首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
本研究设计了不同肥料和不同施肥管理方式等8种处理,以期通过研究不同减量施肥处理下稻田田面水中氮素和磷素的动态变化来了解研究区面源污染状况及风险。结果表明,各减量化处理均能有效保证水稻产量,同时不同程度降低了田面水中的氮磷浓度,降低流失潜能。总氮和铵氮分别在施肥后第1天和第3天达到峰值,一周之后降至较低水平,铵氮是田面水中氮素流失预防的主要监测对象。总磷和可溶态磷均在施肥后第1天便达到峰值,之后迅速降低至稳定,5天后总磷浓度降至1 mg/L以下,可溶态磷/总磷基本在0.5以下,田面水中磷素的主要流失形态为悬浮颗粒态磷。此外,后期的施氮行为会引起田面水中可溶态磷/总磷的上升,使可溶态磷相对流失潜能增大。  相似文献   

2.
浮萍对稻田田面水中氮素转化与可溶性氮的影响   总被引:1,自引:0,他引:1  
浮萍是稻田田面水中大量存在的典型水生植物,本试验采用室内培养的方法,以采自浙江省嘉兴市双桥农场的青紫泥水稻土为例,探讨了不同初始密度的浮萍对稻田施尿素后田面水尿素水解及可溶性氮浓度的影响。结果表明,浮萍可明显加快田面水尿素态氮的水解过程,对照、低浓度浮萍(D1)和高浓度浮萍(D2)处理中尿素水解速率常数k分别为0.02,0.03,0、04/h;试验前期,浮萍将大量的铵态氮(NH4^+-N)吸收同化后储存于体内.而从第12天(D2处理)和15天(D1处理)开始,由于浮萍的释氮作用导致田面水中NH4^+-N浓度逐步回升,同时硝态氮(NO3^--N)浓度也明显增加,说明浮萍在田面水氮索浓度较高时可大量积累氮索而浓度较低时可以向田面水中释放氮素,这有利于降低施肥初期田面水氮素流失潜能和保证施肥后期作物的氮营养供应。  相似文献   

3.
为揭示聚天门冬氨酸尿素在水稻上的施用效果,特别是降低田面水中氮素浓度、防控水稻氮素面源污染的效果,采用田间小区试验,对聚天门冬氨酸尿素对水稻产量、吸氮量、田面水中氮素形态及浓度的影响进行研究。结果表明:与普通尿素处理相比,聚天门冬氨酸尿素处理的水稻籽粒产量和吸氮量分别增加 2.9%和10.5%,且有一定的增加单穗实粒数和千粒重的作用。聚天门冬氨酸尿素处理施肥后初期(基肥后 1~7 d,分蘖肥后 1~5 d,穗肥后 1~3 d)田面水中 TN、NH 4+-N、NO3--N的平均浓度分别比普通尿素处理低 10.6%、11.1%、5.4%,但二者田面水中TN、NH 4+-N、NO3--N浓度的动态变化规律基本一致,且二者田面水中NH 4+-N/TN、NO3--N/TN没有差异。因此,聚天门冬氨酸尿素对水稻有一定的增产和促进氮素吸收的作用,同时会降低稻田田面水中氮素浓度,是一种可以用于防控稻田氮素流失,并能保障水稻产量的新型肥料。  相似文献   

4.
茶多酚对产脲酶菌生长和脲酶分泌的影响   总被引:8,自引:0,他引:8  
尿素施入土壤后受土壤脲酶作用易导致氨的挥发和氮素损失[1,2].脲酶抑制剂能够抑制脲酶活性,减缓尿素水解,是提高尿素肥效的重要途径之一.因而脲酶抑制剂的寻找和应用倍受关注[3,4].国内外已开发出品种繁多的脲酶抑制剂,但多数脲酶抑制剂还存在应用效果不稳定和对环境污染问题,制约了其应用[5].  相似文献   

