首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhou  Zijun  Zeng  Xiangzhong  Chen  Kun  Li  Zhu  Guo  Song  Shangguan  Yuxian  Yu  Hua  Tu  Shihua  Qin  Yusheng 《Journal of Soils and Sediments》2019,19(5):2143-2152
Proposal

A 12-year field experiment was conducted to assess straw mulch effects on soil organic carbon fractions, the carbon pool management index (CPMI) at different depths, and crop yield under a no-till rice-wheat rotation system on the Chengdu Plain, southwestern China.

Materials and methods

There were two treatments in the experiment: no-till without straw mulch (CK) and no-till with straw mulch (SM). The soil was sampled at 0–5, 5–10, 10–20, and 20–30-cm depths. Soil total organic carbon (TOC), the labile organic carbon fractions, including particulate organic carbon (POC), dissolved organic carbon (DOC), microbial biomass carbon (MBC), and permanganate-oxidizable carbon (KMnO4-C), and the CPMI were analyzed. The crop grains were measured between September 2013 and May 2018.

Results and discussion

Between 2013 and 2018, rice and wheat grain yields under SM were comparable to CK, except there were higher rice yields in 2016 and higher wheat yields in 2017 under SM. The soil organic carbon decreased as soil depth increased in both treatments. Soil TOC, POC, and KMnO4-C concentrations at 0–5 and 5–10 cm, CPMI at 0–5 and 5–10 cm, and DOC at 0–5, 5–10, and 10–20-cm soil depths were significantly greater under SM than under CK, whereas the MBC at 0–5 and 5–10 cm under SM was lower than CK. The POC/TOC, KMnO4-C/TOC, and DOC/TOC ratios were greater under SM in the 0–5 and 5–10 cm, 0–5 cm, and 5–10 and 10–20-cm layers than CK, respectively, whereas the MBC/TOC ratio decreased under SM at 0–5, 5–10, and 10–20-cm depths.

Conclusions

The results showed that straw mulching should be adopted when a no-till rice-wheat cropping system is used in southwestern China because it leads to effective improvements in SOC sequestration while still maintaining normal crop yields.

  相似文献   

2.
Xiao  Liang  Yuan  Guodong  Feng  Lirong  Bi  Dongxue  Wei  Jing  Shen  Guanhua  Liu  Zhaohui 《Journal of Soils and Sediments》2020,20(8):3053-3061
Purpose

Being carbon-rich and porous, biochar has the potential to improve soil physical properties, so does conventional farming practice. Here, a field trial was conducted to investigate the combined effects of biochar use and farming practice on the physical properties of a salt-affected compact soil for wheat–maize rotation in the Yellow River Delta region.

Materials and methods

Salix fragilis L. was used as feedstock to produce biochar in the field via aerobic carbonization at an average temperature of 502 °C, terminated by a water mist spray, for use as a soil amendment at 0, 1, 2, and 4 g kg?1 doses (CK, T1, T2, and T3, respectively). Farming practices included rotary tillage/straw returning for wheat sowing, spring irrigation, no-tillage seeding of maize, and autumn irrigation. Both cutting ring and composite samples of the soil were collected at four stages of wheat–maize rotation (22, 238, 321, and 382 d after the benchmark date of land preparation for wheat sowing) for the determination of soil properties by established methods.

Results and discussion

Rotary tillage/straw returning reduced soil bulk density (BD) from 1.48 to 1.27 g cm?3 (CK) and 1.14 g cm?3 (T3) and increased saturated hydraulic conductivity (Ks) from 0.05?×?10?5 to 0.75?× 10?5 cm s?1 (CK) and 1.25?× 10?5 cm s?1 (T3). This tillage effect on BD and Ks gradually disappeared due to the disturbance from the subsequent farming practice. Biochar use lessened the disturbance. At maize harvest, BD was 1.47 (CK) vs. 1.34 g cm?3 (T3), and Ks was 0.06?×?10?5 (CK) vs. 0.28?×?10?5 cm s?1(T3); in comparison with CK, T3 increased Na+ leaching by 65%, Cl? leaching by 98%, organic carbon content by 40.3%, and water-stable aggregates (0.25–2 mm) by 38%, indicating an improvement in soil properties.

Conclusions

Biochar use and rotary tillage improved soil physical properties (BD, Ks) and favored soil aeration, water filtration, and salt leaching, which further helped the accumulation of soil organic carbon, the formation of water-stable aggregates, and the amelioration of salt-affected compact soil.

