文献   

8.
由于高浓度悬浮泥沙会显著改变明渠底部的流动特征,明渠高含沙流动的数值模拟需要考虑泥沙对底部边界条件的影响。该研究基于水沙混相模型研究了不同底部边界条件对明渠高含沙流动数值模拟的影响,引入5种底部边界条件,包括给定流速的第一类边界条件、给定流速梯度的第二类边界条件、标准壁函数以及两种分别改进紊动能和紊动能耗散率的第二类边界条件,并研究了各底部边界条件对流速、紊动能、涡粘系数和泥沙浓度的计算结果的影响。结果表明,在多种含沙条件下采用第一类边界条件、标准壁函数和改进紊动能的第二类边界条件的计算结果能保持较高的准确性,流速和泥沙浓度的平均相对误差分别小于5%和10%;第二类边界条件和改进紊动能耗散率的第二类边界条件仅适用于低含沙条件,在高含沙条件下会造成较大的计算误差;第一类边界条件和改进紊动能的第二类边界条件需要根据试验数据校正模型系数,由于工程流动较为复杂,通常难以提供全面的试验数据用于系数校正,因此它们在工程计算中应用范围有限;标准壁函数无须校正系数并自动调整底部边界的流速和紊动能,能够适应多种含沙条件,适用于引黄灌溉工程中渠道输水、泵站淤积等问题的数值研究。  相似文献   

9.
利用变坡试验水槽,在较大流量(0.5~2.0 L/s)和坡度(0~50%)范围内,详细研究了水深、平均流速、雷诺数、佛汝德数和阻力系数对土壤分离能力的定量影响,旨在得到估算土壤分离能力最简单的方法。研究结果表明:坡面流土壤分离能力与水深、平均流速间均呈显著的幂函数关系;土壤分离能力与水流流态密切相关,与水流佛汝德数相比,水流雷诺数与土壤分离能力的关系更密切;土壤分离能力与水流阻力间呈良好的幂函数关系。研究结果表明,平均流速是预测土壤分离能力的最佳参数。研究结果对于理解土壤侵蚀机理,建立土壤侵蚀过程模型具有重要的意义。  相似文献   

10.
小流域土壤侵蚀及径流过程自动测量系统的实验应用   总被引:9,自引:8,他引:1  
流域内降雨-径流-土壤侵蚀过程中不同时空点处流量、流速、泥沙含量的获取是土壤侵蚀机理研究中的难点,其实时、准确测量为侵蚀模拟-预报模型的建立与检验提供必要的数据支持。该文针对这一问题,将量水堰及水位传感器、薄层水流流速测量系统、γ射线泥沙含量测量仪有机组合,构成流域土壤侵蚀过程测量系统。将该系统测量仪器布设于室内小流域模型各沟道出口及沟道内典型点处,在降雨强度25 mm/h,降雨历时5 min条件下,系统测量的流域出口处流量及泥沙含量变化值与采用手工采样方法测量结果的决定系数R2分别为0.738,0.749,流速误差为8.7%,比较结果显示该系统具有较高的测量精度。在此测量精度范围内,同时测得各沟道口流量及泥沙含量动态变化过程及沟道中典型点处流速。流域内径流过程及径流含沙量的动态测量结果表明将该系统应用到土壤侵蚀动态过程的研究中是可行的。  相似文献   

11.
模拟撒施肥料下的一维畦灌地表水流与溶质运移过程可为采用先进的畦灌液体施肥方式提供对比依据。该文基于湍流理论垂向流速线性与对数分布规律及不可压缩流体力学连续方程,构造沿畦长及任意垂向断面的非均布流速场和溶质浓度场,建立起撒施肥料下的一维畦灌地表水流与溶质运移模型,并利用典型畦灌施肥试验结果,检验该模型的模拟效果。结果表明,建立的模型不仅具有在撒施肥料状况下较好模拟地表水流运动和溶质浓度时间变化过程的能力,还具备较佳的水量和溶质质量守恒性,从而为评价撒施肥料下的畦灌施肥系统性能及与其它施肥方式下的畦灌施肥系统性能对比,提供了实用的数值模拟工具。  相似文献   