5.
江汉平原稻田田面水氮磷变化特征研究   总被引:9,自引:1,他引:8       下载免费PDF全文
在江汉平原地区,因水肥管理粗放,特别是人为排放刚施肥泡田水,水稻种植引发的氮磷面源污染问题比较严重,迫切需要掌握稻田氮、磷动态特征,并据此进行科学的肥水管理。采用大田试验的方法,设置不同氮磷梯度,研究了江汉平原稻田田面水氮磷形态与浓度动态变化特征及施肥的影响。结果表明:施尿素后,田面水可溶性总氮(DTN)、可溶性有机氮(DON)和铵态氮(NH_4~+-N)占总氮(TN)的比例分别在88.0%、44.7%和31.6%以上,且随施氮量增加而增大;施磷肥后,田面水中颗粒态磷(PP)占总磷(TP)的比例为76%~93%,且随施磷量的增加而降低。田面水中氮素浓度与施氮量之间呈分段线性相关关系,当施氮量分别超过287.8、289.9、231.5和336.7kg·hm-2后,TN、DTN、NH_4~+-N和DON的浓度会跃增;田面水中各形态磷素浓度均随施磷量的增加而线性增加。施氮肥后,田面水中TN和DTN浓度均在施肥后1 d达到峰值,在基肥和分蘖肥后5 d、穗肥后2 d降低至与不施氮肥基本接近;NH_4~+-N浓度在基肥和分蘖肥后2d、穗肥后1d达到峰值,基肥和分蘖肥后5 d、穗肥后2 d后降低至与不施氮肥趋同。施磷肥后TP、PP和可溶性总磷(DTP)的浓度均在施肥后1 d达到峰值,3 d后急剧降低,降幅均在79.0%以上。可见,在江汉平原地区,施尿素后田面水中氮素以DTN为主,尤其是DON和NH_4~+-N,施磷肥后以PP为主。减少氮、磷肥用量可降低稻田氮、磷损失,且氮肥施用量应尽可能控制在231.5 kg·hm-2以内。施基肥和分蘖肥后5 d内、施穗肥后2 d内是江汉平原稻田氮素损失的关键控制期,施磷肥后3 d内是磷素流失的关键控制期。  相似文献   

6.
脲酶/硝化抑制剂双控下红壤性水稻土氮素变化特征   总被引:5,自引:2,他引:3       下载免费PDF全文
以红壤性水稻土为对象,设置大田试验处理:不施肥(CK)、单施氮肥(U)、氮肥配施0. 5%脲酶抑制剂N-丁基硫代磷酰三胺(NBPT)与1%硝化抑制剂3,4-二甲基吡唑磷酸盐(DMPP)(U+N/D)、氮肥配施1%NBPT与2%DMPP [U+2 (N/D)],研究4种施肥组合下双季稻土壤脲酶、土壤NH+4-N、田面水NH+4-N和NO-3-N的变化特征。结果表明,与CK和U处理相比,各施肥处理在施肥后第1~15 d,土壤脲酶活性、土壤NH+4-N、田面水NH+4-N含量增加,田面水NO-3-N含量无显著变化。与U+2 (N/D)处理相比,早稻中U+N/D处理的脲酶活性显著增加了0. 03~0. 70 mg·g-1,土壤NH+4-N含量显著增加了19. 11~61. 44 mg·kg-1,田面水NH+4-N含量显著增加了34. 48~40. 70 mg·L-1。相关分析表明,土壤NH+4-N与土壤脲酶、田面水NH+4-N均呈显著负相关,田面水NH+4-N与土壤脲酶、田面水NO-3-N均呈显著正相关(P 0. 05)。综上,与其他处理相比,U+N/D处理是在短期内有效提高土壤脲酶活性、土壤NH+4-N和田面水NH+4-N含量的最优处理,合理配施尿素及0. 5%脲酶抑制剂NBPT和1%硝化抑制剂DMPP能够显著提高NH+4-N供水稻吸收,减少氮素损失。  相似文献   

7.
前氮后移对水稻产量形成和田面水氮素动态变化的影响   总被引:3,自引:0,他引:3  
通过田间小区试验,在施氮量180 kg/hm~2水平下,设置4个氮肥运筹比例,基肥∶分蘖肥∶穗肥的比例分别为10∶0∶0(T1),4∶3∶3(T2),2∶3∶5(T3),0∶3∶7(T4),研究氮肥后移对水稻产量形成和稻田田面水氮素动态变化的影响。结果表明:与氮肥全部作为基肥施用的处理相比,将前期氮肥的30%甚至50%后移到穗肥施用,对水稻产量没有明显影响,而氮肥后移70%至穗肥会使水稻产量显著下降。田面水中总氮(TN)和可溶性总氮(DTN)浓度在每次施肥后1天达到峰值,铵态氮(NH_4~+-N)浓度在基肥和分蘖肥后1天达到峰值,穗肥后3天达到峰值,随后逐渐降低至与不施氮肥处理相当。整个基肥期、分蘖肥后20天内和穗肥后9天内是防止稻田氮素流失的关键期。施尿素后,DTN是田面水氮素的主要部分,DTN以无机氮(IN)为主,而NH_4~+-N在IN中所占比例达64.0%以上。比较水稻生育过程中氮素流失风险期内的TN、DTN和NH_4~+-N三氮浓度,相比T1,T2的三氮浓度分别降低了2.9%,1.6%,3.1%,T3的三氮浓度分别降低了15.5%,14.7%,22.3%,T4的三氮浓度分别降低了16.1%,22.9%,34.1%,结合产量,确定基肥∶分蘖肥∶穗肥比例为2∶3∶5的氮肥后移措施能够在保证水稻产量不下降的同时,有效降低稻田氮素的流失风险。  相似文献   

