首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.

Purpose

Soil labile carbon (C) and nitrogen (N) pools are considered to be sensitive indicators of changes in soil C and N pools. In this study, we examined possible factors affecting spatial and seasonal variations in soil labile C and N pools in the riparian zones in Southeast Queensland, Australia.

Materials and methods

Soil and sediment samples were collected from two sites in the riparian areas. The spatial and seasonal variabilities of soil moisture, hot-water extractable organic C and total N (HWEOC and HWETN), microbial biomass C and N (MBC and MBN), and the relationships among them were examined.

Results and discussion

Soil labile C and N pools decreased along the transects in both soil depths of the two soil types, with the peak or bottom of values detected between upland slope and the riparian zone. Other factors rather than soil moisture were more important in regulating seasonal changes of soil HWEOC and HWETN except the dry-rewetting influence in November 2013. Soil moisture played a significant role in the seasonal variations of MBC and MBN. Soil labile C (HWEOC and MBC) and N (HWETN and MBN) pools at Site 1 (S1; heavy texture), which were significantly higher than those at Site 2 (S2; light texture).

Conclusions

Soil moisture would be an important driving factor for the spatial and seasonal distributions of soil labile C and N pools. Our study highlighted the importance of riparian zones as the hot spot of soil C and N dynamics, especially at the onset of rewetting dry soil in subtropical Australia.
  相似文献   

2.
Three mulch treatments were tested for their ability to control erosion on a sloping site. Additionally, the choice of mulch can also enhance revegetation success and improve soil organic matter input. This study aimed to investigate the effects of three mulching treatments, hydro-seeding, granite mulch and forest mulch, on soil C and N pools at different positions on highly erodible slope with approximately 30 % gradient. Soil moisture, total C (TC), total N (TN), hot water-extractable organic C (HWEOC), hot water-extractable total N (HWETN), microbial biomass C and N (MBC and MBN), inorganic N and potentially mineralisable N were measured. All variables were significantly higher in soils amended with forest mulch than those with hydro-seeding and granite mulch, for the same slope positions. Soil moisture was significantly higher in the lower slope position than middle and upper slope positions in hydro-seeding and granite mulch treatments, whereas no slope effect was observed on soil moisture under the forest mulch application. In the forest mulch treatment, the upper slope position had higher soil TC, TN, HWEOC, HWETN, MBC, MBN, NO3 ?-N and total inorganic N than the middle and lower slope positions. Five years following mulch application, forest mulch still exerted a significant influence on soil fertility compared to the other treatments and the influence on soil moisture suggests that this treatment would be the most effective in the control of water-driven soil erosion on this steep site.  相似文献   

3.
Tutua  Shane  Zhang  Yaling  Xu  Zhihong  Blumfield  Tim 《Journal of Soils and Sediments》2019,19(11):3786-3796
Purpose

This study aimed to investigate the benefits of retaining harvest residues on the dynamics of soil C and N pools following clear-cut harvesting of a slash pine plantation in South East Queensland of subtropical Australia.

Materials and methods

Immediately following clear-cut harvesting, macro-plots (10?×?10 m) were established on a section of the plantation in a randomised complete block design with four blocks and three treatments: (1) residue removal (RR0), (2) single level of residue retention (RR1) and (3) double level of residue retention (RR2). Soils were sampled at 0, 6, 12, 18 and 24 months following clear-cutting and analysed for total C and N, microbial biomass C (MBC) and N (MBN), hot water–extractable organic C (HWEOC), hot water–extractable organic N (HWEON), NH4+–N and NOx?–N.

Results and discussion

The study showed that although soil total C decreased in the first 12 months following clear-cutting, harvest residue retention increased soil total C and N by 45% (p?<?0.001) and 32% (p?<?0.001), respectively, over the 12–24 months. NH4+–N, HWEOC, HWEON and MBC showed initial surges in the first 6 months irrespective of residue management, which declined after the 6th month. However, residue retention significantly increased HWEOC and HWEON over the 12–24 months (p?<?0.001).

Conclusions

This study demonstrated that harvest residue retention during the inter-rotation period can minimise large changes in C and nutrient pools, and can even increase soil C and nutrient pools for the next plantation rotation.

