首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 688 毫秒
1.
Abstract

Soil preparation can affect soil test results. This study was conducted to compare soil‐grinder effects on grams of soil scooped. Soil samples (n=15,000) were ground by two types of soil grinders, a roller and hammer mill, and then the soil was sieved (10‐mesh), and scooped with a one‐gram scoop (0.85 cm3). The contents of the soil scoop were weighed. Grams of soil scooped ranged from 0.4 to 1.8 g for both soil grinders. The bell‐shaped distribution was centered around 0.8 and 1.0 g for the roller‐ and hammer mill‐type grinder, respectively. When the soil was ground by the roller‐type grinder, 85% of the ground soil was retained on a 50‐mesh sieve. In contrast, with the hammer mill grinder, 45% of the soil was retained on a 50‐mesh, 13% retained on a 100‐mesh, and 42% passed a 100‐mesh sieves. The “heavier” soil scoops with the hammer mill grinder could be explained by the fact that the finer soil particles could pack into the voids that the coarse soil particles created. Bray extractable P and ammonium actetate extractable K, Mg, and Ca were increased 11 to 15% by the “heavier” scooping weight. Grams of soil scooped and soil test levels were affected by the type of soil grinder and soil type.  相似文献   

2.
Abstract

The Mehlich‐3 method extracts a quantity of phosphorus (PM3) well correlated with crop yield in acid soils, and a quantity of aluminum (AlM3) well correlated with P sorption capacity of mineral soils. Phosphorus fertility levels in soils are generally determined on a volume basis, while soil sorption capacity for P and P saturation of the soil sorption capacity are assessed on a weight basis. However, scooped weights vary widely among tested soils. The purpose of this paper was to test the stability of a constructed ratio of PM3/AlM3 across a range of soil:solution ratios using 24 soils. Twenty‐four surface soils of different genetical and textural groups were extracted for PM3 and AlM3 without replication. Scooped weights varied between 3.21 and 4.17 g per 3‐mL scooped volume. Reproducibility of volumetric test (3 mL of soil per 30 mL of Mehlich‐3 solution) was within 3% for PM3, AlM3, and 100PM3/AlM3 using two contrasting soils with two replications. Extracted PM3 and AlM3 expressed on a weight basis decreased across the 24 soils as sample weight increased between 1.50 and 5.00 g, by steps of 0.50 g, per 30 mL of extracting solution. The 100PM3/AlM3 ratio was less variable than PM3 or AlM3 taken alone using a wide range of sample weights. In contrast with PM3 and AlM3 values taken alone, the 100PM3/AlM3 ratio produced stable data across the entire range of sample weights corresponding to scooped weights between 0.50 and 1.67 g mL‐1, as shown by a power test. The 100PM3/AlM3 ratio could be used simultaneously as a P saturation index for assessing environmental risk, and as a P fertility index for making fertilizer recommendations.  相似文献   

3.
Abstract

Extractants employed for routine soil analysis vary from one laboratory to another. Lack of a universal soil extractant is a serious limitation for interpretation of analytical results from various laboratories on nutritional status of a given soil. This limitation can be overcome by developing functional relationships for concentrations of a given nutrient extractable by various extradants. In this study, extractability of Ca, Mg, P, and K in a wide range of soils (0–15 cm) from citrus groves in Florida representing 21 soil series, with varying cultural operations, were compared using Mehlich 3 (M3), Mehlich 1 (M1), ammonium acetate (NH4AOc), pH = 7.0 (AA), 0.2M ammonium chloride (NH4Cl), and ammonium bicarbonate‐DTPA (AB‐DTPA) extractants. Soil pH (0.01M CaCl2) varied from 3.57 to 7.28. The concentrations of Ca or Mg extractable by M3, M1, AA, and NH4Cl were strongly correlated with soil pH (r2 = 0.381–0.482). Weak but significant correlations were also found between AB‐DTPA extractable Ca or Mg and soil pH (r2 = 0.235–0.278). Soil pH relationships with extractable K were rather weak (r2 = < 0.131) for M1 and NH4Cl but non‐significant for M3, AB‐DTPA, and AA. Concentrations of Ca, Mg, and K extractable by M3 were significantly correlated with those by either M1, AA, or NH4Cl extractants. Mehlich 3‐P was significantly correlated with P extractable by M1 extractant only. Mehlich 3 versus AB‐DTPA relationship was strong for K (r2 = 0.964), weaker for Mg and P (r2 = 0.180–0.319), and non‐significant for Ca. With the increasing emphasis on possible use of M3 as an universal soil extractant, data from this study support the hypothesis that M3 can be adapted as a suitable extractant for routine soil analysis.  相似文献   

