首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There are concerns of potential food chain transfer of metals in crops grown on lead–arsenate-contaminated soils. The objective of this study was to investigate lead and arsenic uptake by four potato (Solanum tuberosum L.) cultivars grown on lead–arsenate-contaminated soils with lead and arsenic concentrations ranging from 350 to 961 and 43 to 290 mg kg?1, respectively. Yield was not reduced due to treatment. Potato tubers were washed thoroughly before peeling. Lead concentration in both peeled tubers and peel was below instrument detection limit. Arsenic concentration in peeled tubers grown on the lead–arsenate soils ranged from 0.24 to 1.44 mg kg?1. Arsenic concentration was 60% higher in the peel than in the peeled tuber. The relatively high arsenic levels in the peel demonstrated that arsenic was taken up into the potato peel tissue. It is recommended that if potatoes are grown on these soils they should be peeled before consumption.

Abbreviations Pb, lead; As, arsenic; DW, dry weight; FW, fresh weight  相似文献   

2.
Abstract

A study was conducted to investigate the chemical speciation of added cadmium (Cd) and lead (Pb) and their availability as influenced by fresh organic matter (OM) and sodium chloride (NaCl) in three agricultural soils. The soils were treated with 20 mg Cd/kg as cadmium nitrate [Cd(NO3)2 · 4H2O], 150 mg Pb/kg as lead nitrate [Pb(NO3)2], 20 g/kg alfalfa powder, and 50 mmol/kg of NaCl and then incubated for 3 months at 60% water‐holding capacity (WHC) and constant temperature (25 °C). Subsamples were taken after 1, 3, 6, and 12 weeks of incubation, and electrical conductivity (EC), pH, dissolved organic carbon (DOC), and concentrations of cations and anions were determined in the 1:2.5 soil/water extract. Available Cd and Pb were determined in 0.05 M ethylenediaminetetraacetic acid (EDTA) extract. Concentrations of organic and inorganic species of Cd and Pb in soil solution were also predicted using Visual Minteq speciation program. The most prevalent species of dissolved Pb and Cd in the soils were Pb‐DOC and Cd2+ species, respectively. Salinity application increased the available and soluble Cd significantly in the acid and calcareous soils. It, however, had little effect on soluble Pb and no effect on available Pb. Organic‐matter application decreased availability of added Pb significantly in all soils. In contrast, it raised soluble Pb in all soils except for the acid one and approximated gradually to the added Pb with time. Impact of OM on available Cd was somewhat similar to that of Pb. Soluble Cd increased by OM application in the calcareous soil, whereas it decreased initially and then increased with time in the other soils.  相似文献   

3.
Effects of different lead compounds, PbCl2, Pb(NO3)2 and Pb(OAc)2, on the rice growth and uptake of lead and some microelements by wetland rice were studied. The results showed that the seed germination, rice seedling growth, chlorophyl content, grain yield and uptake of Pb, Cu, Zn, Fe and Mn by rice plant were affected by the chemical forms of Pb compounds added in soil to a certain degree. The germination rate and the amount of chlorophyl decreased remarkably with increasing Pb concentration, the root extension was restrained obviously by the presence of Pb, and the effect of PbCl2 was more evident than that of Pb(NO3)2 or Pb(OAc)2.  相似文献   

4.
Abstract

Availability of lead (Pb) and cadmium (Cd) in farmland soils and its distribution in individual plants of dry‐seeded rice were investigated utilizing graphite furnace atomic absorption spectrometry (GFAAS) with a matrix modification technique. Five extractants were compared, and the operating conditions for GFAAS were optimized. The detection limits were 4.2 ng for Pb with the precision of 1.54% and 0.1 ng for Cd with the precision of 2.38%. The contents of the extractable Pb and Cd in soils were determined with the five extractants, and availability of Pb and Cd in farmland soil was discussed. The contents of Pb and Cd in different parts of dry‐seeded rice were lower than those in dry‐seeded rice soil. The contents of Pb and Cd in rice were lower than in other parts. The end top leaves accumulated the highest amounts of Pb and Cd.  相似文献   

