首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
A greenhouse pot experiment was conducted to study the effect of application of three levels of phosphorus (0, 50 and 100 ppm) and three levels of zinc (0, 5 and 10 ppm) in all possible combinations on yield and tissue concentrations of zinc, copper, iron and manganese by rice at two different growth stages (35 and 90 days after transplantation). The results showed that application of both phosphorus and zinc increased the dry matter yield of shoot and root at both the growth stages. Phosphorus or zinc application was found to influence the concentration of zinc, copper, iron and manganese in shoot and in root but these influences varied with the growth stages of the plant as well as with the level of zinc and phosphorus application. The results further showed that phosphorus or zinc application influenced the absorption of zinc/phosphorus, iron, manganese and copper by rice plants and their translocation from root to shoot. Such effects were found to be more prominent at early growth stage than at late growth stage of the plants.  相似文献   

2.
ABSTRACT

In order to study the mechanism of thermotolerance of cotton cultivars with different heat tolerance, the response of yield component and photosynthesis to short-term heat stress (HT; average temperature 34°C) was studied. Pot experiments were carried out in 2015 and 2016 by using cotton cultivar PHY370WR (heat tolerant cultivar) and Sumian15 (heat susceptible cultivar). Results showed that heat (34°C) treatment resulted in a significant (p < 0.05) reduction in cotton yield. Path analysis showed that the direct path coefficient (0.89) of boll weight was higher, compared with the boll number (0.46). With high-temperature stress, it was the difference of boll weight reduction contributed the majority to the difference of yield reduction between cultivars, not the difference of boll number reduction. Different decrease in photosynthesis between cultivars leads to the different decline in boll weight. Different thermotolerance between the two cultivars were as follows: the heat tolerant cultivar could maintain higher photosynthesis rate under HT, and it could recover more quickly and highly in photosynthesis than the heat susceptible cultivar. More importantly, the leaf functional period of heat tolerant cultivar was less shortened by HT than that of heat susceptible cultivar.  相似文献   

3.
Abstract

Kenaf (Hibiscus cannabinus) grown during the wet season in the Ord Irrigation Area of Western Australia was sampled at five growth stages. The samples were separated into bark, wood, tops plus foliage and, where applicable, seed. Each fraction was analysed for zinc, manganese, iron, copper, sodium, potassium, calcium and magnesium by atomic absorption spectroscopy, and for nitrogen and phosphorus by colorimetry. Concentrations of these elements in each plant fraction are presented. Calculation of total above‐ground nutrient content of the crop indicated a high content of potassium throughout the growth cycle (up to .280 kg/ha), an initially high content of nitrogen (150 kg/ha) stabilising at a lower level (about 75 kg/ha) up to maturity, and an increasing content of zinc (150 g/ha to 350 g/ha) and calcium (65 kg/ha to 105 kg/ha) with age. A higher content of iron at maturity was also apparent (up to 1400 g/ha). A comparison with other reported data is made.  相似文献   

4.
5.
Soybean leaves are eaten as seasonal edible greens in Korea. Analysis of the ethyl acetate extract of these leaves showed that it exhibited potent and selective neuraminidase inhibition, which began at the R3 stage and peaked at R7. Ten pterocarpans, including the new 6a-hydroxypterocarpan 10, were isolated from soybean leaves and their inhibition activities tested against a range of glycosidases. The relationship between structure and enzyme inhibition was investigated: 6a-hydroxypterocarpans exhibited much higher inhibition against neuraminidase (IC(50) = 2.4-89.4 μM) than α-glucosidase (IC(50) = 90.4-?>100 μM). Glyceollin VII (7) displayed 40-fold greater activity (IC(50) = 2.4 μM) against neuraminidase than α-glucosidase (IC(50) = 90.4 μM). On the other hand, coumestanes (1-3) were good α-glucosidase inhibitors (IC(50) = 6.0-42.6 μM). In kinetic analysis, the most potent neuraminidase inhibitors (5-10) were noncompetitive. HPLC analysis indicated that most pterocarpan synthesis began from the R3 stage, and a rapid change of pterocarpan concentrations was observed between the R4 and R7 stages.  相似文献   