  相似文献   

4.
ABSTRACT

Hot-water- and water-extractable organic matter were obtained from soil samples collected from a rice paddy 31 years after the start of a long-term rice experiment in Yamagata, Japan. Specifically, hot-water-extractable organic carbon and nitrogen (HWEOC and HWEON) were obtained by extraction at 80°C for 16 h, and water-extractable organic carbon and nitrogen (WEOC and WEON) were obtained by extraction at room temperature. The soil samples were collected from surface (0–15 cm) and subsurface (15–25 cm) layers of five plots that had been treated with inorganic fertilizers alone or with inorganic fertilizers plus organic matter, as follows: PK, NPK, NPK plus rice straw (RS), NPK plus rice straw compost (CM1), and NPK plus a high dose of rice straw compost (CM3). The soil/water ratio was 1:10 for both extraction temperatures. We found that the organic carbon and total nitrogen contents of the bulk soils were highly correlated with the extractable organic carbon and nitrogen contents regardless of extraction temperature, and the extractable organic carbon and nitrogen contents were higher in the plots that were treated with inorganic fertilizers plus organic matter than in the PK and NPK plots. The HWEOC and WEOC δ13C values ranged from ?28.2% to ?26.4% and were similar to the values for the applied rice straw and rice straw compost. There were no correlations between the HWEOC or WEOC δ13C values and the amounts of HWEOC or WEOC. The δ13C values of the bulk soils ranged from ?25.7% to ?23.2% and were lower for the RS and CM plots than for the PK and NPK plots. These results indicate that HWEOC and WEOC originated mainly from rice plants and the applied organic matter rather than from the indigenous soil organic matter. The significant positive correlations between the amounts of HWEOC and HWEON and the amount of available nitrogen (P < 0.001) imply that extractable organic matter can be used as an index for soil fertility in this long-term experiment. We concluded that the applied organic matter decomposed more rapidly than the indigenous soil organic matter and affected WEOC δ13C values and amounts.  相似文献   

5.

Purpose

Small but highly bioactive labile carbon (C) and nitrogen (N) pools are of great importance in controlling terrestrial C and N fluxes, whilst long-term C and N storage is determined by less labile but relatively large sizes of C and N pools. Little information is available about the effects of global warming and grazing on different forms of C and N pools in the Qinghai?CTibet Plateau of China. The aim of this study was to investigate the effects of warming and grazing on the sizes of different soil labile C and N pools and N transformation in this region.

Materials and methods

A free-air temperature enhancement system in a controlled warming?Cgrazing experiment had been implemented since May 2006. Infrared heaters were used to manipulate temperature, and a moderate grazing intensity was simulated by Tibetan sheep. After 3 years?? warming, soil samples were taken from the four treatment plots: no warming with no grazing; no warming with grazing; warming with no grazing; and warming with grazing. Concentrations of inorganic N in the 40?Ccm soil profiles were measured by a flow injection analyser. Microbial biomass C (MBC) and microbial biomass N (MBN) were measured by the fumigation?Cextraction method, and soluble organic C (SOC) and soluble organic N (SON) were determined by high-temperature catalytic oxidation. Total N (TN), C isotope composition (??13C) and N isotope composition (??15N) were determined using an isotope ratio mass spectrometer. Net N transformation under low temperature was studied in a laboratory incubation experiment.

Results and discussion

Warming and grazing treatments affected soil C and N pools differently, and these effects varied with soil depth. Warming significantly increased TN, MBC, MBN, and SON and decreased ??13C at the 10?C20 and 20?C30 cm soil depths, whilst grazing generally decreased SON at the 10?C20 and 20?C30 cm, and MBC at 20?C30 cm. At the 0?C10 cm depth, neither warming nor grazing alone affects these soil parameters significantly, indicating that there could be considerable perturbation on the soil surface. However, grazing alone increased NO 3 ? ?CN, total inorganic N, SOC and ??15N at the 0?C10 cm depth. Incubated at 4°C, warming (particularly with grazing) led to net immobilization of N, but no-warming treatments led to net N mineralization, whilst nitrification was strong across all these treatments. Correlations between MBC and SOC, and TN and MBN or SON were positive. However, SON was less well correlated with TN and MBN compared with the highly positive correlations between SOC and MBC.