5.
This study reports distribution of uranium (U) and thorium (Th) in soil samples and the roots and shoots of some plants grown around an abandoned lead (Pb)–zinc (Zn)–copper (Cu) mining area. The plants Euphorbia macroclada, Verbascum cheiranthifolium Boiss, and Astragalus gummifer were examined. The determinations of U and Th were carried out by inductively coupled plasma‐mass spectrometry (ICP‐MS). Uranium and Th levels of the studied soil samples were found to be in the range of 1.1–70.3 mg kg?1 and 2.1–62.1 mg kg?1, respectively. Some results obtained from this study were higher than the mean U and Th concentrations of soils reported around the world. Uranium and thorium concentrations in studied plant roots were in the range of 0.04–16 and 0.08–14.57 mg kg?1, whereas in plant shoots they were 0.02–2.76 and 0.07–12.3 mg kg?1, respectively. It was concluded that the shoots of Astragalus and roots of Euphorbia and Verbascum can be used as both a biomonitor for environmental pollution and biogeochemical indicator because of their higher U and Th concentrations.  相似文献   

6.
《土壤圈》2016,(6)
Residual heavy metals are commonly considered to be immobile in soils,leading to an underestimation of their environmental risk.This study investigated the distribution and transport of residual heavy metals along soil pro?les,using the Xiaoqinling gold mining region in North China as a case study.Soil samples were collected at three depths from three locations near the tailing heap.The speciation of copper(Cu) and lead(Pb)(exchangeable,carbonate-bound,Fe-Mn oxide-bound,organic matter-bound,and residual fractions) was determined using a sequential extraction procedure.The residual fraction's morphology was observed using scanning electron microscopy(SEM).Results showed that metal fraction distributions along the soil pro?les were in?uenced by each fraction's mobility.Residual fraction with high chemical stability can not be transformed from or into other fractions.This led to the conclusion that the high concentration of residual metals in soils mainly resulted from residual fraction transport.The SEM analysis showed that ?ne particles(submicrons) were mainly attached to large particles and were likely released and transported by water?ow.The more sorptive fractions(non-residual fractions) were mainly retained in the top soil,and the more mobile fractions(residual fraction) were mainly leached to the deep soil.Cu and Pb concentrations in the residual fraction decreased slightly and those in the non-residual fractions decreased signi?cantly with soil depth.These suggest a relatively higher residual metal mobility along the soil pro?les.Therefore,residual metals can be transported in soils and their environmental risk can not be ignored in assessing soil contamination.  相似文献   

7.
Abstract: The industrial activity areas, rivers, and water sources in neighboring areas are influenced by wastewater of manufacturers. Utilizing water influenced by wastewater increased heavy metals in soils and plants. In 2004, to investigate the effects of wastewater on cadmium (Cd), nickel (Ni), chromium (Cr), and lead (Pb) content in soil and plants, wastewaters of three manufactures (chrome chemical, wood and paper, and textiles) were examined. At harvest time roots, whole shoots (rice, spinach, clover, grass), and rice grain in industrial wastewater–influenced areas and uninfluenced areas were sampled. Soil samples were also taken (0–15, 15–30 cm). Results indicated that when wastewater was discharged into the river water, the concentrations of Cd, Ni, Cr, and Pb increased in river water. Application of river water influenced by industrial wastewater for irrigation of rice and another plants enhanced, the amounts of available Cd, Ni, Cr and Pb in soil. In subsurface horizons (15–30 cm), the concentrations of heavy metals were more than in the surface horizon (0–15 cm). With increasing cation exchange capacity in the soil, the amount of available Cr increased. When the calcium carbonate content in soils was raised, the available Cd and Pb increased in the soil, but Ni and Cr decreased. Meanwhile, organic matter enhanced the concentrations of heavy metals in soil. Accumulations of heavy metals were higher in the roots of rice (control and treatment) than in shoot and rice grain. Cadmium accumulation in rice root was three times that in whole shoot, and grain was two times more than control. The concentrations of Ni, Cr, and Pb in root, whole shoot, and grain of rice were two times higher in industrial wastewater–treated areas. The concentrations of heavy metals in root and whole shoot of spinach, clover, and grass in industrial wastewater area increased about 100%, but not to a toxic level. Cadmium translocated more than other heavy metals from soil to root, whole shoot, and grain of rice, and whole shoot of spinach, clover, and grass.  相似文献   