6.
Abstract

Sub‐optimal nitrogen (N) affects the N‐rich carbon dioxide (CO2) assimilation enzymes which can limit maize (Zea mays) production. The status of the carboxylation system is closely correlated to the Assimilation Efficiency Index (AEI) which is the initial slope of the CO2 assimilation rate versus intercellular leaf CO2 concentrations. Experiments were undertaken to ascertain the effect of soil N nutrition on the AEI, determine genotypic variability for AEI under N‐deficiency, determine how leaf and plant development affect treatment differences, and examine correlations between the AEI and plant development. Studies were conducted in the field and greenhouse on five maize genotypes on leaves of different ages at three stages of plant development. Field studies were conducted on a fine, silty mixed, mesic cumulic Hapludoll (1.2 g N kg‐1), and high and low N treatments were imposed in the greenhouse. Quantum yield of emerging and mature leaves was determined. Results indicated that emerging and fully mature leaves had the greatest AEI values compared to other expanding leaves. Low N availability reduced the AEI of younger leaves but increased the AEI on the oldest leaf. The AEI increased until tasseling and then declined. Correlations were established between the AEI and leaf N concentrations and with CO2 assimilation. Grain yield was correlated to the AEI during grain fill. Quantum yield of the mature leaf was greater with low N than with high N availability indicating that the energy capture or transfer mechanism was less affected by N levels than was the CO2 trapping mechanism. There were pronounced gsnotypic differences in the AEI at tassel emergence but not in leaf N concentrations intimating differences in the distribution of N to enzymes and other compounds important for CO2 assimilation. Internal N distribution was also dependent upon available N. The study demonstrated that the ability of a plant to maintain high carboxylation activity under N stress may be a valuable selection criteria for obtaining tolerance of corn to low soil N.  相似文献   

7.
Salinity stress leads to various biochemical changes in plants. Biochar (BC) is a soil amendment that is derived from pyrolyzed organic materials. The aim of this study was to investigate the effect of BC on growth and some biochemical characteristics of summer savory (Satureja hortensis L.) under NaCl stress at two different growth stages. So, a pot factorial experiment based on completely randomized design was performed that comprised three levels of BC (0, 1 and 2% w/w of soil) and four NaCl levels (0, 40, 80 and 120 mM) with four replications. According to the results, by increasing the NaCl concentration chlorophyll a, b, total chlorophyll, carotenoid and polyphenol oxidase (PPO) decreased, whereas antioxidant activity, total soluble sugar and phenolic contents increased. The use of BC (especially 2% w/w of soil) under NaCl stress had the greatest effects on studied traits at the vegetative and flowering stages and significantly increased chlorophyll a, b, total chlorophyll, carotenoid and PPO activity. The results of this experiment confirmed the view that each stage of growth responses differently to NaCl stress and the use of BC due to sorption of NaCl and increasing osmotic adjustment can lead to summer savory protection against NaCl stress.  相似文献   

8.
海冰水不同灌溉量对土壤水分和棉花生物学性状的影响   总被引:1,自引:0,他引:1  
通过在黄骅中捷农场设置海冰水(盐分浓度为3‰)4个不同灌溉量试验,研究了海冰水灌溉量对土壤含水量、灌溉水利用效率及棉花生物学性状的影响.结果表明,各处理均表现为0~100cm土层随着灌溉量增大,土壤含水量增大;播种前采用海冰水灌溉可以有效缓解环渤海滨海盐碱地土壤旱情,有利于淋洗土壤盐分,是解决当地干旱问题和提高棉花出苗率的一项有效措施.海冰水不同灌溉量处理显著影响棉花的生物学性状和灌溉水利用效率,表现为随着灌水量的增加,棉花的株高、果枝数增加,棉桃数、籽棉产量和灌溉水利用效率显著增加,均在每次灌水量525 m3/hm2、灌溉2次时达到最大值,产量达到3 265.78 kg/hm2,灌溉水利用效率达到1.94kg/m3,之后随着灌溉量增加反而降低.因此,试验区在降雨量正常年份利用3‰海冰水进行棉田灌溉时,建议每次灌水量为525 m3/hm2.  相似文献   