Conclusions

It is clearly demonstrated that warming and grazing affected labile C and N pools significantly, but differently after 3 years?? treatments: Warming tended to enlarge labile C and N pools through increased litter inputs, whilst grazing tended to increase inorganic N pools, decrease SON and accelerate N cycling. Grazing might modify the mode that warming affected soil C and N pools through its strong impacts on microbial processes and N cycling. These results suggested that interactive effects of warming and grazing on C and N pools might have significant implications for the long-term C and N storage and productivity of alpine meadow ecosystem in the Qinghai?CTibet Plateau of China.  相似文献   

6.
Purpose

This study aimed to understand the mechanisms of the variations in carbon (C) and nitrogen (N) pools and examine the possibility of differentiating the burning effects from seasonal and pre-existed N limitations in a native suburban forest ecosystem influenced by prescribed burning in subtropical Australia.

Materials and methods

Soil and litterfall samples were collected from two study sites from 1 to 23 months since last burnt. Soil labile C and N pools, soil C and N isotopic compositions (δ13C and δ15N), litterfall mass production (LM), and litterfall total C, total N, δ13C and δ15N were analysed. In-situ gas exchange measurements were also conducted during dry and wet seasons for Eucalyptus baileyana and E. planchoniana.

Results and discussion

The results indicated that labile C and N pools increased within the first few months after burning, with no correlations with climatic factors. Therefore, it was possible that the increase was due to the burning-induced factors such as the incorporation of ashes into the soil. The highest values of soil and litterfall δ15N, observed when the study was commenced at the experimental sites, and their high correlations with climatic factors were indicative of long-term N and water limitation. The 13C signals showed that soil N concentrations and climatic factors were also two of the main factors controlling litterfall and foliage properties mainly through the changes in photosynthetic capacity and stomatal conductance.

Conclusions

Long-term soil N availabilities and climatic factors were the two of the main driving factors of C and N cycling in the studied forest sites. Further studies are needed to compare soil and litterfall properties before and after burning to profoundly understand the effects of prescribed burning on soil labile C and N variations.

  相似文献   

7.
Many questions have surfaced regarding long-term impacts of land-use and cultivation system on soil carbon (C) sequestration. The experiment was conducted at Ohio Agricultural Research and Development Center. Only minor variations of soil organic carbon (SOC) and nitrogen (N) fractions with depth under plow tillage (PT). The SOC, total nitrogen (TN), microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) concentrations were higher under grassland and forestland in the top 0–15 cm depth than arable soils. No-tillage (NT) also increased SOC and N fractions concentrations in the surface soils than PT. Compared to arable, grass and forest could significantly improve proportions of MBC and MBN, and reduce proportions of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON). NT and forest also increased the ratio of SOC/TN, MBC/MBN, and DOC/DON. Overall, grass and forest provided more labile C and improved C sequestration than arable. So did NT under arable land-use.  相似文献   

8.
Soil organic carbon (SOC) has a high impact on the sustainability of ecosystems, global environmental processes, soil quality and agriculture. Long-term tillage usually leads to SOC depletion. The purpose of this study was to determine the impact of different land uses on water extractable organic carbon (WEOC) fractions and to evaluate the interaction between the WEOC fractions and other soil properties. Using an extraction procedure at 20°C and 80°C, two fractions were obtained: a cold water extractable organic carbon (CWEOC) and a hot water extractable organic carbon (HWEOC). The results suggest that there is a significant impact from different land uses on WEOC. A lower relative contribution of WEOC in SOC and a lower concentration of labile WEOC fractions are contained in arable soil compared to forestlands. Chernozem soil was characterized by a lower relative contribution of WEOC to the SOC and thus higher SOC stability in contrast to Solonetz and Vertisol soils. Both CWEOC and HWEOC are highly associated with SOC in the silt and clay fraction (<53 µm) and were slightly associated with SOC in the macroaggregate classes. The WEOC fractions were highly and positively correlated with the SOC and mean weight diameter.  相似文献   