8.
Abstract

Lead arsenate was extensively used to control insects in apple and plum orchards in the 1900s. Continuous use of lead arsenate resulted in elevated soil levels of lead (Pb) and arsenic (As). There are concerns that As and Pb will become solubilized upon a change in land use. In situ chemical stabilization practices, such as the use of phosphate‐phosphorus (P), have been investigated as a possible method for reducing the solubility, mobility, and potential toxicity of Pb and As in these soils. The objective of this study was to determine the effectiveness of calcium carbonate (lime), P, and iron (Fe) amendments in reducing the solubility of As and Pb in lead‐arsenate‐treated soils over time. Under controlled conditions, two orchard soils, Thurmont loam (Hapludults) and Burch loam (Haploxerolls), were amended with reagent‐grade calcium carbonate (CaCO3), iron hydroxide [Fe(OH)3], and potassium phosphate (KH2PO4) and incubated for 16 weeks at 26°C. The experimental results suggested that the inorganic P increased competitive sorption between H2PO4 ? and dihydrogen arsenate (H2AsO4 ?), resulting in greater desorption of As in both Thurmont and Burch soils. Therefore, addition of lime, potassium phosphate, and Fe to lead‐arsenate‐contaminated soils could increase the risk of loss of soluble As and Pb from surface soil and potentially increase these metal species in runoff and movement to groundwater.  相似文献   

9.
Some knowledge concerning soil heavy‐metal content and its availability to plants is essential to evaluate the risk of potentially toxic elements in the alimentary chain. Assessment of heavy‐metal availability to plants was achieved by a simple extraction method. The goal of this work was to determine the contents of copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb), soluble in 2% citric acid solution (chelating agent), in dystrophic red latosol soil (RLd) and humic red‐yellow latosol soil (RYLh). We focused on relating the contents of Cu, Zn, Cd, and Pb to the production of dry matter and grains by bean plants cultivated in a glasshouse. Heavy‐metal contents extracted by citric acid increased with increasing dosage increments, mainly in RLd; production of dry matter by bean plant was negatively affected by the studied metals. However, in some cases, grain production was increased.  相似文献   

10.
Abstract: The fraction distributions of heavy metals have attracted more attention because of the relationship between the toxicity and their speciation. Heavy‐metal fraction distributions in soil contaminated with mine tailings (soil A) and in soil irrigated with mine wastewater (soil B), before and after treatment with disodium ethylenediaminetetraacetic acid (EDTA), were analyzed with Tessier's sequential extraction procedures. The total contents of lead (Pb), cadmium (Cd), copper (Cu), and zinc (Zn) exceeded the maximum permissible levels by 5.1, 33.3, 3.1, and 8.0 times in soil A and by 2.6, 12.0, 0.2, and 1.9 times in soil B, respectively. The results showed that both soils had high levels of heavy‐metal pollution. Although the fractions were found in different distribution before extraction, the residual fraction was found to be the predominant fraction of the four heavy metals. There was a small amount of exchangeable fraction of heavy metals in both contaminated soils. Furthermore, in this study, the extraction efficiencies of Pb, Cd, and Cu were higher than those of Zn. After extraction, the concentrations of exchangeable Pb, Cd, Cu, and Zn increased 84.7 mg·kg?1, 0.3 mg·kg?1, 4.1 mg·kg?1, and 39.9 mg·kg?1 in soil A and 48.7 mg·kg?1, 0.6 mg·kg?1, 2.7 mg·kg?1, and 44.1 mg·kg?1 in soil B, respectively. The concentrations of carbonate, iron and manganese oxides, organic matter, and residue of heavy metals decreased. This implies that EDTA increased metal mobility and bioavailability and may lead to groundwater contamination.  相似文献   

11.
The composition of tree rings and soils was studied at several locations affected by smelting and transportation in the vicinity of Kitwe (Copperbelt, Zambia). The contents of cobalt (Co), copper (Cu), manganese (Mn), and lead (Pb) and the 206Pb/207Pb isotope ratios in the tree rings were interpreted in relation to potential sources of contamination such as smelter production, acidification of the environment, soil composition, raw material processing, and atmospheric suspended particulate matter (SPM). The highest Co contents in the tree rings correspond to maximum ore production in the mid-1970s. Acidification through SO2 emissions is documented in the increased Mn contents from the mid-1980s. The isotopic composition of the tree rings of the studied tree species varies in the interval 1.16?C1.34 and the youngest parts of all the studied trees exhibit a low 206Pb/207Pb ratio (<1.17). The soil isotope composition varies in the range 206Pb/207Pb?=?1.18?C1.35. The Pb isotope composition in the soils and tree rings was formed by a combination of lithogenic Pb (206Pb/207Pb????1.3), Pb in processed ores (206Pb/207Pb????1.2), and SPM (automobile) Pb (206Pb/207Pb??1.1). As the soils in the distant region have high 206Pb/207Pb ratios (>1.3) in the whole profile and simultaneously the youngest parts of the tree rings of tree species growing in this soil have a low 206Pb/207Pb ratio (<1.17), it can be assumed that the Pb in the youngest parts of the tree species is derived from absorption of SPM Pb through the bark rather than root uptake. The absence of Pb with a low 206Pb/207Pb ratio in soils in the distant area is probably affected by fires in the herbaceous and bush undergrowth and plant litter, which prevents Pb from biomass from entering the soil and mobilize it back into the atmosphere.  相似文献   