  相似文献   

3.
利用田间定位试验研究旱作农田不同覆盖措施对土壤团聚体氮组分的影响。基于黄土高原8年冬小麦覆盖定位试验,试验设置生育期秸秆覆盖(SM)、生育期地膜覆盖(PM)和无覆盖对照(CK)3个处理。采用干筛法测定团聚体分布特征及不同粒径团聚体中全氮(STN)、微生物量氮(MBN)和潜在可矿化氮(PNM)含量。结果表明:(1)与CK处理相比,2种覆盖处理均未在各粒径团聚体全氮含量有显著变化,但SM处理相较于PM处理提高了0—10 cm土层的1.00~0.25 mm粒径团聚体STN含量(12.88%,P0.05)。(2)与CK处理相比,SM处理在0—10 cm土层中2.00,2.00~1.00,0.25 mm粒径团聚体MBN含量分别提高18.67%,24.05%,20.08%(P0.05),且各粒径团聚体PNM含量分别提高35.13%,30.03%,42.88%(P0.05);SM处理在10—20 cm土层中2.00 mm粒径团聚体MBN含量提高23.02%(P0.05),分别提高2.00,2.00~1.00,0.25 mm粒径团聚体PNM含量28.59%,31.31%,32.48%(P0.05)。(3)PM处理较CK处理提高0—10 cm土层中0.25 mm粒径团聚体PNM含量(32.34%,P0.05)。(4)微团聚体(0.25 mm)氮组分含量均高于大团聚(0.25 mm)氮组分含量,但大团聚体氮组分贡献率为81.88%~87.66%。可见,SM处理可提高土壤表层大团聚体氮组分的贡献率,使更多的氮素储存在大团聚体中,而PM处理对团聚体氮素贡献率的影响作用较小。总体而言,与CK和PM处理相比,SM处理可提高总土壤氮组分含量,提高微团聚体和大团聚体氮组分含量,使更多的氮储存在大团聚体中,促进土壤氮素周转。  相似文献   

4.
Biochar has the potential to decrease salinity and nutrient loss of saline soil. We investigated the effects of biochar amendment (0–10 g kg−1) on salinity of saline soil (2.8‰ salt) in NaCl leaching and nutrient retention by conducting column leaching experiments. The biochar was produced in situ from Salix fragilis L. via a fire-water coupled process. The soil columns irrigated with 15 cm of water showed that biochar amendment (4 g kg−1) decreased the concentration Na+ by 25.55% in the first irrigation and to 60.30% for the second irrigation in sandy loam layer over the corresponding control (CK). Meanwhile, the sodium adsorption ratio (SAR) of soil after the first and second irrigation was 1.62 and 0.54, respectively, which were 15.2% and 49.5% lower than CK. The marked increase in saturated hydraulic conductivity (Ks) from 0.15 × 10–5 cm s−1 for CK to 0.39 × 10–5 cm s−1, following 4 g kg−1 of biochar addition, was conducive to salt leaching. Besides, biochar use (4 g kg−1) increased NH4+-N and Olsen-P by 63.63% and 62.50% over the CK, but accelerated NO3-N leaching. Since 15 cm hydrostatic pressure would result in salt accumulation of root zone, we would recommend using 4 g kg−1 of biochar, 30 cm of water to ease the problem of salt leaching from the surface horizon to the subsoil. This study would provide a guidance to remediate the saline soil in the Yellow River Delta by judicious application of biochar and irrigation.  相似文献   