4.
Abstract

The assumption of 2,000,000 kg/ha or 2,000,000 lbs/a in the conversion of soil test results into kg/ha and lbs/a introduces variables directly related to the variation in bulk density (BD) or volume weight (VW). In order to obtain enough soil to weigh 2,000,000 lbs/a the depth requirement changes with the VW. A soil with a VW of 1.6 g/cm3 would require a depth of 5.5 inches, 7.9 inches with a VW of 1.0 and 20 inches with a VW of 0.44 g/cm3. A constant soil depth of 20 cm (7.9 inches) is proposed as a standard depth for calculation which in the metric system, corresponds to 2,000,000 dm3/ha. Details relating to the use of the 20 cm standard depth in the metric and U. S. and British systems of weights and measures are discussed.  相似文献   

5.
Abstract

There has been a marked change in the soil testing procedures used in the United States by state soil testing laboratories since the early 1950's. In the Coastal Plain states of the south and east, the Double Acid extraction procedure is used for P, K, Ca, and Mg determinations. Bray P1 is the most frequently used method for P extraction except for the alkaline soils of the west where the Olsen method is used. Neutral normal ammonium acetate is the most frequently used extractant for K, Ca, and Mg determinations. The Morgan extraction procedures for P, K, Ca, and Mg, commonly used in the 1950's, is used by only a few states in the northeast and west. Although similar extraction reagents are used in many sections of the United States, there is considerable variance among states regarding weighed versus volume sampling, soil to solution ratio, shaking speed and time, and extraction vessel size and shape. For soil water pH, there is little variance in method as most states are using a 1:1 soil to solution ratio. The only exception is in several western states where water pH's are read in a saturated soil paste.

Considerable efforts are underway to standardize the techniques used to test soils primarily for the extractable elements.  相似文献   

6.
Abstract

The Mehlich 3 (M3) universal soil extraction method was compared with the ammonium acetate (AA), Bray 1, and DPTA extraction procedures for the analysis of calcium (Ca), magnesium (Mg), potassium (K), phosphorus (P), zinc (Zn), copper (Cu), manganese (Mn), and iron (Fe). Upland Malawi soils from 112 smallholder farmers’ fields of the Alfisol, Ultisol, and Oxisol soil orders were analyzed by the four procedures. Calcium, Mg, and K extracted by the M3 and AA procedures were highly correlated (r2 = 0.98, 0.98, and 0.99 for the respective elements). The M3 extractant also correlated well with the DPTA procedure for Zn and Cu (r2 = 0.88 for both elements) and the Bray 1 method for P (r2 = 0.80). Amounts of Mn and Fe extracted by M3 and DPTA were poorly correlated (r2 = 0.28 and 0.47, respectively), with both elements testing high in all soils. The high levels suggest that Mn and Fe deficiencies are likely to be rare, and that analysis for these elements is not generally necessary. Special precautions for Zn and Cu analyses are advised due to the low conentrations of these elements in the M3 extract and various laboratory sources of Zn contamination. The use of soil pH along with M3‐extractable Zn is recommended in the identification of potentially Zn‐deficient soils. The preference for expressing analytical results on a volume rather than weight basis is discussed. Based on a review of literature relating to the M3 extractant, the following critical M3 soil test values are tentatively recommended for maize on upland Malawi soils: Ca, 50 mg/dm3; Mg, 75 mg/dm3 and Mg:Ca ratio >0.067; K, 70 mg/dm3; P, 20 mg/dm3; Zn, 1.0 mg/dm3; and Cu, 0.5 mg/dm3. These suggested values should not preclude in‐country correlation studies. Because the M3 procedure is well correlated with the AA, DPTA, and Bray 1 methods, and because it is a rapid procedure, the M3 method can be highly recommended as a replacement for the three current procedures for Malawi upland soils. Caution is advised in extending the results to Malawi lowland soils, which are characterized by higher pH values.  相似文献   