12.
Surface water samples were collected in 2006 from a lead mine?Cmill complex in Missouri to investigate possible organic compounds coming from the milling process. Water samples contained relatively high concentrations of dissolved organic carbon (DOC; greater than 20 mg/l) for surface waters but were colorless, implying a lack of naturally occurring aquatic humic or fulvic acids. Samples were extracted by three different types of solid-phase extraction and analyzed by electrospray ionization/mass spectrometry. Because large amounts of xanthate complexation reagents are used in the milling process, techniques were developed to extract and analyze for sodium isopropyl xanthate and sodium ethyl xanthate. Although these xanthate reagents were not found, trace amounts of the degradates, isopropyl xanthyl thiosulfonate and isopropyl xanthyl sulfonate, were found in most locations sampled, including the tailings pond downstream. Dioctyl sulfosuccinate, a surfactant and process filtering aid, was found at concentrations estimated at 350 ??g/l at one mill outlet, but not downstream. Release of these organic compounds downstream from lead?Czinc mine and milling areas has not previously been reported. A majority of the DOC remains unidentified.  相似文献   

13.
Abstract

An incubation experiment was conducted to ascertain the effects of three olive‐derived organic amendments (fresh, compost, and vermicompost olive cake) on the soluble and diethylenetriamine pentaacetic acid (DTPA)–extractable lead (Pb) and zinc (Zn) and on different enzymatic activities in an artificially contaminated calcareous soil. Application of the compost and vermicompost, which increased amounts of humic acids in soil, initially stimulated dehydrogenase, ß‐glucosidase, and urease activities, which tended to decline afterward. In contrast, dehydrogenase and ß‐glucosidase activities were lower after application of the fresh olive cake. Amounts of soluble Pb and Zn increased when fresh olive cake was added to the soil, due to the high content of water‐soluble carbon in this amendment. On the contrary, application of the compost and vermicompost decreased the concentration of soluble Zn and did not change the soluble Pb levels in the soil. The DTPA‐Pb and DTPA‐Zn were scarcely affected by the application of the three olive‐derived amendments.  相似文献   

14.
Current and past industrial pollution leaves many traces in the environment, in particular along rivers in industrial and urban areas. The isotopic analysis of the lead found in soils and tree rings offers a kind of environmental archive for presenting a portrait of the pollutant distribution in the environment in both spatial and temporal terms. This study is an attempt to identify and compare the source of contamination found in soils and tree rings located along two rivers affected by pollution over several years. Specifically, the focus is on the pattern of lead concentrations and lead isotopic signatures (206Pb/207Pb, 208Pb/206Pb, and 206Pb/204Pb) detected in soils and tree rings located on polluted floodplains. The concentration of Pb in overbank sediments does not rise with the increasing distance downstream from the point source (mining area), suggesting that significant fluvial transport of the pollutant particles over 80 km is involved. For the soil profiles, Pb concentration levels range between 12.32 and 149.13 mg/kg, with the highest concentrations found at the base of the profiles (>1 m). For the lead isotope ratios in the soil profiles, the values obtained range from 0.851 to 0.872 (206Pb/207Pb), 2.081 to 2.111 (208Pb/206Pb), and 0.547 to 0.562 (206Pb/204Pb). The tree ring analysis of red ash (Fraxinus pennsylvanica Marsh.) shows average lead concentrations of 0.63 μg/g, and the lead values of all the tree specimens range between 0.03 and 11.38 μg/g. Pb concentrations varied greatly between the specimens in selected sites and lead isotope ratios in the tree rings showed a strong variability in the time series, particularly from 1945 to 1970. The greater number of variations in the lead concentration rates and isotopic ratios suggest that many more events associated with pollution and contamination have in fact occurred in this area. The study demonstrates the utility of combining stable isotope analyses (soils and tree rings) to examine the source and dispersion of contaminant Pb in fluvial systems by providing reliable and robust indicators for the detection of environmental changes on a local and regional scale.  相似文献   