5.
【目的】针对西北干旱气候条件下表层土壤贫瘠多盐的特点,研究亚表层(10—30 cm)培肥结合地膜覆盖对盐碱地土壤化学性质及微生物区系的影响,为盐碱地合理耕层的构建提供参考。【方法】试验设在内蒙古五原县,以向日葵为供试作物进行田间小区和微区试验。设常规翻耕(CK)、翻耕 + 地膜覆盖(PM)、施有机肥(106.8 t/hm2)于亚表层(OM)、亚表层有机培肥 + 地膜覆盖(OMP)共4个处理。测定了春灌前、后以及向日葵收获后,不同耕作措施下土壤剖面的pH值、盐分、有机质和速效养分含量以及微生物区系。【结果】春灌前,亚表层培肥处理(OM、OMP)10—30 cm土层盐分含量比CK、PM处理分别增加了37.1%~52.9%、32.1%~47.2% (P < 0.05),但在春灌后盐分含量无显著差异。地膜覆盖具有很强的抑制返盐效果,OMP处理效果好于PM处理。作物收获后,OMP处理0—10 cm表层返盐率相对CK、PM和OM处理分别降低了131%、77.6%和106%,PM处理相对CK和OM处理分别降低了53.5%和28.7% (P < 0.05)。与CK相比,OM、OMP处理10—30 cm土层pH值分别降低了0.36、0.60个单位(P < 0.05),有机质、速效氮、速效磷、速效钾分别增加了100%和127%、88.7%和105%、564%和514%、453%和400% (P < 0.05);30—40 cm土层pH值分别降低了0.45、0.44个单位(P < 0.05),速效磷和速效钾含量显著增加了517%和604%、191%和157%,OMP处理有机质含量显著增加了33.6% (P < 0.05)。高通量测序结果表明,OM、OMP处理显著提升了芽孢杆菌属(Bacillus)、交替赤杆菌属(Altererythrobacter)、降解类固醇杆菌属(Steroidobacter)、链霉菌属(Streptomyces)与诺卡氏菌属(Nocardioides)等优势菌群丰度(P < 0.05),但微生物多样性(Shannon指数和Simpson指数)和丰富度(ACE指数和Chao1指数)与CK、PM处理差异不显著。相关性分析结果表明,芽孢杆菌属、交替赤杆菌属、降解类固醇杆菌属、链霉菌属与诺卡氏菌属相对含量均与收获后0—40 cm有机质与速效养分含量呈极显著正相关,与pH值呈极显著负相关(P < 0.01),但与全盐含量无显著相关性。【结论】亚表层培肥结合地表覆膜一方面可有效降低盐分表层集聚,快速增加土壤有机质和速效养分,另一方面可提高土壤优势菌群丰度,增强有机物的矿化分解,是改良西北干旱区盐碱土的有效耕作措施。  相似文献   

6.
A field experiment was conducted for 10 years to examine the long‐term effects of non‐flooded mulching cultivation on rice yield and soil organic carbon on Chengdu Plain, south‐west China. Compared with traditional flooded cultivation (TF), non‐flooded plastic film mulching (PM) resulted in a 14% higher average rice (Oryza sativa L.) yield. However, non‐flooded straw mulching (SM) decreased the average rice yield by 11% compared with TF. After 10 years, PM led to similar or higher (SM) soil organic carbon (SOC) and total soil N (TN) in the top 5 cm of the soil profile compared with TF. No differences were found among the three cultivation systems in SOC or total N at 5–12 and 12–24 cm soil depths. Small macroaggregates (0.25–2 mm) were predominant in the top 5 cm of the soil (58–63% of whole soil) across the three cultivation systems. However, the proportion of large macroaggregates (>2 mm) from SM and PM was significantly larger than from TF in the top 5 cm of the soil. Non‐flooded mulching cultivation led to increased C and N contents in large macroaggregates and mean weight diameter of aggregates in the 0–5 cm soil depth. This suggests that non‐flooded mulching cultivation increased soil aggregation concomitant with soil C stabilization within the improved soil structure.  相似文献   

7.
降雨特性和覆盖方式对麦田土壤水分的影响   总被引:10,自引:7,他引:3  
为探明不同降雨特性和覆盖方式对冬小麦土壤水分的影响,利用人工模拟降雨器,模拟40和60mm/h2种降雨强度,在大田设置地膜覆盖(PM)、秸秆覆盖(覆盖量分别为1500、4500、7500和10500kg/hm2,即SM15、SM45、SM75和SM105),同时设置无覆盖处理作为对照(CK),研究不同降雨强度和覆盖方式对雨后冬小麦0~60cm土层土壤水分分布和降雨土壤蓄积量的影响。结果表明:模拟降雨前各覆盖处理土壤含水率均比CK高,其中0~20cm土层土壤含水率差异显著(P<0.05),而20cm以下各处理土壤水分相差较小,除SM105与CK差异显著外(P<0.05),其他处理与CK差异不显著;同一覆盖处理,60mm/h降雨强度条件下降雨入渗深度和入渗量明显高于40mm/h。在相同雨强条件下,不同覆盖处理可以不同程度的增加耕层土壤含水率,其中秸秆覆盖量越大,效果越明显,而PM效果最差;2种雨强条件下各处理0~60cm土层降雨土壤蓄积量规律表现一致,即SM105>SM75>SM45>SM15>CK>PM,其中SM105和SM75均显著高于CK(P<0.05),PM则显著低于CK(P<0.05);受植株冠层降雨截留的影响,同等降雨条件下,同一覆盖处理拔节前降雨土壤蓄积量大于拔节后的;相比60mm/h降雨强度,40mm/h降雨强度下各处理拔节前、后降雨土壤蓄积量变化幅度较大。  相似文献   