9.
ABSTRACT

There are many nitrogen (N) pools in soil, so their availability and different status can give information about bulk soil response to N deposition. However, the different size of N pools in forest soils and the relationship between them have not been well studied under N deposition when considering the role of litter. Here soil in an N-deposition experiment carried out for 5 years in a broad-leaved forest was used as an object to study the response of N pools to N deposition by stepwise extraction using water or solutions containing 0.5 M K2SO4, 2.5 M H2SO4 (LPI), or 13 M H2SO4 (LPII), and calculation of recalcitrant (RC) N pool. Under N control (CT), soil with the presence of litter had a higher N of 23.8–106.8% in the first four pools, but lower of 80.6% in recalcitrant N pool compared with soil with the absence of litter. In the absence of litter, N addition increased soil N in labile pool but decreased N in the RC pool compared to CT and these impacts were greater at high added N (HN) than low-added N (LN) rates. However, in the presence of litter, LN increased the amount of N in the K2SO4- extracted pool and HN reduced that in the water extracted pool. Additionally, LN and HN increased TN in the RC pool and HN increased the total soluble N (TSN) in the LPI and LPII pool. N changes in the water extraction pool were attributed to inorganic N, whereas they were NH4 + and soluble organic N (SON) in the K2SO4-extracted, LPI, and LPII pools. In the presence of litter, HN increased the SON concentration in the K2SO4, LPI, and LPII extractions; thus, SON may be a potentially important N form for N availability. These results suggested that N additions improve the accumulation of N in RC pool with the presence of litter. The different effects of N additions on soil N pool or N form in each pool depend on litter present or not.  相似文献   

10.
Our understanding of leaf litter carbon (C) and nitrogen (N) cycling and its effects on N management of deciduous permanent crops is limited. In a 30-day laboratory incubation, we compared soil respiration and changes in mineral N [ammonium (NH4+-N) + nitrate (NO3-N)], microbial biomass nitrogen (MBN), total organic carbon (TOC) and total non-extractable organic nitrogen (TON) between a control soil at 15N natural abundance (δ15N = 1.08‰) without leaf litter and a treatment with the same soil, but with almond (Prunus dulcis (Mill.) D.A. Webb) leaf litter that was also enriched in 15N (δ15N = 213‰). Furthermore, a two-end member isotope mixing model was used to identify the source of N in mineral N, MBN and TON pools as either soil or leaf litter. Over 30 d, control and treatment TOC pools decreased while the TON pool increased for the treatment and decreased for the control. Greater soil respiration and significantly lower (p < 0.05) mineral N from 3 to 15 d and significantly greater MBN from 10 to 30 d were observed for the treatment compared to the control. After 30 d, soil-sourced mineral N was significantly greater for the treatment compared to the control. Combined mineral N and MBN pools derived from leaf litter followed a positive linear trend (R2 = 0.75) at a rate of 1.39 μg N g?1 soil day?1. These results suggest early-stage decomposition of leaf litter leads to N immobilization followed by greater N mineralization during later stages of decomposition. Direct observations of leaf litter C and N cycling assists with quantifying soil N retention and availability in orchard N budgets.  相似文献   

11.
为揭示半干旱区沙质草地生态系统中表层土壤C、N组分对长期氮添加和地上凋落物处理的响应特征,以科尔沁沙地西南部国家野外科学观测研究站建立的长期(9年)氮添加和凋落物处理样地为平台,测定并分析该样地表层土壤环境因子、铵态氮、硝态氮、总有机碳、不同碳氮组分。结果表明:(1)持续9年的氮添加和地上凋落物处理对表层土壤环境因子和不同碳氮组分无交互作用;(2)氮添加处理显著降低土壤pH(p<0.01),增加土壤中硝态氮的含量(p<0.05),其增长幅度为37.57%,并显著增加溶解性有机氮(DON)和易变活性氮(LON)的含量(p<0.01,p<0.05);(3)地上凋落物去除显著降低土壤总有机碳(TOC)、易变缓性碳(IOC)、微生物生物量碳(MBC)和微生物生物量氮(MBN)含量(p<0.05);(4)经过9年氮添加和地上凋落物处理,半干旱区沙质草地表层土壤中不同碳氮组分与土壤环境因子间相关性并不密切。即长期氮添加和地上凋落物处理会改变表层土壤不同碳、氮组分的含量,但并未显著改变各碳、氮组分的比值。研究结果为揭示长期氮添加和地上凋落物处理对半干旱区沙质草地土壤C、N贮存和预测未来土壤生物地球化学元素动态研究提供参考资料。  相似文献   