15.
Heavy metals and some major element concentrations were investigated in overbank sediments and stream bed sediments of the ephemeral Beal wadi creek in the Cartagena-La Union mining district (SE Spain). Two vertical sediment profiles were extracted and the chemical and mineralogical compositions were both investigated by X-ray fluorescence and X-ray diffraction. Geochemical variations in vertical profiles of these two kinds of sediments allow observing noticeable heavy metals pollution (especially Fe, Pb, and Zn) in both kind of sediments but especially in the overbank sediments (reaching values of approximately 13% Fe, 6% Pb, and 6% Zn). A single extraction (DIN 38414-S4 leaching test) was made to observe the transfer of metals from solids to liquid phase. Pb, Zn, Cu, and Cd contents surpass the leaching values established by the DIN 38414-S4 limits established by Spanish legislation to consider these wastes as hazardous wastes. Geochemical comparison between leaching behavior of the two types of sediments reveals a major ability of overbank sediments in transferring heavy metals to the water flow.  相似文献   

16.
The Subaé river watershed is considered one of the most critical Pb-impacted environments in Brazil and around the world, due to pollutant dispersion during 33 years of lead ore purification in Santo Amaro da Purification. Severe damages have been reported in biota and population, which depends on the Subaé river watershed quality for agriculture, fishing, and shellfish harvesting. This study aims to understand the geochemical characteristics and dynamics of the river close to the former Pb smelter. The river was sampled at eight sites upstream and eight sites downstream the smelter, near the estuary in the Todos os Santos Bay, six times during a year. Immediate analyses were performed by multiprobe. Major ions were measured by chromatography, dissolved metals by ICP-OES in the filtrated samples (0.45 μm), and particulate metals >?0.45 μm by EDX spectrometry. The ions Na+ and HCO3? are dominated in the river. Most of the samples (47.6%) were classified as sodic, due to oceanic saline intrusion during tide. Despite the high pollution caused by the smelter from 1960 to 1993, still observed in the surrounding soils, dissolved and particulate metals in the river remained low in all sites during the entire year. Only Cu presented some concentration above the threshold of the Brazilian regulations. The discharge of metals by the river into the Todos os Santos Bay appears to be low for Pb and Zn (2.2 and 14.3 kg km?1 year?1, respectively), but higher for Cu comparatively to other worldwide bays.  相似文献   

17.
A field survey of herbaceous plants growing on the Huice lead (Pb)–zinc (Zn) mining area in Yunnan, China was conducted to identify species accumulating concentrations of cadmium (Cd), Pb, and Zn. In total, 200 plant samples of 112 species from 34 families were collected. At the same time, 200 soil samples were collected. Based on Cd, Pb, and Zn tolerance and growth, wild Oxyria sinensis Hemsl. was chosen as a primary pioneer plant. Then, to confirm if Oxyria sinensis Hemsl. may be used as a pioneer plant, the tolerance to Cd, Pb, and Zn and growth of two ecotypes (mining-area ecotype and non-mining-area ecotype) Oxyria sinensis Hemsl. were studied further with pot experiments. In 10 samples of wild Oxyria sinensis Hemsl. in the Huice lead–zinc mine, concentrations of Cd, Pb, and Zn in the soil did not correlate with those in the root (P > 0.05) and shoot (P > 0.05), respectively. Correlations between Cd concentrations in root and shoot were not observed (P > 0.05), whereas those of Pb and Zn were observed (P < 0.05). Both the enrichment coefficient and translocation factor were <1 for Cd, Pb, and Zn for the wild Oxyria sinensis Hemsl. In the two ecotypes of Oxyria sinensis Hemsl., in pot experiments, the treatment concentrations of Cd, Pb, and Zn did not correlate (P > 0.05) with concentrations of Cd, Pb, and Zn in root and shoot. Significant correlations between the concentrations of Cd, Pb, and Zn in root (P < 0.01) and shoot (P < 0.05) were observed in the two ecotypes. Both enrichment coefficient and translocation factors were <1 for Cd, Pb, and Zn in the two ecotypes, respectively. Treatment concentrations of Cd, Pb, and Zn did not significantly correlate (P > 0.05) with plant height and crowns of the two ecotypes. Treatment concentrations of Pb and Zn did not correlate (P > 0.05) with the biomass of the two ecotypes, whereas that of Cd related significantly to biomass in the two ecotypes. Oxyria sinensis Hemsl. was suggested to utilize a tolerant strategy to heavy metals (i.e., exclusion). It was a pioneer plant and will be used in restoration of a vegetation cover in a Pb–Zn mine after further research in tolerant mechanisms and restoration ability are conducted.  相似文献   