8.
Sun  Yongkang  Zhao  Tingning  Zhang  Yan  Ma  Deli  Yang  Jianying 《Journal of Soils and Sediments》2020,20(1):190-203
Purpose

Superabsorbent polymer (SAP) has been widely used to improve soil moisture conditions in the ecological restoration of mining land. The effect of SAP on water-soluble salt movement in SAP-modified gneiss spoil in a semiarid region was studied in this experiment.

Materials and methods

Weathered gneiss spoil, dress soil, SAP, and turf were mixed via the L25(56) orthogonal test, and the semiarid environmental conditions were controlled for 1 year in a climate chamber.

Results and discussion

The results showed that bulk density, field water-holding capacity, and daily average evaporation rate of the substrate were dominated by the proportions of the soil and turf contents but were not significantly influenced by the SAP. The water-soluble salt in the top layer of the substrate increased significantly as the SAP concentration increased; i.e., it increased by 36.5% per 0.1% increase in the SAP within the range of 0 to 1%. The major ions influenced by the SAP were Na+, Mg2+, Ca2+, Cl?, and SO42?. The SAP decreased the pH of the substrate before the experiment, but only the top layer was influenced by the increase in the SAP after 1 year. The electrical conductivity (EC), which reflects the content of soluble ions in different substrate layers, was significantly influenced by the SAP in the following order: EC-middle layer < EC-bottom layer < EC-top layer.

Conclusions

Based on the above results, we can conclude that the strong water and salt ion absorption ability of the SAP may limit the leaching of water-soluble ions and aggravate the accumulation of surface salts under semiarid environmental conditions. This study will be helpful for understanding the salt accumulation caused by the use of SAP in the remediation of mine spoil with high soluble salt contents.

  相似文献   

9.
人工模拟降雨条件下,在大田设置地膜覆盖(PM)、4种秸秆覆盖量(覆盖量分别为1 500,4 500,7 500,10 500 kg/hm2,即SM15、SM45、SM75和SM105),同时设置无疆盖处理作为对照(CK),研究不同覆盖方式对雨后冬小麦棵间蒸发量、土壤剖面水分和降雨土壤蓄积量的影响.结果表明:各处理雨后冬小麦逐日棵间土壤蒸发累积量和日变化有相同变化趋势;同一时间段内不同覆盖处理的土壤蒸发差异明显,各生育阶段土壤累积蒸发量和日蒸发量均表现为SM105sM75>SM45>SM15>CK>PM;受植株冠层降雨截留量增大的影响,冬小麦拔节期后各处理的土壤含水量和降雨土壤蓄积量明显低于拔节期前的.研究结果可为提高冬小麦农田自然降水的利用率,促进节水农业的发展提供基础理论依据.  相似文献   

10.
ABSTRACT

Soil available nutrients and soil salt ions are considered to play a significant role in soil fertility. A two-year field experiment was conducted to investigate the effects of different agricultural organic wastes on soil available nutrients and soil ions in a primary saline soil, located in the west of Jilin Province, China. The treatments were granular corn straw (GS), coarse corn straw (CS), sheep manure (SM), fodder grass (FG), and control (CK). The results showed that agricultural organic wastes effectively decreased soil pH by 1.28%-3.83%. The application of agricultural organic wastes also improved soil available nutrients, of which the available nitrogen (AN) increased by 23.64%-32.54%, the available phosphorus (AP) increased by 16% ?19.93%, and the available potassium (AK) increased by 2.78% – 8.42%. In contrast, the content of soil salt ions decreased significantly with the exception of potassium ions. Linear dependence suggests that, with the decrease of soil pH, the soil available nutrient content was higher. From the correlation analysis, the relationship between other salt ions and soil available nutrients showed an extremely significant negative correlation with the exception of potassium (K+). The redundancy analysis (RDA) showed that calcium (Ca2+) and potassium (K+) are the main factor affecting soil available nutrient content in 2a (about 12 months after organic wastes were applied) and 3a (about 24 months after organic wastes were applied), respectively. In conclusion, treatment GS is recommended for improving soil available nutrients and decreasing the pH and content of soil salt ions in primary saline-alkali soils.  相似文献   

11.
Purpose

Soil chromium (Cr) pollution has received substantial attention owing to related food chain health risks and possible promotion of greenhouse gas (GHG) emissions. The aim of the present study was to develop a promising remediation technology to alleviate Cr bioavailability and decrease GHG emissions in Cr-polluted paddy soil.

