首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 881 毫秒
1.
Abstract

Zinc availability was studied using five soils from Hawaii which had histories of massive phosphorus applications. Heavy phosphate fertilization usually increased extractable Zn, irrespective of the extractant used. The extra extractable Zn associated with the added P probably came from Zn as an accessory element in the fertilizer. Treble superphosphate commonly used in Hawaii contains about 1400 ppm Zn. The Zn content of phosphate fertilizers must be considered before making statements about the effect of fertilizer P on Zn solubility and availability in soils.

Two solutions (0.1N HCl and 0.005M DTPA) were compared as Zn extractants for Hawaii soils. DTPA extracted less Zn than 0.1N HCl. Zinc extracted by repeated HCl treatment was more closely related to the labile Zn pool (E‐values and L‐values) than was DTPA‐extractable Zn. The results suggest that 0.1N HCl extractable Zn, Zn E‐value and Zn L‐value measured the quantity of a single fraction of soil Zn.

Repeated extraction of soil with 0.1N HCl seems to be a suitable procedure for evaluating the Zn status of acid, highly weathered soils of Hawaii.  相似文献   

2.
Total, mobile, and easily available C and N fractions, microbial biomass, and enzyme activities in a sandy soil under pine (Pinus sylvestris L.) and black locust (Robinia pseudoacacia L.) stands were investigated in a field study near Riesa, NE Germany. Samples of the organic layers (Oi and Oe‐Oa) and the mineral soil (0–5, 5–10, 10–20, and 10–30 cm) were taken in fall 1999 and analyzed for their contents of organic C and total N, hot‐water‐extractable organic C and N (HWC and HWN), KCl‐extractable organic C and N (Corg(KCl) and Norg(KCl)), NH ‐N and NO ‐N, microbial‐biomass C and N, and activities of β‐glucosidase and L‐asparaginase. With exception of the HWC, all investigated C and N pools showed a clear response to tilling, which was most pronounced in the Oi horizon. Compared to soils under pine, those under black locust had higher contents of medium‐ and short‐term available C (HWC, Corg(KCl)) and N (HWN, Norg(KCl)), mineral N (NH ‐N, NO ‐N), microbial‐biomass C and N, and enzyme activities in the uppermost horizons of the soil. The strong depth gradient found for all studied parameters was most pronounced in soils under black locust. Microbial‐biomass C and N and enzyme activities were closely related to the amounts of readily mineralizable organic C (HWC and Corg(KCl)). However, the presented results implicate a faster C and N turnover in the top‐soil layers under black locust caused by higher N‐input rates by symbiotic N2 fixation.  相似文献   

3.
Abstract

Pressurized hot water and DTPA‐Sorbitol are two relatively new, proposed alternative soil boron (B) extraction methods for which no data on yield or plant nutrient uptake have been reported for validation. Both methods initially have shown significant correlation with the hot water extraction method in untreated soils as well as soils incubated with various levels of B. The objective of the research was to extract samples of B‐treated soils by using all three extraction methods and correlate the B values obtained to yield, B tissue concentration, and total B removal of alfalfa (Medicago sativa). Greenhouse and field experiments on alkaline and limed acid soils naturally low in hot water‐extractable B were conducted to test alfalfa response to B fertilizer. In the greenhouse, highly significant relationships exist between plant uptake and extractable B with all three methods at varying levels of applied B, but no alfalfa yield response was observed. All three methods result in accurate predictions of plant B tissue concentrations and total B removal. The field experiment exhibited a significant positive relationship between total alfalfa yield and extractable B using hot water and pressurized hot water extractions. Extractable B using DTPA‐Sorbitol was not related to total alfalfa yield in the field experiment. This work, coupled with the earlier incubation studies, supports the pressurized hot water extraction method as an improvement over hot water in diverse soil types. The lack of relationship in the acid soil supports DTPA‐Sorbitol as an improvement over hot water in alkaline soils.  相似文献   