8.
通过微区模拟稻田试验,分析了免耕、浅耕和深耕3种耕作模式下滞水时间不同的稻田排水中氮磷的动态特征及总氮、总磷流失潜能,研究了稻田夏季施肥耕作模式和滞水时间对氮磷的减排效能。结果表明:(1)深耕有利于土壤固肥作用的发挥,田面水中TN和NH4+-N浓度呈逐渐下降的趋势。浅耕和深耕土壤中微生物环境利于硝化反应,不易被土壤吸附的NO3--N得以迅速向田面水中释放。免耕和深耕处理的田面水中TP和DP浓度在第1~5 d内浓度较高,3个耕作处理的滞排水中TP和DP在耕作处理5 d后均处于较低的浓度水平。(2)不同耕作模式滞水5 d后TN的绝对流失量均处于较低水平。免耕、浅耕、深耕在滞水5 d后可分别减少田面水中TN流失59.55%~65.68%、70.15%~88.20%和65.23%~77.26%。深耕处理的模拟稻田田面水中TN的流失潜能相对较小。不同耕作模式处理相对流失形态与潜能以TN为主。(3)免耕处理田面水中TP的绝对流失量最大,浅耕处理田面水中TP绝对流失量最少。免耕、浅耕、深耕在滞水5 d后再排水可分别减少田面水中TP流失54.70%~67.78%、62.99%~85.09%和52.45%~87.99%。浅耕处理模拟稻田田面水中TP的相对流失潜能较小。不同耕作模式处理田面水中磷素的相对流失形态表现出一定的差异性,田面水中磷素流失形态随时间变化呈现出TP与DP交替变化的现象。总之,从减少田面水中氮磷的绝对流失量出发,夏季浅耕不失为最佳清洁耕作模式;同时在滞水5 d后排水,能有效减少田面水中氮磷的流失量,减少稻田排水对面源污染的影响。  相似文献   

9.
生物炭施用对稻田氮磷肥流失的影响   总被引:3,自引:0,他引:3  
针对宁夏引黄灌区稻田过量施肥导致土壤养分利用效率低的问题,通过田间小区试验,在优化施氮条件下(240kg·hm~(-2)),设4个生物炭水平(0、4500、9000、13500kg·hm~(-2)),研究施用外源生物炭对稻田氮磷流失和土壤养分含量的影响。结果表明:生物炭对稻田田面水氮素动态产生影响,表现为田面水中全氮、硝态氮含量随生物炭用量的增加而降低,铵态氮表现则相反;全氮和铵态氮的最大峰值出现在第1次追施氮肥后的第2天,最大值为34.86、8.28mg·L~(-1);硝态氮最大峰值3.31mg·L~(-1)出现在第2次追施氮肥后的第2天。随后均迅速下降,全氮含量在施氮肥后10d回到第1次追氮前的含量水平,并趋于稳定,铵态氮和硝态氮则在7d后。生物炭对田面水全磷未产生显著影响,全磷含量在第1次施氮肥后3d达到峰值,为3.69mg·L~(-1),之后迅速下降,6~7d后降至追氮前的含量水平,并趋于稳定。生物炭处理显著降低了稻田全氮流失量8.03%~13.36%,高量炭处理(13500kg·hm~(-2))显著提高了土壤全氮和有机质含量,提高幅度分别为41.2%和27.5%(P0.05)。说明生物炭对稻田磷流失、土壤全磷和速效磷含量无显著影响,对降低稻田氮素淋失表现出积极效果。  相似文献   