Materials and methods

We investigated the potential role of biochar amendment in decreasing soil CO2, CH4, and N2O emissions, as well in reducing Cr uptake by rice grains at application rates of 0 t ha?1 (CK), 20 t ha?1 (BC20), and 40 t ha?1 (BC40) in Cr-polluted paddy soil in southeastern China. In addition, the soil aggregate size distribution, soil organic carbon (SOC) concentration of soil aggregates, soil available Cr concentration, and rice yield were analyzed after harvesting.

Results and discussion

Biochar amendment significantly reduced CO2, CH4, and N2O emission fluxes. Compared to CK, total C emissions in the BC20 and BC40 treatments decreased by 9.94% and 17.13% for CO2-C, by 30.46% and 37.10% for CH4-C, and by 34.24% and 37.49% for N2O-N, respectively. Biochar amendment increased the proportion of both the 2000–200 μm and 200–20 μm size fractions in the soil aggregate distribution. Accordingly, the organic carbon concentration of these fractions increased, which increased the total SOC. Moreover, biochar amendment significantly decreased soil available Cr concentration and total Cr content of the rice grains by 33.6% and 14.81% in BC20 and 48.1% and 33.33% in BC40, respectively. Rice yield did not differ significantly between biochar amendment treatment and that of CK.

Conclusions

Biochar application reduced GHG emissions in paddy soil, which was attributed to its comprehensive effect on the soil properties, soil microbial community, and soil aggregates, as well as on the mobility of Cr. Overall, the present study demonstrates that biochar has a great potential to enhance soil carbon sequestration while reducing Cr accumulation in rice grains from Cr-polluted rice paddies.

  相似文献   

12.
为研究全膜覆土穴播栽培技术在环渤海低平原区对冬小麦田土壤水分、盐分、温度、热量状况和冬小麦产量的影响,采用田间试验法,于2014—2015年在中国科学院南皮生态农业试验站,设置全膜覆土穴播(PM)和常规旋耕播种(CK)冬小麦试验,定位监测了耕层土壤温度、水分、盐分和热通量数据动态,并分析了冬小麦产量。结果表明:PM在越冬期和返青期可以有效保持土壤水分,平均土壤含水量比CK高16.4%,达显著性差异(P0.05);但是,覆膜也阻隔了后期降水对土壤水分的补充,最大含水量差异可达10.0%。PM处理10 cm深土壤日均温度始终高于CK处理,平均增幅3.8%,差异不显著(P0.05);同时,PM减小了土壤温度日较差0.5℃。PM有利于土壤吸收和储存热量,白天具有较高的向下地面热通量,日均土壤热通量比CK显著增加数倍。温度和热通量变化均表明覆膜增强了土壤抵御外界温度变化的能力。PM的土壤电导率显著低于CK24.2%(P0.05),特别是在春季返盐期,PM的土壤电导率比CK降低39.7%。PM较CK增加了冬小麦穗粒数和千粒重,增产10.4%,但均未达显著水平。因此,全膜覆土穴播冬小麦栽培技术能改善土壤水热状况,降低土壤盐分对小麦的危害,这为全膜覆土穴播冬小麦栽培技术在环渤海低平原干旱区农业生产中的应用提供理论与技术支持。  相似文献   