7.
Abstract

The Mehlich 3 (M3) extractant was introduced in 1981 to improve the efficiency of soil testing laboratories by eliminating the need for multiple extractants for P, K, Ca, Mg, Mn, Cu and Zn. The M3 was also intended to be suitable for a wide range of soils, perhaps to serve as a “universal”; soil test extractant. At present, regional soil testing committees throughout the U.S. are investigating the M3 in this regard.

Development of a field calibration data base for a new soil testing extractant is an essential, but expensive and time‐consuming process. An interim measure is the use of conversion equations between new and current extractant(s). These equations allow for use of the new extractant with existing field calibration data. The objectives of this study were (i) to develop conversion equations for the Mehlich 1 (M1) and M3 extractants for Atlantic Coastal Plain soils, and (ii) to determine the influence of soil pH and organic matter content on the relative extractability of P, K, Ca, Mg, Mn and Zn by Ml and M3.

Four hundred soil samples, obtained from field plots and commercial crop samples submitted to the University of Delaware Soil Testing Laboratory were analyzed for P, K, Ca, Mg, Mn, Cu and Zn by M1 and M3. Highly significant correlations between M3 and M1 were found for all nutrients (r=0.92*** to 0.97***) and, except for Cu and Mn, soil pH and OM did not markedly improve the linear regression equations developed for conversion between M3 and M1. Inclusion of OM in a multiple regression equation between M3 and M1 extractable Cu increased R2 from 0.46** to 0.71***; R2 for Mn+(pH+OM) was 0.48***, relative to 0.35*** for extractable Mn alone. Critical values for M3 P, K, Ca, and Mg, based on conversion equations restricted to soils testing less than high with the M1 extractant, were 41, 49, 295 and 45 mg.dm‐3, respectively. For Mn and Zn, at a pH of 6.2, M3 critical values were 9.5 and 0.6 mg.dm‐3, while for Cu, the M3 critical value ranged from 0.5 to 1.1 mgdm‐3 for soil OM of 2 to 8%.  相似文献   

8.
Abstract

Few soil test and plant tissue calibration data exist for cucumbers (Cucumis sativus L.). Two years of a singly‐replicated cucumber fertility study were conducted to develop soil and plant data for calibration purposes employing the Boundary Line Approach. Fertility treatments consisting of 4 K levels (as KC1), 3 Mg levels (as MgCl2), 3 pH levels (as Calcitic limestone), and 4 N rates (as urea ammonium nitrate) were factorilly arranged and completely randomized to give 108 treatments in both 1987 and 1988. Analyses were performed upon leaf samples for N, P, K, Ca and Mg at early bloom and soil samples for Mehlich (M) 1‐ and 3‐ P, K, Ca and Mg, and pH. Cucumber yields were determined on early (two fruit pickings) and total (four fruit pickings) sampling periods. High‐yielding cucumbers were attained at soil K (Ml = 64 mg/kg) and Mg (Ml = 29 mg/kg) levels lower than currently recommended. No significant differences in correlation coefficients between either Mehlich (Ml, M3) extractant and cucumber leaf P, K, Ca and Mg concentrations were found. Co‐efficients of determination (R2) values for the relationships (in 1987, 1988) between Ml‐ and M3‐extractable P (0.53, 0.40), K (0.77, 0.64), Ca (0.81, 0.71) and Mg (0.89, 0.74) were all highly significant (P ≤ 0.01). No significant differences were noted between early and total high‐yielding cucumber leaf concentrations and ratios developed for use as preliminary sufficiency ranges and DRIS norms, respectively. A reevaluation of cucumber coastal plain soil test calibrations, especially with regard to K, appears necessary. This study provides further support for the conversion of Ml to M3 soil extraction methodology.  相似文献   