4.
The relationships between the denitrification capacities of 17 surface soils and the amounts of total organic carbon, mineralizable carbon, and water-soluble organic carbon in these soils were investigated. The soils used differed markedly in pH, texture, and organic-matter content. Denitrification capacity was assessed by determining the N evolved as N2 and N2O on anaerobic incubation of nitrate-treated soil at 20°C for 7 days, and mineralizable carbon was assessed by determining the C evolved as CO2 on aerobic incubation of soil at 20°C for 7 days. The denitrification capacities of the soils studied were significantly correlated (r = 0·7771) with total organic carbon and very highly correlated (r = 0·9971) with water-soluble organic carbon or mineralizable carbon. The amount of nitrate N lost on anaerobic incubation of nitrate-treated soils for 7 days was very closely related (r = 0·99971) to the amount of N evolved as N2 and N2O.The work reported indicates that denitrification in soils under anaerobic conditions is controlled largely by the supply of readily decomposable organic matter and that analysis of soils for mineralizable carbon or water-soluble organic carbon provides a good index of their capacity for denitrification of nitrate.  相似文献   

5.
Abstract

The profile distribution of total, DTPA‐ and 0.1N HCl‐extractable Cu was determined in 11 Nigerian soil profiles formed from various parent materials including the coastal plain sands, shales, basalt, granite and banded gneiss.

Total Cu ranged from 7 to 72 ppm with a mean of 35 ppm0 The soils formed from basalt had the highest values while those on coastal plains had the least content. Generally, there was a higher content in the subsoils than in the surface horizons. The total Cu significantly correlated with percent clay and the free oxide contents of Fe and Mn.

DTPA ‐ and 0.1N HCl‐extractable Cu ranged from 0.08 to 2.81 ppm and 0.10 to 7.78 ppm, respectively. Soils on metamorphic rocks gave the highest values of DTPA‐extractable Cu. The DTPA‐extractable Cu ‐was only related to pH but the acid extractable Cu was associated with total Cu, clay, free Fe2O3 and MnO2 contents.  相似文献   

6.
Minerals with large specific surface areas promote the stabilization of soil organic matter (SOM). We analysed three acidic soils (dystric, skeletic Leptic Cambisol; dystric, laxic Leptic Cambisol; skeletic Leptic Entic Podzol) under Norway spruce (Picea abies) forest with different mineral compositions to determine the effects of soil type on carbon (C) stabilization in soil. The relationship between the amount and chemical composition of soil organic matter (SOM), clay content, oxalate‐extractable Fe and Al (Feo; Alo), and dithionite‐extractable Fe (Fed) before and after treatment with 10% hydrofluoric acid (HF) in topsoil and subsoil horizons was analysed. Radiocarbon age, 13C CPMAS NMR spectra, lignin phenol content and neutral sugar content in the soils before and after HF‐treatment were determined and compared for bulk soil samples and particle size separates. Changes in the chemical composition of SOM after HF‐treatment were small for the A‐horizons. In contrast, for B‐horizons, HF‐soluble (mineral‐associated) and HF‐resistant (non‐mineral‐associated) SOM showed systematic differences in functional C groups. The non‐mineral associated SOM in the B‐horizons was significantly depleted in microbially‐derived sugars, and the contribution of O/N‐alkyl C to total organic C was less after HF‐treatment. The radiocarbon age of the mineral‐associated SOM was younger than that of the HF‐resistant SOM in subsoil horizons with small amounts of oxalate‐extractable Al and Fe. However, in horizons with large amounts of oxalate‐extractable Al and Fe the HF‐soluble SOM was considerably older than the HF‐resistant SOM. In acid subsoils a specific fraction of the organic C pool (O/N‐alkyl C; microbially‐derived sugars) is preferentially stabilized by association with Fe and Al minerals. Stabilization of SOM with the mineral matrix in soils with large amounts of oxalate‐extractable Alo and Feo results in a particularly stable and relatively old C pool, which is potentially stable for thousands of years.  相似文献   

7.
Abstract

Fertilizer recommendations need to be based on reliable soil sulfate determinations. Airdrying samples changes irreversibly many properties of soils with variable charge and might affect the extractable sulfate. In this study, sulfate extracted from air‐dry and field‐moist samples was compared. Two extracting solutions [water and 00.1 M Ca(H2PO4) 2] and two quantification methods (turbidimetry and ion chromatography) were assayed on A and B horizon samples of five Humic Acrisols from southeast Mexico. Air drying increased water‐extractable sulfate in Ah horizons, whereas in Bt horizons, it increased the 00.1 M Ca(H2PO4)2‐extractable sulfate. Airdrying increased dissolved organic carbon contents in all samples and increased soil acidity and oxalate extractable iron in 70 and 60% of the samples, respectively. Results showed larger coefficients of variation in air‐dried samples. Turbidimetry resulted less sensible than ion chromatography. To enhance sensitivity and reproducibility, particularly organic soil samples should be analyzed field‐moist and by ion chromatography.  相似文献   

8.
Abstract

The profile distribution of total, DTPA‐ and 0.1 N HC1‐extractable Zn was determined in 11 Nigerian soil profiles formed on various parent Materials including the coastal plain sands, shales, basalt, granite and banded gneiss.