12.
Exudates are part of the total rhizodeposition released by plant roots to soil and are considered as a substantial input of soil organic matter. Exact quantitative data concerning the contribution of exudates to soil C pools are still missing. This study was conducted to reveal effects of 13C‐labeled exudate (artificial mixture) which was regularly applied to upper soil material from two agricultural soils. The contribution of exudate C to water‐extractable organic C (WEOC), microbial biomass C (MBC), and CO2‐C evolution was investigated during a 74 d incubation. The WEOC, MBC, and CO2‐C concentrations and the respective δ13C values were determined regularly. In both soils, significant incorporation of artificial‐exudate‐derived C was observed in the WEOC and MBC pool and in CO2‐C. Up to approx. 50% of the exudate‐C amounts added were recovered in the order WEOC << MBC < CO2‐C in both soils at the end of the incubation. Newly built microbial biomass consisted mainly of exudates, which substituted soil‐derived C. Correspondingly, the CO2‐C evolved from exudate‐treated soils relative to the controls was dominated by exudate C, showing a preferential mineralization of this substrate. Our results suggest that the remaining 50% of the exudate C added became stabilized in non‐water‐extractable organic fractions. This assumption was supported by the determination of the total organic C in the soils on the second‐last sampling towards the end of the incubation. In the exudate‐treated soils, significantly more soil‐derived C compared to the controls was found in the WEOC on almost all samplings and in the MBC on the first sampling. This material might have derived from exchange processes between the added exudate and the soil matrix. This study showed that easily available substrates can be stabilized in soil at least in the short term.  相似文献   

13.
Abstract

The role of intrinsic soil properties and management induced changes in bulk density on legume shoot biomass‐nitrogen (N) turnover to soil mineral N [nitrate (NO3) plus ammonium (NH4)], SMN, through soil microorganisms is poorly understood. In this study, the influence of intrinsic soil properties and changes in bulk density in soils amended with red clover (Trifolium pratense L.) on N immobilization/remineralization was investigated. Time in incubation, soil type, bulk density, and legume amendment had significant influence on the amounts of microbial biomass carbon (C) (MBC), N (MBN), and the SMN measured during incubation. During the first 32 days in incubation, MBC and MBN in the legume‐amended soils were higher than the control whereas an opposite trend existed for SMN. The SMN measured at the end of incubation, i.e., 70 days after incubation, was significantly higher than the unamended control. The ratio of SMN to MBN (SMN:MBN) was < 1.0, in general, during the first 32 days in incubation in legume amended soils, indicating N immobilization in microbial biomass during this period. Forty‐two days after incubation, the SMN:MBN ratios in the legume amended soils were >1.0, indicating remineralization of the immobilized N, derived, at least partially, from the legume. In the unamended control, these ratios were > 1.0 throughout the incubation. Over time, 63% to 76% of the variability in N‐immobilization/remineralization (SMN:MBN) was accounted for clay content, water (WFP) and air (AFP) filled porosities, volume fraction of pores (VFP) <1.5 μm, total N, C to N ratios in soils, bulk density, and legume amendment. The results indicate the influence of intrinsic soil properties and bulk density on microbially mediated legume N turnover to SMN changed over time.  相似文献   

14.
山核桃集约经营过程中土壤微生物量碳氮的变化   总被引:1,自引:1,他引:1  
[目的]研究不同集约经营历史山核桃林的土壤微生物量碳氮的演变规律,为山核桃林地土壤管理提供科学依据。[方法]在浙江省临安市分别采集并分析了经营历史为5,10,15,20a的山核桃林土壤样品,并与天然混交林(0a)进行比较。[结果]天然混交林改造为山核桃纯林并经集约经营后,林地土壤微生物量碳(MBC)、微生物量氮(MBN)、MBC/MBN,MBC/SOC均表现出先下降而后上升的趋势,经过10a经营后降到最低水平,与0a相比,0—10cm土层MBC,MBN和MBC/SOC分别降低了52.1%,32.0%和31.0%。经营10a的林地土壤MBC/MBN显著低于前期经营林地,而MBN/TN在经营过程中的差异并不显著。[结论]山核桃集约经营后,林地土壤微生物量碳氮含量显著下降。  相似文献   