13.
气候因子和地表覆盖对沿海滩涂土壤盐分动态的影响   总被引:3,自引:0,他引:3  
为探明气候因子对沿海滩涂表层土壤盐分季节性变化规律的影响,并探讨植被和秸秆覆盖对滩涂土壤脱盐效果及控盐的作用。2014年5月—2015年5月,在江苏沿海滩涂盐碱地(中重度盐分),设置4种处理进行田间试验,分别为对照(裸地,CK)、秸秆覆盖(覆盖量为15 t·hm-2,SM)、植被覆盖(PC)和植被+秸秆覆盖(覆盖量为7.5 t·hm-2,PC+1/2SM),监测了气候因子和表层土壤盐分的季节性动态变化。结果表明:1)在沿海滩涂裸地中,土壤盐分具有一定程度的季节性规律,表现为在10—12月具有明显的积盐效果,且在10月EC1︰5达到最大值为3.90 d S·m-1。2)相关分析表明:采样前7 d降雨累积量与土壤盐分变化有着极密切负相关关系;气候因子的多因子及互作逐步分析表明:降雨量增加可以促进土壤脱盐作用,大气温度升高可加剧土壤盐分表聚,降雨量和大气温度的互作效应增加会对土壤盐分累积产生正效应。3)地表覆盖(包括PC和SM)显著地改变了气候因子对土壤盐分动态变化的影响,累积降雨量和大气平均温度与土壤盐分无显著相关性,且大量秸秆覆盖对滩涂表层土壤脱盐具有更明显的效果。因此,在沿海气候向暖湿方向发展的趋势下,综合考虑脱盐及控盐作用,选择适量秸秆覆盖(如覆盖量15 t·hm-2)或适量秸秆覆盖结合植被种植覆盖,同时充分利用沿海地区降雨量集中的特点,可能是未来滩涂盐碱盐渍土快速脱盐和土壤改良的重要措施。  相似文献   

14.
以春小麦品种‘陇春27’为试材,采用田间试验法,以裸地平作为对照,研究半干旱区旱地全膜覆土穴播和全沙覆盖平作对小麦田土壤水分和产量的调节作用。结果表明:与裸地平作(CK)相比,全膜覆土穴播(PM)和全沙覆盖平作(SM)小麦田0~40 cm土壤水分条件明显改善,尤其在干旱年份,能满足小麦前期生长,同时促进小麦出苗后对0~200 cm土壤水分的利用;种植第1年PM在60~80 cm土层耗水量最大,SM和CK在40~60 cm土层耗水量最大;种植第2年PM以120~180 cm土层耗水量最多,SM和CK则以60~80 cm土层耗水量最多。连续种植两年后,PM耗水深度从120 cm延伸到200 cm,SM耗水深度从120 cm延伸到140 cm,CK耗水深度无变化;小麦田休闲效率PM最大,SM次之,CK最小,但是各处理休闲效率随种植年限增加而降低。可见,PM和SM能改善小麦前期生长水分环境,促进出苗后耗水,并加快小麦对土壤深层水分的利用,因而与CK相比,PM产量增加48.77%~815.79%,SM产量增加49.41%~702.24%。但随种植年限增加,耗水深度加大,休闲效率降低,多年种植可能对土壤水分生态产生不利影响。  相似文献   

15.
Li  Jianming  Wang  Wenlong  Guo  Mingming  Kang  Hongliang  Wang  Zhigang  Huang  Jinquan  Sun  Baoyang  Wang  Ke  Zhang  Guanhua  Bai  Yun 《Journal of Soils and Sediments》2020,20(11):3896-3908
Purpose

Large spoil heaps formed during construction projects have caused serious soil erosion and threatened ecological security. The recent researches on soil erosion of spoil heaps are based on one or several soil types, which can only represent the soil texture category within the limited area, but cannot be used in other larger scale areas. Soil texture and gravel are the main factors affecting infiltration and erosion processes of spoil heaps.

Materials and methods

The runoff plot dimensions were 5.0 m?×?1.0 m?×?0.5 m (length × width × depth). A series of rainfall experiments with a constant rainfall intensity of 1.0 mm min?1 and a slope gradient of 25° were conducted to investigate the effects of soil texture (sandy, loam, and clay) and gravel mass content (GC, 0%, 10%, 20%, and 30%) on the infiltration and erosion processes. The gravels are divided into 3 classes according to particle size 2–14 mm (small), 14–25 mm (medium), 25–50 mm (large), and the mass ratios were 30%, 50%, and 20%. The duration of each rainfall event was 45 min after runoff out of the plot.

Results and discussion

Results showed that there was a critical GC (10%) improving or controlling infiltration and soil loss. Infiltration rate of sandy spoil heap (SSH) decreased within 45 min, but it decreased first and then stabilized for loam spoil heap (LSH) and clay spoil heap (CSH). Soil loss rate (SLR) of SSH stabilized first and then increased, while it decreased and then stabilized for LSH and CSH. SLR at early stage (0–18 min) was 0.08–0.23 times than it was at later stage (18–45 min) for SSH, but it was 2.06–5.06 times and 1.46–1.95 times for LSH and CSH, respectively. The soil texture had a more significant effect on SLR (P?< 0.05) than GC did. The effects of gravel on SLRs were dependent on soil texture.