The total content ranged from 9 to 84 ppm. Generally soils developed on igneous rocks contained more Zn than those on sedimenatary deposits. Among the soils on sedimentary rocks, those on shale had more total Zn than those on sandstones. Total Zn was weakly correlated with organic matter but strongly associated vith clay content and free oxides of iron and manganese.

The amounts of Zn extracted by DTPA and 0.1 N HC1 ranged from 0.01 to 10.98 and from 0.23 to 6.25 ppm, respectively. The dilute acid generally removed more Zn from the soils than did the DTPA. The amounts extracted generally decreased vith depth especially vith DTFA extractant. Soils developed on basalt and shales contained the highest amounts of 0.1 N HCl‐extractable Zn while those on basement complex rocks gave the highest values of DTPA‐extractable Zn. Extractable Zn from soils on coastal plain sands remained relatively lev. The extractable Zn was more associated vith organic matter than vith clay content.  相似文献   

9.
Hot water extraction is sometimes recommended as an easy method to estimate the readily mineralizable fractions of total C (Ct) and total N (Nt) in arable soils. However, the usefulness of this method for forest soils has not been adequately studied. The objectives of this study were to relate the hot water extractable C (Chw) and N (Nhw) to microbiological and chemical properties of the forest soils under beech (Fagus sylvatica L.) stands and to test the ability of near infrared spectroscopy (NIRS) to predict chemical and microbial properties of these soils. Soils differing in humus type, soil type and soil texture were collected from five locations and five depths. In all soils the amount of Chw was higher than the microbial biomass C (Cmic) indicating that a considerable part of Chw was of non-microbial origin. The amount of Chw in mineral soil correlated significantly (r =–0.30–0.53) with Cmic, basal respiration (BAS) and Ct/Nt ratio but was not related to Cmic/Ct ratio. The amount of Nhw was correlated with Cmic, BAS, Cmic/Ct ratio, and Ct/Nt ratio (r =–0.59–0.78). However, Ct and Nt values showed better relationships (r =–0.42–0.88) with all the parameters, indicating no advantage in using Chw and Nhw in forest soils. NIRS predicted satisfactorily Ct, Nt, Chw, Nhw, Cmic, Cmic/Ct ratio and BAS in the mineral soils [the regression coefficients (a) of linear regression (measured against predicted values) ranged from 0.84 to 1.17 and the correlation coefficients (r) ranged from 0.86 to 0.94] indicating the applicability of NIRS to estimate these properties.  相似文献   

10.
Soil test indicators are needed to predict the contribution of soil organic N to crop N requirements. Labile organic matter (OM) fractions containing C and N are readily metabolized by soil microorganisms, which leads to N mineralization and contributes to the soil N supply to crops. The objective of this study was to identify labile OM fractions that could be indicators of the soil N supply by evaluating the relationship between the soil N supply, the C and N concentrations, and C/N ratios of water extractable OM, hot‐water extractable OM, particulate OM, microbial biomass, and salt extractable OM. Labile OM fractions were measured before planting spring wheat (Triticum aestivum L.) in fertilized soils and the soil N supply was determined from the wheat N uptake and soil mineral N concentration after 6 weeks. Prior to the study, fertilized sandy loam and silty clay soils received three annual applications of 90 kg available N (ha · y)?1 from mineral fertilizer, liquid dairy cattle manure, liquid swine manure or solid poultry litter, and there was a zero‐N control. Water extractable organic N was the only labile OM fraction to be affected by fertilization in both soil types (P < 0.01). Across both test soils, the soil N supply was significantly correlated with the particulate OM N (r = 0.87, P < 0.001), the particulate OM C (r = 0.83, P < 0.001), and hot‐water extractable organic N (r = 0.81, P < 0.001). We conclude that pre‐planting concentrations of particulate OM and hot‐water extractable organic N could be early season indicators of the soil N supply in fertilized soils of the Saint Lawrence River Lowlands in Quebec, Canada. The suitability of these pre‐planting indicators to predict the soil N supply under field conditions and in fertilized soils from other regions remains to be determined.  相似文献   

11.
Abstract

An Investigation was conducted to determine the content and distribution of total and DTPA‐extractable Zn in the genetic horizons of 72 agriculturally important soils from the six major mineral soil areas in Louisiana.