9.
This study evaluated how zinc (Zn) concentration of rice (Oryza sativa L.) seed may be increased and subsequent seedling growth improved by foliar Zn application. Eight foliar Zn treatments of 0.5% zinc sulfate (ZnSO4?·?7H2O) were applied to the rice plant at different growth stages. The resulting seeds were germinated to evaluate effects of seed Zn on seedling growth. Foliar Zn increased paddy Zn concentration only when applied after flowering, with larger increases when applications were repeated. The largest increases of up to ten-fold were in the husk, and smaller increases in brown rice Zn. In the first few days of germination, seedlings from seeds with 42 to 67?mg Zn?kg?1 had longer roots and coleoptiles than those from seeds with 18?mg Zn?kg?1, but this effect disappeared later. The benefit of high seed Zn in seedling growth is also indicated by a positive correlation between Zn concentration in germinating seeds and the combined roots and shoot dry weight (r?=?0.55, p?相似文献   

10.
The effect of various Mg-fertilizers (MgSO4; calcined dolomite) on root growth and mineral composition of 40 yr old Norway spruce at different sites and stages of decline was studied. Two years after fertilization, density of living fine roots of Mg-deficient trees had significantly increased on fertilized compared to non-fertilized plots. Only fertilization of calcined dolomite appeared to induce new root formation in the upper mineral soil. No such changes were observed for healthy looking trees at a second experimental site, where base saturation of the bulk soil was also low but trees were sufficiently supplied with Mg. At the third experimental site where foliar analyses reflected a luxurious Ca and Mg but an insufficient K nutrition at high Mg and Ca saturation of the bulk soil, calcined dolomite caused an increase of root growth due to a reinforced antagonism between Ca and Mg competing with K uptake. In general, at the experimental sites the fine root necromass decreased when base saturation of the bulk soil increased. The elemental contents of fine roots from the minenal soil of all three sites under investigation indicated that fine root growth in the mineral soil is strongly related to the root Ca and Mg contents. Root Ca contents seemed to be mainly a function of the Ca availability in the soil. Since there was no close relationship between fine root growth and the Ca/Al molar ratio in living fine roots, Al toxicity may not completely account for the differences in root growth and nutrition on the experimental sites.  相似文献   

11.
Juice is the most common form in which cranberries are consumed; however there is limited information on the changes of polyphenolic content of the berries during juice processing. This study investigated the effects of three different pretreatments (grinding plus blanching; only grinding; only blanching) for cranberry juice processing on the concentrations of anthocyanins, flavonols, and procyanidins throughout processing. Flavonols and procyanidins were retained in the juice to a greater extent than anthocyanins, and pressing resulted in the most significant losses in polyphenolics due to removal of the seeds and skins. Flavonol aglycones were formed during processing as a result of heat treatment. Drying of cranberry pomace resulted in increased extraction of flavonols and procyanidin oligomers but lower extraction of polymeric procyanidins. The results indicate that cranberry polyphenolics are relatively stable during processing compared to other berries; however, more work is needed to determine their fate during storage of juices.  相似文献   

12.
This study reports quali-quantitative analyses on isoprenoids, phospholipids, neutral lipids, phytosterols, and proteins in purified plastids isolated from fresh fruits of traditional (Donald and Incas) and high-pigment (Kalvert and HLY-18) tomato cultivars at four ripening stages. In all of the investigated cultivars, lycopene, β-catotene, lutein, and total carotenoids varied significantly during ripening. Chromoplasts of red-ripe tomato fruits of high-pigment cultivars accumulated twice as much as lycopene (307.6 and 319.2 μg/mg of plastid proteins in Kalvert and HLY-18, respectively) than ordinary cultivars (178.6 and 151.7 μg/mg of plastid proteins in Donald and Incas, respectively); differences in chlorophyll and α-tocopherol contents were also evidenced. Phospholipids and phytosterols increased during ripening, whereas triglycerides showed a general decrease. Regardless of the stage of ripening, palmitic acid was the major fatty acid in all cultivars (ranging from 35 to 52% of the total fatty acids), followed by stearic, oleic, linoleic, linolenic, and myristic acids, but their relative percentage was affected by ripening. Most of the bands detected on the SDS-PAGEs of plastid proteins were constantly present during chloroplast-to-chromoplast conversion, some others disappeared, and only one, with a molecular weight of ~41.6 kDa, was found to increase in intensity.  相似文献   