9.
Soybean is an important crop for the Brazilian economy, and soil acidity is one of the main yield-limiting factors in Brazilian Oxisols. A field experiment was conducted during three consecutive years with the objective to determine soybean response to liming grown on Oxisols. Liming rates used were 0, 3, 6, 12, and 18 Mg ha?1. Liming significantly increased grain yield in a quadratic trend. Ninety percent maximum economic grain yield (2900 kg ha?1) was achieved with the application of about 6 Mg lime ha?1. Shoot dry weight, number of pods per plant, and 100-grain weight were also increased significantly in a quadratic fashion with increasing liming rate from 0 to 18 Mg ha?1. These growth and yield components had a significant positive association with grain yield. Maximum contribution in increasing grain yield was of number of pods per plant followed by grain harvest index and shoot dry weight. Uptake of nitrogen (N) was greatest and phosphorus (P) was least among macronutrients in soybean plant. Nutrient-use efficiency (kg grain per kg nutrient accumulation in grain) was maximum for magnesium (Mg) and lowest for N among macronutrients. Application of 3 Mg lime ha?1 neutralized all aluminum ions in soil solution. Optimal acidity indices for 90% of maximum yield were pH 6.0, calcium (Ca) 1.6 cmolc kg?1, Mg 0.9 cmolc kg?1, base saturation 51%, cation exchange capacity (CEC) 4.8 cmolc kg?1, Ca/Mg ratio 1.9, Ca?/?potassium (K) ratio 5.6, and Mg/K ratio 3.0.  相似文献   

10.
Abstract

A commercial laboratory robot has been programmed to aid in the determination of soil lime requirement. Soil samples submitted to our laboratory, after drying, grinding, and sieving, are manually scooped into racks of pre‐weighed glass tubes. From this point onward, the robot performs all functions. The weight of soil in each tube is obtained using an analytical balance. Deionized water is added using a mobile pipet, and the contents of each tube stirred, and optionally centrifuged. The soil/water pH (pHw) is determined using a mobile combination electrode. SMP buffer solution is added, the contents stirred, optionally centrifuged again, and the soil/SMP buffer pH (pHsMP) value is obtained. The weight and two sets of pH data for each soil sample are transferred to disk, and lime requirement results calculated using a computer spreadsheet program.  相似文献   

11.
Abstract

The objective was to find an uncomplicated test giving the best correlation between calcium (Ca), magnesium (Mg), manganese (Mn), copper (Cu), zinc (Zn), and lead (Pb) extracted from humic forest soil and the total concentration of the element in some understorey forest plants using well‐known extractants. The elements were selected because Ca, Mg, Mn, Cu, and Zn are essential nutrients to plants and Zn and Pb are potentially harmful heavy metals received over the years in the southern parts of Norway by long‐range atmospheric transport. Extraction of organic podzolic surface soil (Oe and Oa horizon) from 17 different pine forests in central and southern Norway was carried out with four different reagents to evaluate uptake of Ca, Mg, Mn, Cu, Zn, and Pb in the understorey plants Deschampsia flexuosa, Vaccinium myrtillus (leaves and stems), and Vaccinium vitis‐idaea (leaves and stems). The NH4OAc, NH4NO3, HCl, and EDTA solutions used to extract the soil in addition to concentrated HNO3, demonstrated variability in capacity to extract the different elements from the soil. The extractants yielded significant relations between concentrations of Ca, Mn, and Pb in the Oe or Oa horizon and some of the plants or plant compartments, even though distinct correlation was more dependent on species and plant part than the actual extractant used. In the case of Zn, Cu, and Mg only a few sporadic correlations were observed between the different plant/plant compartments and the element concentrations in the soil extracts. Altogether none of the extractants was shown to be superior to the others in providing the best correlation with the elements concentrations in selected plant/plant compartments. In the case of Ca, Mn, and Pb all the extractants including concentrated HNO3 provided significant correlations with at least some of the selected plant/plant compartments.  相似文献   