The concentration of total Zn appeared to vary more with the clay constituents of the soils and the amount of the element in the parent materials than with soil depth. The majority of the soils had the largest amounts of total Zn in the subsurface horizons. The range in total Zn for all soils and horizons was from 7.0 to 150.0 ppm.

The DTPA‐extractable Zn in all of the soils and horizons ranged from 0.08 to 4.22 ppm. In the majority of the soil profiles the highest concentration of extractable Zn was in the surface horizons. There was a decrease in the extractable Zn with increasing soil depth. The alluvial soils along the Ouachita and Mississippi Rivers, and the Mississippi Terrace soil areas contained relatively large amounts of DTPA‐extractable Zn.

In some soils the extractable Zn significantly correlated with total Zn. There was also a close relationship between extractable Zn and organic matter content, especially in the Ap horizons.  相似文献   

12.
Effect of high nitrate application on the kinetic and gaseous composition of denitrification in different soils Kinetic and gaseous composition of denitrification were studied with 16 different soil horizons after application of a relatively high amount of nitrate (400 μg NO N/g dry soil) at defined conditions (He atmosphere; 80 % WHC; 30°C; 3 weeks). At the conditions given, denitrification followed zero-order kinetics depending on the amount of decomposable organic matter rather on than the nitrate concentration. Denitrification intensity was most significantly correlated with the amount of extractable or mineralizable organic carbon (CH2O and Cmin, respectively). N2 and N2O (but not NO) were liberated by all samples, the amount and ratio depending on the soil and time of sampling. At the end of the three week's incubation period, the N2/N-N2O ratio varied between 8.1 and 1.4/1 (with an average of 3.1/1), except for the acid Ah-sample of the Pararendzina (N2/N-N2O = 1.0/1.2). The incorporation of an excess of easily decomposable leaf-powder resulted in an increased nitrate turn-over (from 64.7 % to 95,7 % of the nitrate loss) with N2 as the single denitrification product. N2O could be detected only with the acid “B”-material of the Pararendzina. The denitrifying capacity Y (in μg N2+N-N2O/g soil) of a soil at the conditions given may be predicted by the amount of water-extractable organic carbon X (in μg CH2O/g soil) according to the equation Y = 0.808 X + 120,1.  相似文献   

13.
Abstract

Mineralization of soil organic nitrogen (N) and its contribution toward crop N uptake is central to developing efficient N‐management practices. Because biological incubation methods are time consuming and do not fit into the batch‐analysis techniques of soil‐testing laboratories, an analytical procedure that can provide an estimate of the mineralizable N would be useful as a soil‐test method for predicting plant‐available N in soil. In the present studies, the ability of boiling potassium chloride (KCl) to extract potentially mineralizable and plant‐available N in arable soils of semi‐arid India was tested against results from biological incubations and uptake of N by wheat in a pot experiment. Mineralization of organic N in soils was studied in the laboratory by conducting aerobic incubations for 112 days at 32°C and 33 KPa of moisture. Cumulative N mineralization in different soils ranged from 8.2 to 75.6 mg N kg?1 soil that constituted 2.7 to 8.8% of organic N. The amount of mineral N extracted by KCl increased with increase in length of boiling from 0.5 to 2 h. Boiling for 0.5, 1, 1.5, and 2 h resulted in an increase in mineral‐N extraction by 9.3, 12.7, 19.6, and 26.1%, respectively, as compared to mineral N extracted at room temperature. The boiling‐KCl‐hydrolyzable N (ΔNi) was directly dependent upon soil organic N content, but the presence of clay retarded hydrolysis for boiling lengths of 0.5 and 1 h. However, for boiling lengths of 1.5, and 2 h, the negative effect of clay was not apparent. The ΔN i was significantly (P=0.05) correlated to cumulative N mineralized and N‐mineralization potential (N0). The relationship between N0 and ΔN i was curvilinear and was best described by a power function. Boiling length of 2 h accounted for 78% of the variability in N0. Results of the pot experiment showed that at 21‐ and 63‐day growth stages, dry‐matter yield and N uptake by wheat were significantly correlated to boiling‐KCl‐extractable mineral N. Thus, boiling KCl could be used to predict potentially mineralizable and plant‐available N in these soils, and a boiling time of 2 h was most suitable to avoid the negatively affected estimates of boiling‐KCl‐hydrolyzable N in the presence of clay. The results have implications for selecting length of boiling in soils varying widely in clay content, and this may explain why, in earlier studies, longer boiling times (viz. 2 or 4 h) were better predictors of N availability as compared to 0.5 and 1 h.  相似文献   