13.
The development and ripening process of sweet cherry (Prunus avium L. cv. 4-70) on the tree was evaluated. For this purpose, 14 different stages were selected in accordance with homogeneous size and color. Some parameters related to fruit quality, such as color, texture, sugars, organic acids, total antioxidant activity, total phenolic compounds, anthocyanins, and ascorbic acid were analyzed. The results revealed that in sweet cherry, the changes in skin color, glucose and fructose accumulation, and softening process are initiated at early developmental stages, coinciding with the fast increase in fruit size. Also, the decrease in color parameter a was correlated with the greatest accumulation of total anthocyanins. Ascorbic acid, total antioxidant activity (TAA), and total phenolic compounds decreased during the early stages of sweet cherry development but exponentially increased from stage 8, which coincided with the anthocyanin accumulation and fruit darkening. TAA showed positive correlations (r(2) = 0.99) with both ascorbic acid and total phenolic compounds and also with the anthocyanin concentration from stage 8. Taking into account the reduced shelf life of sweet cherry and to ensure that these fruits reach consumers with the maximum organoleptic, nutritional, and functional properties, it is advisable to harvest sweet cherries at stage 12 of ripening.  相似文献   

14.
Abstract

Cultivars of triticale, wheat, and rye were grown with different N‐fertilizer rates and sampled at various maturity stages in 1975 to 1977. ‘6TA 131’ triticale, ‘Arthur’ wheat, and ‘Abruzzi’ rye were used as checks. Increasing N fertilizer rates increased dry matter and N accumulation in the above‐ground plant parts. However, after flowering losses of dry matter and N from the plants increased with N fertilizer rates. Triticale and rye generally absorbed more N from the soil than wheat. Triticale and wheat straw had higher P concentrations than rye. The head/straw concentration ratios were: triticale and rye>wheat for P, wheat>triticale and rye for K while Ca and Mg ratios were triticale>wheat>rye.  相似文献   

15.
The study of tissue distribution of glycinebetaine in barley grown hypoponically revealed that, during the vegetative growth period, young actively growing leaves accumulated higher levels than the mature lower leaves. Proline showed a complex pattern of leaf distribution. While K+ and Cl were uniformly distributed, the former being at a much higher concentration, levels of Na+ Ca2+ and Mg2+ were generally higher in the older leaves than the younger leaves. As the plants matured their leaves contained higher levels of divalent cations. The ear contents of glycinebetaine, proline, Ca2+ and Mg2+ increased with the ear maturity. The relative contribution of cations to the tissue osmotic pressure is discussed.  相似文献   

16.
生长调节剂的不同配比对龙眼控梢促花效应的研究   总被引:5,自引:0,他引:5  
采用“311-B”最优混合设计进行田间试验,研究多效唑、乙烯利、细胞分裂素三种生长调节剂的不同配比在龙眼控梢和促花上的效应,通过建立龙眼控梢(y^a)、促花(y^b)三元二次回归模型来寻求出三种生长调节剂在龙眼控梢、促花上的最佳浓度和配比。由回归分析结果得出,在试验条件,多效唑、乙烯利、细胞分裂素对龙眼控梢的最佳浓度和配比分别为:400.00mg/L、150.00mg/L、2.50mg/L,对龙眼促花的最佳浓度和配比分别为:494.97mg/L、185.61mg/L、0.969mg/L。  相似文献   

17.
The isoflavone compositions and concentrations in the leaf, flower, petiole, and stem of 13 red clover cultivars were studied using high-performance liquid chromatography coupled with a diode array and a mass spectrometric detector with negative electrospray ionization. Different cultivars showed significantly different concentrations of individual and total isoflavones. The leaf contained the highest overall concentration, followed by the stem, petiole, and flower. Biochanin A and formononetin were the predominant isoflavones in all cultivars and all parts, along with eight other minor aglycones, daidzein, genistein, glycitein, irilone, orobol, pratensein, pseudobaptigenin, and prunetin, and four minor malonylglycosides, genistein-7-glucoside-6' '-malonate, orobol-7-glucoside-6' '-malonate, formononetin-7-glucoside-6' '-malonate, and biochanin A-7-glucoside-6' '-malonate. The isoflavone compositions and concentrations were also found to be different between red clover parts harvested at the early bud stage and the late flowering stage. Sample storage and handling prior to analysis were also found to be important. Samples in this study were kept at -5 degrees C for a few days before being freeze-dried and were found to contain mainly the aglycones of isoflavones. This may actually be an advantage in that "natural" and more bioactive isoflavones can be obtained without using chemical hydrolysis. Findings in this study therefore provide important information for developing isoflavone-rich red clovers and for optimizing harvest timing and choosing the right part of the red clover plant.  相似文献   