10.
不同农艺措施条件下稻田田面水总氮动态变化特征研究   总被引:5,自引:3,他引:2  
通过盆栽试验,对稻田田面水总氮在不同农艺措施条件下动态变化规律进行了研究,并对该规律进行了数字拟合,以便为控制稻田氮素流失提供理论依据和技术途径.结果表明:田面水总氮浓度在施肥后第一天达到高峰,随着时间的推移不断降低,并且在每次施肥后7-9 d下降到较低水平;施肥水平和田面水总氮浓度呈正相关关系;施肥方式对田面水总氮有较大影响.随着施肥深度加深,田面水总氮含量逐渐降低;不同肥料种类对田面水总氮亦有影响,全部施用复合肥处理浓度最大,施用复合肥+碳铵处理浓度最小;有机肥作为缓释肥料在试验初期对田面水总氮贡献不大;沙土较粘壤土处理田面水总氮浓度大.  相似文献   

11.
太湖地区铁渗水耕人为土稻季上氮肥的氨挥发   总被引:7,自引:0,他引:7  
系统地研究了太湖地区铁渗水耕人为土(黄泥土)稻田上施入的尿素通过氨挥发损失的过程和数量,以及土壤等条件对其影响,可为减少该地区稻季氮肥氨挥发损失,提高氮素利用率提供理论依据。试验应用连续气流密闭室法测定了太湖地区典型稻麦轮作制度中稻季不同施氮量下的水稻基肥、分蘖和孕穗期施用尿素的氨挥发损失,并对其影响因素(田面水中NH4^+-N浓度、pH值等)的作用进行了分析研究。结果表明,水稻施用尿素后的氨挥发损失量占施肥量的3.7%~11.7%,其中以分蘖肥时期损失最大,其次为穗肥,基肥氨挥发损失最小,氨挥发损失主要时期是在施肥后7d内,田面水中的NH4^+-N浓度和pH值与氨挥发量有极显著的相关关系(相关系数分别为0.791^**、0.443^**)。  相似文献   

12.
太湖地区绿肥还田与无机氮追肥配施的环境效应分析   总被引:2,自引:1,他引:1  
通过太湖地区绿肥还田与不同用量的无机氮追肥配施小区试验,研究了水稻苗期、分蘖期和抽穗期田面水氮素不同形态的变化特征、径流损失及水稻产量。结果表明:绿肥还田后,水稻苗期田面水中总氮浓度出现先减小后增加的变化,总氮浓度增加的原因主要是有机氮浓度的增加,而无机氮浓度先升后降;分蘖肥和穗肥施用后,田面水氮素浓度随施肥量的增加而升高,田面水总氮和有机氮在施肥后第1天达到最大,随后快速下降,而无机氮在施肥后则经历了一个先升后降的变化过程;随着施肥量的增加,稻季氮素径流损失不断增大,无机氮是氮素径流损失的主要形态,且径流水中无机氮以铵态氮为主,故应将铵态氮作为农田排水污染检测的主要指标;绿肥还田模式下,施用氮素基肥可大大提高田面水的氮素含量,增加氮素流失风险,而不施氮素追肥或者过量减施均可影响作物的产量。绿肥还田,稻季配施140 kg hm-2无机氮追肥,可减少48%无机氮肥投入,降低38.5%氮肥流失率,实现水稻产量效应和环境效应的协调,是水体污染严重地区值得尝试的一种农作方式。  相似文献   

13.
太湖地区水稻追肥的氨挥发损失和氮素平衡   总被引:8,自引:0,他引:8  
采用密闭室通气法和15N 微区试验, 对太湖地区水稻不同生育期追施氮肥的氨挥发损失、水稻对氮肥的吸收利用和土壤氮素残留情况进行了研究。结果表明, 氨挥发损失主要发生在施肥后1 周内, 峰值出现在施肥后1~2 d, 氨挥发速率变化与田面水NH4+-N 浓度变化规律一致, 分蘖肥和穗肥氨挥发损失率分别为16.7%和6.3%; 水稻分蘖肥的作物氮素利用率低于穗肥, 分别为36.7%和49.6%, 主要原因是穗肥的氨挥发损失较少,并且更易于向籽粒转移; 2 次追施氮肥的表观损失率分别为52.8%和40.7%; 在土壤中残留肥料氮为10.6%, 大都集中在0~20 cm 土壤中, 耕层以下较少。本结果表明, 在水稻孕穗时期施氮肥有利于提高氮肥利用效率、减少氮肥损失, 主要体现在穗肥拥有较低的氨挥发损失率和较高的籽粒利用率。  相似文献   