Conclusions

The greater the GC was, the lower the SLR was for the spoil heaps. Special attention should be paid to the later stage during rainfall events for SSHs and the early stage for LSHs and CSHs when considering erosion protection measures.

  相似文献   

16.
采用二因素完全随机试验设计,研究了3种水分条件(75%、65%、55%田间持水量)下无覆盖(CK)、地膜覆盖(PM)和秸秆覆盖(SM)处理对夏玉米籽粒灌浆特性、产量、耗水量及水分利用效率的影响。结果表明,不同水分条件下,各处理夏玉米籽粒增重进程符合Logistic生长曲线。相对于无覆盖处理,地膜和秸秆覆盖处理提高了夏玉米的灌浆速率、产量和水分利用效率。其中,中水分(65%田间持水量)条件下地膜和秸秆覆盖处理夏玉米产量及水分利用效率(WUE)增幅最大,增产率分别为21.99%和35.86%,水分利用效率增加幅度分别为16.41%和16.79%;其次为低水分(55%田间持水量)处理,高水分(75%田间持水量)处理增幅最小。  相似文献   

17.
Zhao  Fengyan  Zhang  Yongyong  Li  Zhijun  Shi  Jinwei  Zhang  Guoxian  Zhang  Hui  Yang  Lijuan 《Journal of Soils and Sediments》2020,20(1):380-391
Purpose

At present, the improvement of soil microbial function by the application of vermicompost in long-term monoculture system is rarely reported. We took advantage of a greenhouse pot experiment that examined the effects of vermicompost on soil microbial properties, enzyme activities, and tomato yield.

Materials and methods

Three soils subjected to 0, 5, and 20 years of continuous tomato cropping in a greenhouse were collected for a pot experiment. Treatments include chemical fertilizer (CF), vermicompost (VM), and poultry manure compost (PM). No fertilization was established as a control (CK). Biolog Eco microplates were used to measure soil microbial function.

Results and discussion

The results showed that compared to the CF and PM treatments, the VM treatment increased the abundances of bacteria (Bac, average 41% and 103%, respectively) and actinomycetes (Act, average 8.59% and 16.36%, respectively), while decreased the abundance of fungi (Fun, average 39% and 29%, respectively), and had the highest ratio of bacteria to fungi. Soil microbial activity, which was represented as the average well color development (AWCD), and microbial functional diversity were higher in the VM treatment than in the CF and PM treatments. The VM treatment led to greater improvement in soil health than the PM treatment, which expressed as the higher utilization of carboxylic acids and phenolic compounds in each type of soil. Catalase (Cat) and polyphenoloxidase (Ppo) activities in the VM treatment were significantly higher than those in the CF and PM treatments. We also found that the soil Cat activity, pH, available P, acid phosphatase (Pac) activity, and Ppo activity were important contributors to variation in the microbial population. Moreover, compared to CK, fruit yield in the VM treatment increased by 74%, 43%, and 28% in soils subjected to 0, 5, and 20 years of planting, respectively.

Conclusions

Our findings indicated that vermicompost can replace poultry manure compost to improve soil quality in greenhouse due to the ability of vermicompost to improve soil microbial functions.

  相似文献   

18.
ABSTRACT

Studying changes in soil organic carbon (SOC) pools and soil microbial C substrate utilization under plastic mulching in different seasons is of great significance for improving soil fertility and sustainable agricultural development. Based on a 2-year plastic film mulching experiment in northeastern China, we investigated the SOC, labile SOC fractions under three treatments: non-mulching (NM), autumn mulching (AM) and spring mulching (SM). The results showed that SOC decreased with soil depth under the AM and SM treatments compared with the NM treatment. The microbial biomass carbon (MBC) and dissolved organic carbon (DOC) under the AM treatment increased significantly in the 0–10 cm soil layer, by 31.2% and 27.2% (p < 0.05), respectively. The AM treatment significantly increased the utilization of amino acids and carbohydrate C sources. Redundancy analysis (RDA) indicated that MBC was the main factor influencing microbial metabolic functional diversity and accounted for the largest variation in the 0–10 cm layer. Pearson’s correlation analysis illustrated that MBC was strongly correlated with the utilization of the microbial C substrate. We suggest that AM may be an effective and sustainable management practice for improving soil quality and maintaining microbial functional diversity in semi-arid agroecosystems in this area.  相似文献   

19.
Purpose

Characterizations of soil aggregates and soil organic carbon (SOC) losses affected by different water erosion patterns at the hillslope scale are poorly understood. Therefore, the objective of this study was to quantify how sheet and rill erosion affect soil aggregates and soil organic carbon losses for a Mollisol hillslope in Northeast China under indoor simulated rainfall.