18.
The average size of rainfed and irrigated agricultural farms in Spain has grown steadily over the past two decades. This has called for the use of machinery of higher field capacity and greater weight that in turn requires a high drawbar power. All this has resulted in soil changes such as an increased compaction and compactibility. The confined uniaxial compression test was used to assess compaction and viscoelastic behavior of five soil samples from different agricultural areas of Spain. The bulk density–compression stress line was fitted to a three-parameter multiplicative compaction model and viscoelastic behavior was evaluated by means of stress-relaxation tests. The objectives were to determine to what extent the parameter coefficients of the compaction model equation and the relaxation of the stress induced in the compacted soil were influenced by the type of soil, its water content and the compression stress applied. Gravimetric water contents of 5, 10, 15, 20 and 25% were considered, and maximum normal stresses of 50, 100, 200 and 400 kPa were applied to the soils in a universal testing machine. The soil samples considered differed in texture, sandy loam (SL), sandy clay loam (SCL), loam (L), clay (C) and silt-loam (SiL), and organic matter content.

The slope of the bulk density-compression stress line at zero normal stress was strongly dependent on soil water content and plasticity index; whereas the slope of the curve at high applied normal stresses was influenced by soil moisture but not by soil plasticity. The viscoelastic behavior of the soils compared was dictated by their water content and plasticity index, as well as by the compression stress applied. The stress relaxation rate at time t=0 was scarcely influenced by water content. In fact, the rate remained constant over the water content range from 10 to 20% (w/w) at values that were higher than those obtained at 5 and 25% (w/w), which in turn were identical to each other. The stress-relaxation rate was also found to increase linearly with the logarithm of the compression stress. On the other hand, the residual stress decreased linearly with increasing water content. However, the latter increased linearly with compression stress. Increasing soil plasticity resulted in decreasing relaxation rate and increasing residual stress. Therefore, the more plastic the soil was the lower was the rate at which stress relaxation started and the smaller was the amount of stress dissipated.  相似文献   


19.
Changes in anthocyanins during ripening of Cabernet Sauvignon and Tempranillo grapes were studied over a three year period. The accumulation of anthocyanins showed variations during ripening, especially during the first three weeks after veraison, and the accumulation pattern of those molecules changed only slightly from one year to another. On the other hand, the percentages of the different anthocyanins studied were different for each cultivar, and some changes were observed in both cultivars depending on the weather conditions of the growing season. In warm years the percentages of primitive anthocyanins (delphinidin 3-O-glucoside and petunidin 3-O-glucoside) were slightly lower than in a relatively cool year. Nevertheless, the anthocyanin fingerprints of Cabernet Sauvignon and Tempranillo grapes seem to be rather stable during ripening, despite the sugar content of the grapes.  相似文献   

20.
Quantitative and qualitative modifications of tannins and anthocyanins in grape skin were investigated at different dates of harvest, from berries sorted on the basis of their density. Free anthocyanins accumulated until 170 g/L of sugars in pulp before undergoing a slight decrease. Changes in anthocyanin composition were observed with increasing sugar levels in the pulp that reflected structural differences between classes of anthocyanins. The proportion of methoxylated anthocyanins continued to increase in the skin as sugar accumulated while the proportion of coumaroylated anthocyanins initially increased (up to 200 g/L of sugars in the pulp) and then rapidly decreased. In comparison, no major quantitative nor qualitative change was observed for tannins, except for a slight increase of the mean degree of polymerization. Whatever the physiological stage of the pulp, the extraction yield of skin phenolics into hydroalcoholic solution for 5 h was lower than 77% for anthocyanins and 38% for proanthocyanidins. For both classes of compounds, no clear evolution in these extraction yields could be observed as sugars accumulated in pulp (from 162.6 to 275.0 g/L). Nevertheless, some structural features within each family of compounds significantly influenced extractability, for example, a lower extraction yield for coumaroylated anthocyanins and for tannins with a high degree of polymerization. Finally, no direct relationship could be found in extraction media between the amounts of all red pigments (measured in acidic conditions) and the color intensity at 520 nm (measured in wine-like model solutions).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号