12.
This study evaluated the suitability of the Mehlic h3 universal extractant as a part of a multielement test to assess the nutrient status of Australian sugarcane soils. Soil samples from BSES Soil Exchange Programs, representing all major soil types and geographic sugarcane-growing regions, were analyzed using existing BSES, acid-based extraction methods for calcium (Ca), magnesium (Mg), sodium (Na), potassium (K), copper (Cu), zinc (Zn), iron (Fe), manganese (Mn), and phosphorus (P) and the ASPAC 10B3 method for sulfur (S). These were compared with the Mehlich 3 procedure. Mehlich 3 results for Ca, Mg, Na, S, and Mn correlated highly with the BSES procedures (R2 = 0.95, 0.98, 0.99, 0.91, and 0.91, respectively). Satisfactory correlations were also obtained with 0.1 M HCl–extracted Zn, Cu, and Fe (R2 = 0.89, 0.85, and 0.85, respectively) and with the BSES sulfuric acid (H2SO4)–extracted P (R2 = 0.81). The poorest correlation (R2 = 0.79) was observed for K. In conclusion, the Mehlich 3 procedure is suitable as a diagnostic tool to assess the basic nutrient status of Australian sugarcane soils.  相似文献   

13.
Are Indicators for Critical Load Exceedance Related to Forest Condition?   总被引:1,自引:0,他引:1  
The aim of this study was to evaluate the suitability of the (Ca?+?Mg?+?K)/Al and the Ca/Al ratios in soil solution as chemical criteria for forest condition in critical load calculations for forest ecosystems. The tree species Norway spruce, Sitka spruce and beech were studied in an area with high deposition of sea salt and nitrogen in the south-western part of Jutland, Denmark. Throughfall and soil water were collected monthly and analysed for pH, NO3-N, NH4-N, K, Ca, Mg, DOC and Altot. Organic Al was estimated using DOC concentrations. Increment and defoliation were determined annually, and foliar element concentrations were determined every other year. The throughfall deposition was highest in the Sitka spruce stand (maximum of 40 kg N ha?1yr?1) and lowest in the beech stand (maximum of 11 kg N ha?1yr?1). The Sitka spruce stand leached on average 12 kg N ha?1yr?1 during the period 1988–1997 and leaching increased throughout the period. Only small amounts of N were leached from the Norway spruce stand whereas almost no N was leached from the beech stand. For all tree species, both (Ca?+?Mg?+?K)/Al and Ca/Al ratios decreased in soil solution at 90 cm depth between 1989 and 1999, which was mainly caused by a decrease in concentrations of base cations. The toxic inorganic Al species were by far the most abundant Al species at 90 cm depth. At the end of the measurement period, the (Ca?+?Mg?+?K)/Al ratio was approximately 1 for all species while the Ca/Al ratio was approximately 0.2. The lack of a trend in the increment rates, a decrease in defoliation as well as sufficient levels of Mg and Ca in foliage suggested an unchanged or even slightly improved health condition, despite the decreasing and very low (Ca?+?Mg?+?K)/Al and Ca/Al ratios. The suitability of these soil solution element ratios is questioned as the chemical criteria for soil acidification under field conditions in areas with elevated deposition rates of sea salts, in particular Mg.  相似文献   

14.
Abstract

Weight variability of volumetric soil test samples taken with the standard 4.25 cm3 Urbana Laboratories’ soil scoop was studied as a factor influencing soil test accuracy. Also examined was effect of degree of sample pulverization on volume—weight, differences among technicians, and volume‐weight differences between dry and moist samples.

The results revealed that volumetric sampling of Maine soils can lead to major errors, particularly when quick tests are used to quantify lime requirement, extractable H, exchangeable cations, CEC, and percent base saturation. Good predictions of these properties from quick soil test results, however, are possible when samples are weighed. In the Maine Laboratory poor quantitative results from volumetric samples originated from wide variations in volume‐weight among soils. This variability was traced to degree of aggregation, which in turn was traceable to differences in texture and organic matter among samples. Technician differences were not an important source of volume‐weight variability. Volume‐weights were much lower with moist than with dried soil, but volume‐weight variability among soils was less when sampled moist.  相似文献   