14.
Abstract

A study was made to evaluate Zn removed by extraction with a 0.075 N acid mixture (0.05 N HCl + 0.025 N H2SO4). A ratio of soil to extracting solution of 1 to 4 and an extracting time of 15 minutes was selected. Data obtained by the method was significantly correlated with dithizone (0.01%) extraction. The method was found to be acceptable for evaluation of the Zn status of Southern Coastal Plain soils and easily adapted to routine use in soil testing. A significant correlation was obtained between extractable soil Zn and leaf blade content of Zn for Zn‐deficient and non‐deficient corn plants.  相似文献   

15.
Application of legume green manure (GM) is suggested to be effective in increasing the availability of native soil phosphorus (P) and the dissolution and utilization of phosphate rock (PR)‐P by food crops. Experiments were conducted to study the dynamics of extractable P (P extracted by Bray‐1‐extracting solution) of an Ultisol amended with or without GM residues of contrasting P concentrations in the absence of growing plants. In two separate experiments, GM residues of Aschynomene afraspera (a flood‐tolerant legume) and of Crotalaria micans (upland) with varying P concentrations were added to an acidic soil amended with PR‐P or triple superphosphate (TSP) in plastic bottles. Soil moisture was brought to field capacity of the soil in the upland experiment and saturated with distilled water in the lowland setup. This was done to simulate aerobic upland and anaerobic lowland soil conditions in the relevant plastic bottles. Only P concentration of the residues added varied, while lignin and C : N ratios were similar. A temperature of 25°C was maintained throughout the experiment. Changes in soil extractable Bray‐1‐P were measured at the end of the incubation period (60 or 80 d). In the aerobic soils, extractable P in the combined PR+GM or TSP+GM treatments was significantly lower than in the PR‐ or TSP‐ treated soils. The amendment with GM residues alone significantly increased Bray‐1‐P over the unamended control in the case of the inorganic P‐fertilized GM residues. The trend in extractable P was similar in the soils incubated under anaerobic conditions. However, in the case of PR, concentrations of P extracted by Bray‐1 solution did not significantly change in the presence or absence of GM. The results suggest that the incorporation of GM residues with low P concentration does not lead to a net P release in upland or lowland soils. These results have implications for nutrient cycling in farming systems in W Africa as most of the soils are poor and very low in available P.  相似文献   

16.
Effect of soil properties on the quantity and quality of denitrification with different bacteria The influence of 4 different soils on the intensity and quality of gaseous denitrification losses from 3 bacteria (Aeromonas “denitrificans” S224, Azospirillum lipoferum DSM 1843 and Bacillus licheniformis ATCC 14580) was examined in model experiments at complete anaerobic conditions at the expense of a relatively high nitrate concentration (300 μg NO3? N/g dry soil) at standard conditions (30°C, 80% WHC). The soils (Ah-material) were obtained from gleyo-eutric Fluvisol (A), orthic Luvisol (L), calcaric Fluvisol (AR) and eutric Cambisol (KB) and represented different chemical properties. Gas production (CO2, NO, N2O, N2 and CH4) was analyzed by gaschromatography in regular intervals, whereas changes in Nt, Ct, water extractable organic carbon (C), nitrate, nitrite, ammonium, pH (H2O) were determined at the end of each experiment. The intensity and composition of denitrification (NO, N2O, N2) differed considerably from organism to organism and from soil to soil. With A. “denitrificans” NO was released from the calcaric Fluvisol and orthic Luvisol, whereas B. licheniformis produced this gas only from the Cambisol. A. lipoferum did not produce NO in any of the soils tested. N2O was liberated by A. “denitrificans” in all soils, but A. lipoferum produced it only in the Fluvisol and B. licheniformis exclusively in the Cambisol. Apparently, the production of NO and N2O as products of incomplete denitrification at relatively high nitrate concentration is determined primarily by the organism in question and in the second place by the chemical properties of the soil. The main properties that govern the quality of denitrification in soils are discussed.  相似文献   