14.
采用盆栽试验方法研究了秸秆填埋对水稻土表层水三氮动态变化的影响。结果表明,施肥后,表层水总氮、铵态氮浓度迅速增加;随时间的推移,表层水氮素浓度下降较快。全氮在施肥后第1d达到峰值,铵态氮在施肥后第2d达到高峰,施肥后7d氮素含量基本与施肥前水平一致。秸秆还田有效地降低了水稻土表层水氮素含量,秸秆深埋处理有利于土壤对氮素吸收,使氮素的流失几率降低(DS处理比N处理表层水全氮浓度平均低10.2%),流失潜能趋势大大减小。结果显示,施肥后1周内是控制表层水氮素流失的关键时期。  相似文献   

15.
添加脲酶抑制剂NBPT对麦秆还田稻田氨挥发的影响   总被引:13,自引:2,他引:11       下载免费PDF全文
氨挥发是稻田氮素损失的重要途径,为探明脲酶抑制剂NBPT对小麦秸秆还田稻田中氨挥发的影响,采用密闭室通气法,在太湖地区乌珊土上,研究了脲酶抑制剂n-丁基硫代磷酰三胺(NBPT)对小麦秸秆还田稻田中施肥后尿素水解和氨挥发动态变化的影响。结果表明:稻田氨挥发损失主要集中在基肥和分蘖肥时期。添加NBPT可明显延缓尿素水解,推迟田面水NH4+-N峰值出现的时间,并降低NH4+-N峰值,降低了田面水氨挥发速率和挥发量。NBPT的效果在基肥和分蘖肥施用后尤为明显,不加NBPT时施入的尿素在2~3 d内基本水解彻底,NH4+-N和氨挥发速率在第2 d即达到峰值,两次施肥后NH4+-N峰值分别为132.3 mg·L-1和66.3mg·L-1,氨挥发峰值为15.6 kg·hm-2·d-1和10.4 kg·hm-2·d-1;而添加NBPT后,NH4+-N峰值推迟至施肥后第4 d出现,NH4+-N峰值降至70.7 mg·L-1和51.6 mg·L-1,氨挥发峰值降至4.7 kg·hm-2·d-1和2.6 kg·hm-2·d-1。添加NBPT使稻田氨挥发损失总量从73.3 kg(N)·hm-2(占施氮量的24.4%)降低至34.5 kg(N)·hm-2(占施氮量的11.5%),降低53%。在添加小麦秸秆稻田中添加NBPT通过延缓尿素水解而显著降低了氨挥发损失。  相似文献   

16.
滴灌施肥条件下不同种类氮肥在土壤中迁移转化特性的研究   总被引:30,自引:2,他引:30  
采用室内土柱模拟方法研究了滴灌条件下不同种类氮肥(硝态氮、铵态氮和尿素态氮)在土壤中的迁移、淋溶和转化特征。结果表明,3种氮肥在2种质地土壤中的淋失量均是硝态氮肥>尿素>铵态氮肥,淋失的氮素主要为肥料氮。砂壤土上氮素的淋失量明显高于粘壤土。滴灌施用铵态氮肥,显著增加了土壤中NH4+-N含量,随着硝化作用的进行,NH4+-N的量在培养的第5d左右达高峰,尔后含量逐渐降低。与滴灌施用硝态氮肥相比,施用铵态氮肥和尿素后在培养期间土壤矿质态氮(NO3--N+NH4+-N)的含量有降低的趋势,降低的原因可能与N+NH4+-N在土壤中的固定、挥发等有关。  相似文献   

17.
脲酶抑制剂与硝化抑制剂对稻田氨挥发的影响   总被引:10,自引:7,他引:3  
采用密闭室间歇通气法和15N标记技术研究了尿素施入稻田后氨挥发损失特征以及脲酶抑制剂(N-丁基硫代磷酰三胺,NBPT)和硝化抑制剂(3, 4-二甲基吡唑磷酸盐,DMPP)对稻田氨挥发损失的影响。结果表明,稻田施用尿素后第4天氨挥发速率达到峰值,氨挥发损失主要发生在施肥后21天内。与单施尿素处理相比,添加NBPT处理的氨挥发速率峰值降低27.04%,累积氨挥发损失量降低21.65%;NBPT与DMPP配施时,氨挥发速率峰值降低12.95%,累积氨挥发损失量降低13.58%;而添加DMPP时,氨挥发速率峰值增加23.61%,累积氨挥发损失量与单施尿素的差异不显著。相关性分析表明,地表水中铵态氮浓度和pH值与氨挥发速率均达极显著正相关,说明二者是影响氨挥发速率的主要因素,而气温、 地温和水温与氨挥发速率的相关性不显著。与单施尿素相比,添加脲酶抑制剂可显著增加稻谷产量。脲酶抑制剂与硝化抑制剂配合施用可更有效地提高氮肥的回收率。综合降低氨挥发、 提高水稻产量及地上部氮肥回收率的效果,添加脲酶抑制剂以及脲酶抑制剂与硝化抑制剂配施的两个处理效果较为理想,硝化抑制剂不宜单独添加。  相似文献   