18.
Pollution of water bodies with heavy metal ions is a major worldwide environmental problem. The objective of this study was to elucidate the mechanism in which metallic ions are adsorbed and reduced to metallic nanoparticles onto plant materials using microwave radiation. In this research, we have fabricated metallic silver and lead nanoparticles from their corresponding ions using the aquatic plants Azolla filiculoides and Pistia stratiotes (since identical results are obtained for both plants, the emphasis will be on the Azolla) under microwave radiation. Our data show that metallic silver and metallic lead nanoparticles were completely removed from the polluted solution and were embedded in the A. filiculoides surface after 5 min of microwave reaction. It was also found that, for both metals, reduction of the metallic ions was accomplished by the plant matrix without the need of an external reducing agent. Most of the particles had a spherical shape within the 10?C50 nm size range. Mass balance data clearly indicate that most of the silver particles were found on the surface of the plant and not in the clean water. Pectin and ??-glucuronic acid did not reduce the silver or lead ions under microwave radiation. We therefore hypothesize that perhaps the proteins or sugar alcohols in the plant matrix were serving as the reducing agents. We believe that this technique in which adsorption and reduction are combined using microwave radiation can be applied for removing and recycling metallic ions from contaminated water and industrial wastewater.  相似文献   

19.
The concentrations of mercury, lead, cadmium, and arsenic were evaluated in 96 samples, 12 by each one of the following eight fish species: snook (Centropomus undecimalis), crevalle jack (Caranx hippos), Serra Spanish mackerel (Scomberomorus brasiliensis), southern red snapper (Lutjanus purpureus), blue runner (Caranx crysos), Atlantic tarpon (Megalops atlanticus), ladyfish (Elops saurus), and Atlantic goliath grouper (Epinephelus itajara), which were collected during 1 year in the Atrato River Delta in the Gulf of Urabá, Colombian Caribbean. Three fish were caught from each of the following sites the community usually uses to catch them (known as fishing grounds): Bahía Candelaria, Bahía Marirrío, Bocas del Roto, and Bocas del Atrato. The quantification of metals was performed by microwave-induced plasma-optical emission spectrometry. The Pb concentration fluctuated from 0.672 to 3.110 mg kg?1, surpassing the maximum permissible limit (MPL?=?0.3 mg kg?1) for human consumption for all species. The Hg concentration ranged between < Limit of detection and 6.303 mg kg?1, and in the crevalle jack and Atlantic tarpon, concentrations exceeded the MPL (0.5 mg kg?1). The levels of Cd and As were not significant in the studied species and did not exceed the MPL (0.05 mg kg?1).  相似文献   

20.
We investigate the potential of near-infrared (NIR) spectroscopy to predict some heavy metals content (Zn, Cu, Pb, Cr and Ni) in several soil types in Stara Zagora Region, South Bulgaria, as affected by the size of calibration set using partial least squares (PLS) regression models. A total of 124 soil samples from the 0–20 and 20–40 cm layers were collected from fields with different cropping systems. Total Zn, Cu, Pb, Cr and Ni concentrations were determined by Atomic Absorption Spectrometry. Spectra of air dried soil samples were obtained using an FT-NIR Spectrometer (spectral range 700–2,500 nm). PLS calibration models were developed with full-cross-validation using calibration sets of 90 %, 80 %, 70 % and 60 % of the 124 samples. These models were validated with the same prediction set of 12 samples. The validation of the NIR models showed Cu to be best predicted with NIR spectroscopy. Less accurate prediction was observed for Zn, Pb and Ni, which was classified as possible to distinguish between high and low concentrations and as approximate quantitative. The worst model performance in cross-validation and prediction was for Cr. Results also showed that values of root mean square error in cross-validation (RMSEcv) increased with decreasing number of samples in calibration sets, which was particularly clear for Cu, Pb, Ni and Cr content. A similar tendency was observed in the prediction sets, where RMSEP values increased with a decrease in the number of samples, particularly for Pb, Ni and Cr content. This tendency was not clear for Zn, while even an increase in RMSEP for Cu with the sample size was observed. It can be concluded that NIR spectroscopy can be used to measure heavy metals in a sample set with different soil type, when sufficient number of soil samples (depending on variability) is used in the calibration set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号