15.
The decrease in anthropogenic deposition, namely SO42— and SO2, in European forest ecosystems during the last 20 years has raised questions concerning the recovery of forest ecosystems. The aim of this study was to evaluate if the long term data of element concentrations at the Fichtelgebirge (NE‐Bavaria, Germany) monitoring site indicates a relationship between the nutrient content of needles and the state of soil solution acidity. The soil at the site is very acidic and has relatively small pools of exchangeable Ca and Mg. The trees show medium to severe nutrient deficiency symptoms such as needle loss and needle yellowing. The Ca and Mg concentrations in throughfall decreased significantly during the last 12 years parallel to the significant decline in the throughfall of H+ and SO42— concentrations. Soil solution concentrations of SO42—, Ca and Mg generally decreased while the pH value remained stable. Aluminum concentrations decreased slightly, but only at a depth of 90 cm. Simultaneously a decrease in the molar Ca/Al and Mg/Al ratios in the soil solution was observed. Ca and Mg contents in the spruce needles decreased, emphasizing the relevance of soil solution changes for tree nutrition. The reasons for the delay in ecosystem recovery are due to a combination of the following two factors: (1) the continued high concentrations of NO3 and SO42— in the soil solution leading to high Al concentrations and low pH values and, (2) the decreased rates of Ca and Mg deposition cause a correlated decrease in the concentration of Ca and Mg in the soil solution, since little Ca and Mg is present in the soil's exchangeable cation pools. It is our conclusion that detrimental soil conditions with respect to Mg and Ca nutrition as well as to Al stress are not easily reversed by the decreasing deposition of H+ and SO42—. Thus, forest management is still confronted with the necessity of frequent liming to counteract the nutrient depletion in soils and subsequent nutrient deficiencies in trees.  相似文献   

16.
Two Ca‐efficient and 3 Ca‐inefficient tomato lines selected on the basis of dry matter production, Ca concentrations in tissues, and severity of Ca deficiency symptoms were grown in nutrient solutions containing 6 levels of total Ca ranging from 15 to 365 mg in 70 mg increments. All lines responded to increased Ca supply by increasing in dry weight and by accumulating Ca. The critical Ca concentrations in the shoots were 0.25% and 0.40% on a dry weight basis for the efficient and inefficient lines, respectively. Concentrations of Ca, K, Mg, P, and NO3 were lower in shoots and except for Mg were lower in roots of efficient plants than in the inefficient plants. For all lines as more Ca was available in the media and as Ca increased in the shoots and roots, the concentrations of the nutrients other than Ca declined. The declines in concentrations of K and Mg were not due to dilution by higher dry matter production in the efficient lines relative to the inefficient ones, although the total accumulation of Ca, P, and NO3 did not vary with Ca supplied. Antagonism among cations may account for differences in efficiency among lines of tomato.  相似文献   

17.
With the increase in phosphate fertilizer prices, there is a need to find lower-cost alternatives that are as efficient as soluble sources such as single (SSP) and triple superphosphate (TSP). In Brazil’s northern and northeastern regions, there are reserves of igneous rocks with low solubility containing high concentrations of total phosphorus (P) that can be used to produce fertilizers, such as thermalphosphates. To assess the efficiency of sources of P and two types of lime on soybean yield, a field experiment was carried out in an area with dystrophic Red Latosol (Oxisol) in a Cerrado region in the southern part of Maranhão State. The experimental design was randomized blocks in a 2 × 3 × 4 factorial scheme, with four replicates. The treatments were two types of lime [calcitic (CL) (<5 dag kg?1 of MgO) and dolomitic (DL) (>13 dag kg?1 of MgO)], three phosphate fertilizer sources [triple superphosphate (TSP), “Yoorin” thermalphosphate (YT), and experimental thermalphosphate (ET)], and four rates of phosphorus pentoxide (P2O5; 0, 100, 200, and 300 kg ha?1). After 2 years of cultivation, the application of DL resulted in greater soybean yields than the application of CL. The two lime types influenced the pH, carbon (C), calcium (Ca), and magnesium (Mg) concentrations as well as the Ca/Mg, Ca/K, and Mg/K ratios in the soil. With respect to sources of P, the YT applied in the soil with DL produced an agronomic efficiency index (AEI) similar to that of TSP, whereas in the soil with CL, the TSP, YT, and ET were similar, with maximum technical efficiency (MTE) under both conditions starting at 230 kg ha?1 of P2O5. The critical concentration of available phosphorus (P) in the soil (Mehlich-1 extractant) for cultivation of soybean under the climate and soil conditions studied was between 5.0 and 6.0 mg kg?1.  相似文献   