18.
控释尿素减少双季稻田氨挥发的主要机理和适宜用量   总被引:7,自引:1,他引:6  
【目的】研究施用控释尿素减少稻田氨挥发的主要机理,及有效减少氨挥发的施用量,为充分发挥控释尿素的环保效应提供参考。【方法】盆栽试验于2017年在湖南农业大学试验基地大棚内进行,供试土壤为潮砂泥田水稻土,供试早稻、晚稻品种为中早39和泰优390,供试控释氮肥为树脂包膜控释尿素。设置不施氮肥 (CK)、普通尿素 (U) 以及控释尿素等氮量 (CRU1)、减氮10%(CRU2)、减氮20%(CRU3) 和减氮 30% (CRU4) 6个处理。采用密闭室间歇通气法监测双季稻田氨挥发特征,监测同期田面水铵态氮 (NH4+-N) 和硝态氮 (NO3–-N) 浓度、pH值及土壤温度动态变化。【结果】施用控释尿素 (CRU) 显著降低了稻田氨挥发损失,各施氮处理稻季氨挥发累积损失量表现为U > CRU1 > CRU2 > CRU4≈CRU3。与U处理相比,CRU处理明显降低了氨挥发速率峰值,且不同程度减少了稻田氨挥发累积损失量,减排程度可达50.3%~70.1%。CRU处理氨挥发损失率为5.6%~8.13%,且早、晚稻均以CRU3和CRU4处理较低。与U处理相比,早、晚稻CRU处理施基肥后田面水中的铵态氮浓度峰值分别降低74.5%~80.4%、53.4%~76.0%,施分蘖肥后分别降低69.5%~89.1%、67.3%~80.3%。U、CRU1、CRU2、CRU3和 CRU4 处理早稻田面水平均 pH 值分别为7.26、7.22、7.25、7.32和7.14,各处理差异不显著;晚稻田面水平均pH值分别为7.85、7.71、7.72、7.72和7.66,CRU处理均显著低于U处理。U处理氨挥发速率和田面水铵态氮浓度呈极显著正相关 (r = 0.8813),与硝态氮浓度呈显著负相关 (r = –0.5319);CRU处理与U处理变化规律类似,CRU3和CRU4处理氨挥发速率与田面水铵态氮浓度达到显著正相关 (r = 0.5388和0.4245),各处理氨挥发速率与田面水pH值和10 cm土层温度相关不明显。【结论】施用控释尿素可显著降低稻田水面中的铵态氮含量,减少由于施肥导致的pH值增加,因而显著降低了稻田的氨挥发损失量,减少了氨挥发损失率。早稻和晚稻均以控释尿素施用量减少20%~30%的氨挥发减排效果最为明显。  相似文献   

19.
氮磷肥对黑土浅层土壤氮素累积和移动的影响   总被引:9,自引:0,他引:9  
利用D饱和最优设计研究了氮磷肥对黑土浅层土壤氮素累积和移动的影响,结果表明,氮磷肥对NO-3 -N含量的影响随着土层的加深逐渐减弱,并且施用尿素的NO-3 -N累积大于施用硝铵。在降雨高峰期存在NH+4 -N向下层土壤的移动,其移动时间滞后于NO-3 -N。尿素施入土壤后对NH+4 -N的累积无明显影响,对NO-3 -N的累积有促进作用。而不同用量的NH+4 -N肥的施入则促进了NH+4 -N的移动和累积。因此黑土玉米农田生态系统氮素做追肥时尿素和硝铵相比尿素更易造成地下水的硝酸盐污染。黑土玉米农田生态系统在作物拔节前期向土壤中施入氮素,将造成这一时期NO-3 -N对地下水的短期污染。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号