Materials and methods

The soil used in this study was a Mollisol (USDA Taxonomy), collected from a maize field (0–20 cm depth) in Northeast China. A soil pan with dimensions 8 m long, 1.5 m wide and 0.6 m deep was subjected to rainfall intensities of 50 and 100 mm h?1. The experimental treatments included sheet erosion dominated (SED) and rill erosion dominated (RED) treatments. Runoff with sediment samples was collected during each experimental run, and then the samples were separated into six aggregate fractions (0–0.25, 0.25–0.5, 0.5–1, 1–2, 2–5, >?5 mm) to determine the soil aggregate and SOC losses.

Results and discussion

At rainfall intensities of 50 and 100 mm h?1, soil losses from the RED treatment were 1.4 and 3.5 times higher than those from the SED treatment, and SOC losses were 1.7 and 3.8 times greater than those from the SED treatment, respectively. However, the SOC enrichment ratio in sediment from the SED treatment was 1.15 on average and higher than that from the RED treatment. Furthermore, the loss of <?0.25 mm aggregates occupied 41.1 to 73.1% of the total sediment aggregates for the SED treatment, whereas the loss of >?0.25 mm aggregates occupied 53.2 to 67.3% of the total sediment aggregates for the RED treatment. For the organic carbon loss among the six aggregate fractions, the loss of 0–0.25 mm aggregate organic carbon dominated for both treatments. When rainfall intensity increased from 50 to 100 mm h?1, aggregate organic carbon loss increased from 1.04 to 5.87 times for six aggregate fractions under the SED treatment, whereas the loss increased from 3.82 to 27.84 times for six aggregate fractions under the RED treatment.

Conclusions

This study highlights the effects of sheet and rill erosion on soil and carbon losses at the hillslope scale, and further study should quantify the effects of erosion patterns on SOC loss at a larger scale to accurately estimate agricultural ecosystem carbon flux.

  相似文献   

20.
Purpose

Frequent cultivation and overhead irrigation have led to severe surface crusting, erosion and poor irrigation performance on sandy clay loam soils in the Coal River Valley, Tasmania, Australia. This study was established to identify the key soil properties related to aggregate breakdown determined by different methods, and explore options for reducing soil crusting.

Materials and methods

Soil aggregates were collected from 0 to 5 cm depth from 20 sites managed for packet salad and lettuce production. The stability of air-dried 2.00–4.75 mm aggregates was determined by rainfall simulation, wet sieving and clay dispersion. Soil aggregates were analysed for particle size, mineralogy, soluble and exchangeable cations, pH, EC, labile carbon and total carbon. The association between aggregate stability and the measured soil properties was explored using Spearman correlation, linear regression and regression tree analysis.

Result and discussion

Aggregate stability determined by rainfall simulation was closely associated with soil properties that promote aggregation, including effective cation exchangeable capacity (ECEC) and the proportion of polyvalent cations (Ca2+, Al3+). In contrast, aggregate stability determined by wet sieving was associated with soil properties that promote disaggregation, including quartz and sand content, and to lesser extent, the proportion of monovalent cations (especially K+). Clay dispersion was closely associated with pH, quartz content, soil texture and the sodium adsorption ratio. Soil carbon appeared to have only moderate influence on aggregate stability, but not clay dispersion, while labile carbon was not significantly related to any measure of aggregate stability or clay dispersion. Similarly, the proportion of Na+ ions was not related to either measure of aggregate stability and was only moderately related to clay dispersion.

Conclusions

Options for improving aggregate stability appear limited as aggregate stability was strongly related to the content of inherent soil properties such as sand/quartz and smectite contents. However, high correlation between exchangeable Ca2+ and aggregate stability determined by rainfall simulation indicates that soil crusting may be reduced through application of products that rich in Ca2+ such as gypsum.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号