15.
有机物料输入稻田提高土壤微生物碳氮及可溶性有机碳氮   总被引:27,自引:6,他引:27  
土壤微生物量碳、氮和可溶性有机碳、氮是土壤碳、氮库中最活跃的组分,是反应土壤被干扰程度的重要灵敏性指标,通过设置相同有机碳施用量下不同有机物料处理的田间试验,研究了有机物料添加下土壤微生物量碳(soil microbial biomass carbon,MBC)、氮(soil microbial biomass nitrogen,MBN)和可溶性有机碳(dissolved organic carbon,DOC)、氮(dissolved organic nitrogen,DON)的变化特征及相互关系。结果表明化肥和生物碳、玉米秸秆、鲜牛粪或松针配施下土壤微生物量碳、氮和可溶性有机碳、氮显著大于不施肥处理(no fertilization,CK)和单施化肥处理,分别比不施肥处理和单施化肥平均高23.52%和12.66%(MBC)、42.68%和24.02%(MBN)、14.70%和9.99%(DOC)、22.32%和21.79%(DON)。化肥和有机物料配施处理中,化肥+鲜牛粪处理的微生物量碳、氮和可溶性有机碳、氮最高,比CK高26.20%(MBC)、49.54%(MBN)、19.29%(DOC)和32.81%(DON),其次是化肥+生物碳或化肥+玉米秸秆处理,而化肥+松针处理最低。土壤可溶性有机碳质量分数(308.87 mg/kg)小于微生物量碳(474.71 mg/kg),而可溶性有机氮质量分数(53.07 mg/kg)要大于微生物量氮(34.79 mg/kg)。与不施肥处理相比,化肥和有机物料配施显著降低MBC/MBN和DOC/DON,降低率分别为24.57%和7.71%。MBC和DOC、MBN和DON随着土壤有机碳(soil organic carbon,SOC)、全氮(total nitrogen,TN)的增加呈显著线性增加。MBC、MBN、DOC、DON、DOC+MBC和DON+MBN之间呈极显著正相关(P<0.01)。从相关程度看,DOC+MBC和DON+MBN较MBC、DOC、MBN、DON更能反映土壤中活性有机碳和氮库的变化,成为评价土壤肥力及质量的更有效指标。结果可为提高洱海流域农田土壤肥力,增强土壤固氮效果,减少土壤中氮素流失,保护洱海水质安全提供科学依据。  相似文献   

16.
Although considerable research has been conducted on the importance of recent litter compared with older soil organic matter as sources of dissolved organic carbon (DOC) in forest soils, a more thorough evaluation of this mechanism is necessary. We studied water‐extractable organic carbon (WEOC) in a soil profile under a cool‐temperate beech forest by analysing the isotopic composition (13C and 14C) of WEOC and its fractions after separation on a DAX‐8 resin. With depth, WEOC became more enriched in 13C, which reflects the increasing proportion of the hydrophilic, isotopically heavier fraction. The 14C content in WEOC and its fractions decreased with depth, paralleling the 14C trend in soil organic matter (SOM). These results indicate a dynamic equilibrium of WEOC and soil organic carbon. The dominant process maintaining the WEOC pool in the mineral soil appears to be the microbial release of water‐soluble compounds from the SOM, which alters in time‐scales of decades to centuries.  相似文献   

17.
Microbial biomass, β-glucosidase and β-glucosaminidase activities, and availability, storage, and age of soil organic C were investigated after 26 years of conversion from sugarcane (Saccharum officinarum) to forest (Eucaliptus robusta or Leucaena leucocephala), pasture (mixture of tropical grasses), and to vegetable cropping (agriculture) in a vertisol in Puerto Rico. Soil organic C (SOC) at 0–100 cm was similar under Leucaena (22.8 kg C/m2), Eucalyptus (18.6 kg C/m2), and pasture (17.2 kg C/m2), which were higher than under agriculture (13.0 kg C/m2). Soil organic N (SON) at 0–100 cm was similar under the land uses evaluated which ranged from 1.70 (under agriculture) to 2.28 kg N/m2 (under Leucaena forest). Microbial biomass C (MBC) and N (MBN) of the 0–15-cm soil layer could be ranked as: pasture > Leucaena = Eucalyptus > agriculture. The percentages of SOC and SON present as MBC and MBN, respectively, were nearly 1% in pasture and less than 0.50% in forest under Leucaena or Eucalyptus and agricultural soil. The activity of β-glucosidase of the 0–15-cm soil layer could be ranked as: Leucaena = Eucalyptus > pasture > agriculture; while β-glucosaminidase activity was ranked as: Eucalyptus > Leucaena = pasture > agriculture. The soil δ 13C changed from 1996 to 2006 in forest under Eucalyptus (18.7‰ to 21.2‰), but not under Leucaena (20.7‰ to 20.8‰). The soil under Leucaena preserved a greater proportion of old C compared to the forest under Eucalyptus; the former had an increased soil mineralizable C from the current vegetation inputs. The soil under agriculture had the lowest enzyme activities associated with C cycling, lowest percentage of SOC as MBC, highest percentage of SOC present as mineralizable C, and highest percentage of MBC present as mineralizable C compared to the other land uses.  相似文献   