12.
考虑尺度效应的瞬时输入溶质运移模型及解析解   总被引:1,自引:1,他引:0  
为探索土壤环境中尺度效应对溶质运移的影响,建立了瞬时输入条件下考虑尺度效应的溶质运移模型。通过Laplace变换和复变函数理论得到了模型的解析解,并利用解析解分析了弥散尺度效应对溶质运移过程的影响。结果表明:随着土壤弥散尺度效应的增强,土壤中溶质浓度分布范围越广,浓度峰运移的距离越大,但浓度峰值越小;随着入口弥散系数(D0)的增加,溶质运移的范围更大,溶质浓度峰值越小,但浓度峰运移的距离几乎没有变化;随着入口孔隙水流速度(v0)的增加,溶质浓度峰运移的距离越大,溶质的运移锋面越远,而溶质浓度峰值及溶质浓度分布范围几乎没有变化。用一维8 m 长土柱中的溶质运移试验资料对所推解析解进行验证,模拟结果与试验结果吻合较好,决定系数可达0.95以上。结果表明所推得的解析解可用来模拟预测较大尺度上溶质运移过程,为土壤环境治理等实际工程提供理论依据。  相似文献   

13.
Many sandy soils in the Netherlands have a water-repellent surface layer covering a wettable soil with a shallow groundwater table. Fingers form in the water-repellent surface layer and rapidly transport water and solutes to the wettable soil in which the streamlines diverge. Although several field observations are available, this system has not yet been studied systematically. In this paper, we present a model with a steady-state water flow to which solutes are added as a pulse. The model predicts the flow through the distribution zone and through the finger in the water-repellent surface layer with a closed form solution and transport in the wettable subsoil numerically. Model calculations show that the travel time through the water-repellent surface layer and the thickness and hydraulic conductivity of the wettable soil have the strongest effect on the arrival time of the solute pulse at groundwater level. The calculations also show that, assuming transport in the wettable subsoil to take place in fingers, the travel time is considerably shorter than when the diverging flow in the wettable soil is included.  相似文献   

14.
薄层水流速度、弥散系数与泥沙含量关系的初步探讨   总被引:3,自引:0,他引:3  
利用坡面薄层水流的电解质脉冲数学模型,计算了不同坡度和含沙量下的电解质弥散系数,发现在泥沙含量较低时,弥散系数与水流速度有较好的线性相关性,但泥沙含量较高时,泥沙含量对弥散系数作用更加强烈,弥散系数与速度的相关性较差,说明弥散系数受泥沙含量和水流速度影响,但三者的关系函数有待于进一步探讨。  相似文献   

15.
边界层方法是描述土壤溶质迁移的简单方法,通过边界层距离与时间的关系可以估计溶质迁移参数。基于边界层方法,研究了土壤溶质迁移的数学模拟及相应参数估计问题。假定土壤溶质浓度剖面为指数函数,得到了描述溶质浓度分布的指数函数模型。各参数对边界层距离的影响分析表明,应选取较小的孔隙水流速度、短历时推求土壤溶质迁移参数;对不同模型预测土壤溶质分布进行比较,结果表明,在短距离处指数型解与精确解的误差比其它都要小。误差分析表明了指数函数模型的有效性和实用性。  相似文献   

16.
Understanding wetland hydrogeology is important as it is coupled to internal geochemical and biotic processes that ultimately determine the fate of potential contaminant inputs. Therefore, there is a need to quantitatively understand the complex hydrogeology of wetlands. The main objective of this study was to improve understanding of saturated groundwater flow in a forested riparian wetland located on a golf course in the Lower Pee Dee River Basin in South Carolina, USA. Field observations that characterize subsurface wetland flow critical to solute transport originating from storm-generated runoff are presented. Monitoring wells were installed, and slug tests were performed to measure permeabilities of the wetland soil. A field-scale bromide tracer experiment was conducted to mimic the periodic loading of nutrients caused by storm runoff. This experiment provided spatial and temporal data on solute transport that were analyzed to determine travel times in the wetland. Furthermore, a 3-D numerical, steady-state flow model (MODFLOW) was developed to simulate subsurface flow in the wetland. A particle tracking model was subsequently used to calculate solute travel times from the wetland inlet to the outlet based on flow modeling results. It was evident that observed tracer breakthrough times were not typical of these measured wetland soil matrix conductivity values. Based on surface water sampling results at the wetland outlet, tracer arrival time was about 9 h after the injection of the tracer. These results implied an apparent mean K value of 2,050 m/day, which is 152 times larger than the mean of the measured values using slug tests (13.4 m/day). Modeling efforts clearly demonstrated this implied preferential flow behavior; particle travel times resulting from the calibrated flow model were in the order of hundreds of days, while actual travel times in the wetland were in the order of hours to a few days. This significant difference in travel times was attributed to the presence of macropores in the form of dead root channels and cavities forming a pipe-flow network. The analyses presented in this study resulted in an estimate of the ratio of matrix permeability to matrix plus macropore permeability of approximately 1/150. Eventually, the tracer test and resulting travel times between various points in the wetland were critical to understanding the true wetland flow dynamics. The final conceptual model of the hydraulic properties of the wetland soils comprised a low permeability matrix containing a web of high K macropores. Simulation of tracer transport in this system was possible using a flow model with significantly elevated K values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号