18.
Abstract

Corn was grown with three rates (200, 400, 800 rng N/pot) of sewage sludge (Milorganite), KNO3, or (NH4)2SO. application in the presence (10 ppm) or absence of nitrapyrin, a nitrification inhibitor. Bleached areas appeared on the lower leaves of plants at the lowest application of sludge when nitrapyrin was added. No other visible symptoms were noted.

Five‐week‐old seedlings were harvested, weighed and analyzed for Ca and Mg. Nitrapyrin restricted dry weight production of plants receiving sludge and increased growth in those receiving KNO3. Concentrations of Ca and Mg were reduced in all plants receiving nitrapyrin except in those grown at the lowest rates of sludge application.  相似文献   

19.
Abstract

An experiment was carried under controlled conditions to investigate the influence of the anions, H2PO4 . and Cl on the ionic equilibria, selectivity and effective diffusion of Rb, K, Na, Ca, Mg in two Indiana soils.

Additon of anions to the soils increased the concentration of cations in soil solution. In both the soils receiving H2PO4 , lower cation concentrations were found in the soil solution than in those receiving Cl . Additon of H2PO4 and Cl reduced the ion selectivity coefficient, k, for various homovalent (Rb/K, Rb/Na, K/Na, Ca/Mg) and mono‐divalent ion pairs (Rb/Ca, Rb/Mg, K/Ca, K/Mg). In Zanesville soil treatments receiving H2PO4 had lower k values for mono‐divalent cations than treatments receiving Cl. However, no such conclusions could be drawn for Raub soil. Soils treated with H2PO4 had higher k values for homovalent cations than Cl treated soils. The differences in the selectivity of adsorption in these two soils might be attributable to the differences in the type and nature of exchange materials and cation concentrations on the exchange phase.

Addition of H2PO4 or Cl enhanced the magnitude of effective diffusion coefficient. (De) of all the cations under considerations. The magnitude of effective diffusion coefficient for cations was lower for H2PO4 treated soils than Cltreated soils. Such a reduction in De is related to the reduction in cation concentration in soil solution thereby increasing the buffer capacity for the ions under consideration.  相似文献   

20.
Abstract

Quantifying the effects of soil acidity on plant growth remains a challenging research topic as numerous soil and plant growth factors are influenced by pH and lime. In the field, annual ryegrass (Lolium multiflorum Lam. ‘Marshall') responded positively to the application of 3.8 Mg lime/ha on a strongly acid (pH 4.7) Lilbert loamy fine sand (loamy, siliceous, thermic, arenic Plinthic Paleudult) over three growing seasons. Dry matter yield in some cuttings, however, was better correlated with soil Al, P, Ca, Mg, and K than with pH. A greenhouse study was undertaken to quantitatively determine the effects of these five minerals plus Mo on ryegrass yield in limed and unlimed Lilbert soil material. Three ryegrass cuttings were obtained from unlimed (pH 4.8) or limed (1000 mg CaCO3/kg) Lilbert soil which was also amended with five rates of Ca, K, Mg, Al, P, and Mo in combinations stipulated by central composite design methodology. Response surface models that fit yield to the applied treatments and soil test data were complex because all factors and many interactions were significant. Furthermore, the models were transformed as the plants matured and element availability changed due to mineral uptake. Most yield improvement derived from liming occurred as a result of the elimination of exchangeable Al with a concomitant increase in P efficiency. Applied Ca did not alleviate Al toxicity in unlimed soil. Chlorotic plants developed in all pots where Mg was excluded. Yield was increased by applied Mg and Mo in unlimed soil, but not in limed soil. Applied K improved yield only in limed soil. Although regression accounted for a large portion of the yield variability (R2 values ranged from 0.75 to 0.95), these models were unable to accurately predict yield in control treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号