18.
Cold (22 oC) and hot water (80 oC) extractions have been used to estimate labile organic carbon (C) and nitrogen (N) in soils. Sequentially extracted cold and hot water organic matter (WEOM) from 14 Alaskan soils under different land uses were characterized by ultraviolet and fluorescence spectroscopies. Compared to cold WEOM, the ultraviolet (UV) absorptivity at 254 nm and fluorescence index were significantly (P < 0.05) decreased in hot WEOM of all soils. The biodegradability, assessed in a 21-d solution incubation, of hot WEOC and WEON was significantly (P < 0.05) greater than that of cold WEOC and WEON in all soils. The biodegradability of cold or hot WEOC was correlated with the protein-like component, indicating that a protein-like fluorophore is a labile fraction in both cold and hot WEOM pools. Information derived from this work contributed to better understanding of subarctic soil WEOM properties and their biodegradability.  相似文献   

19.
Purposes

Prescribed burning is projected to be adopted more frequently with intensifying climate change; thus, a long-term study is necessary to understand the burning impacts on forest productivity and carbon (C) and nitrogen (N) cycling. Litter fall production rate can be used to indicate burning impacts on forest productivity, whereas N concentration, and C and N isotope composition (δ13C and δ15N) can be used to infer burning impacts on C and N cycling in plant-soil system.

Materials and methods

In this study, the impacts of low-intensity prescribed burning on litter production, N concentration, and C and N isotope compositions were continuously investigated for 6 years at five study sites in a natural eucalypt forest of subtropical Australia.

Results and discussion

Higher leaf litter production rate, N concentration and δ15N, and lower δ13C could be seen shortly after prescribed burning. The higher leaf litter N concentration and lower δ13C were likely due to the ease of competition for soil N and moisture from understory vegetation in the short term by prescribed burning. Leaf δ15N and N concentration were closely correlated, and seasonal changes in leaf litter production rate, δ13C and δ15N were observed. Burning season and related severity might determine the suppression degree of understory vegetation. Time since fire (TSF) was a significant impact factor influencing the litter fall production rate, N concentration, δ13C and δ15N of leaf litter fall for a decade following prescribed burning. However, monthly rainfall and temperature were less consistent in their impacts.

Conclusions

Nitrogen limitation was enhanced by prescribed burning through the removal of litter and understory vegetation in the N poor forest and might be responsible for the long-term burning impacts. Low-intensity prescribed burning might have a long-lasting impact on forest litter productivity in nutrient poor forests in subtropical Australia.

  相似文献   

20.
Lumbricus terrestris' middens contain large concentrations of organic material and have been characterized as microenvironments distinct from the surrounding soil. The direct and indirect consequences of midden formation on nutrient cycling dynamics and organic matter pools in various ecosystem types have not received much consideration. Therefore, we focused on the differences in C and N dynamics between midden and bulk soil samples in four corn (Zea mays L.) agroecosystems, a rotational pasture and a deciduous forest, in June, July and August of 1996, in Ohio, USA. Paired earthworm midden and bulk soil samples were analyzed for mineral N (NH4+-N and NO3--N), dissolved organic N, microbial biomass N (MBN) and carbohydrate C (CarbC). Additionally, coarse litter, fine litter, particulate organic matter, and soil organic matter fractions were separated and analyzed for total C, total N and C:N ratios. Mineral and dissolved N levels were higher in the midden soil relative to those in the bulk soil for all ecosystem types, except for only NO3--N levels in two highly fertilized agroecosystems and in the pasture. MBN, CarbC, and total C and N levels for all organic fractions were significantly greater in the earthworm midden samples relative to these in the bulk samples across all ecosystem types. The plan defined by principal component analysis clearly separated two main groups: (1) includes the forest, the pasture and the less fertilized cornfields and the midden effect is to increase slightly the organic matter content and strongly the inorganic N content, and (2) includes the heavily fertilized agroecosystems and the midden effect is also to increase the organic matter content but to decrease the inorganic N content. We concluded that L. terrestris' middens significantly raised overall soil C and N levels relative to the bulk soil, in a variety of ecosystem types, and, given the abundance of earthworm middens, these macrosites should receive important attention when evaluating nutrient cycling processes at the systems level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号