17.
Inorganic nitrogen (N) in soils is a primary component of soil‐plant N buffering. This study was conducted to determine if non‐exchangeable ammonium‐nitrogen (NH4‐N) could serve as an index of potentially mineralizable organic N which is an important sink in N buffering. Four long‐term winter wheat (Triticum aestivum L.) experiments that had received annual fertilizer N at 0 to 272 kg N ha‐1 were used. Soils from these experiments were extracted by four 10 mL portions of 2M potassium chloride (KC1) at room temperature followed by extraction with 20 mL of 2M hot KC1. Extraction at 100°C for four hours using 3 g soil and 20 mL 2M KC1 was found to be the most effective. Hot KC1‐extractable NH4‐N minus room temperature KCl‐extractable NH4‐N was considered non‐exchangeable NH4‐N. Non‐exchangeable NH4‐N was correlated with the long‐term N rates, and believed to be a reliable index of potentially mineralizable organic N. The relationship was linear for NH4‐N where the lowest N rate had the lowest extractable N. The mean non‐exchangeable NH4‐N concentration ranged from 8.42 to 16.34 mg kg‐1; whereas, nitrate‐nitrogen (NO3‐N) ranged from 0.07 to 1.87 mg kg1. Total inorganic N extracted was similar to that mineralized in a 42‐day aerobic water saturated incubation. In addition, using a linear‐plateau model, extractable NH4‐N was highly correlated with long‐term average yield (R2=0.92). For the soils evaluated, this method provided a rapid measure of potentially mineralizable N.  相似文献   

18.
Carbon mineralization kinetics as influenced by soil properties   总被引:3,自引:0,他引:3  
In a short-term laboratory study C mineralization potentials were determined on soil samples obtained from some representative agricultural soils in Tuscany, Italy. All the kinetic models tested to describe the mineralization process provided a good fit to the experimental data. A modified first-order model best described C mineralization in the soil. Both potentially mineralizable C and the mineralization rate (k) varied considerably among soils, reflecting the differences in soil properties. Potentially mineralizable C was positively related to C evolved as CO2 and to the exchange capacity. Normalized values (potentially mineralizable C divided by organic C), representing on average about 2% of the total soil C, was positively correlated to soil pH and negatively to the soil C pool, the soil N pool, and total microbial activity. Values for k ranged between 0.050 and 0.104 day-1, being higher in fine-textured soils and in soils with a large free Fe content. A low C:N ratio was indicative of a high k value. Turnover times for mineralized C were relatively rapid, ranging from 10 to 20 days.  相似文献   

19.
The denitrification potential of the soil horizons between 0- and 90-cm depth of 20 agricultural fields, representative of the most frequent combinations of agricultural crops and soil textures in Flanders (Belgium), and the factors affecting the denitrification potential were studied in the laboratory under controlled conditions. The denitrification potential in the presence of an added soluble C and N source was measured at 15°C after saturation of air-dried soil samples with water. The denitrification potential of the lower horizons was generally negligible compared to the upper horizons. The lower denitrification potential of the deeper horizons could partially be explained by their limited C availability. The denitrification potential of the upper horizons strongly depended on texture. Based on this parameter the soils could be divided into three groups: soils with a high clay content (>30% clay) were characterised by a high denitrification potential (>8.33 µg N g-1 dry soil day-1); soils with medium texture had a medium denitrification potential, between 0.41 and 7.25 µg N g-1 dry soil day-1; and soils with a high sand content (>80% sand) had a low denitrification potential (<2.58 µg N g-1 dry soil day-1). In most cases, extending the saturation period during pre-incubation increased the denitrification potential. Comparison of the denitrification potential of the upper horizons with and without addition of a soluble C source showed that the denitrification potential of the upper horizons of these soils was limited by their percentage of endogenous C. The measured denitrification potentials indicate that denitrification losses in soils high in clay content can be important when NO3 - concentrations are high.  相似文献   

20.
Desilication and leaching are processes that accompany plinthilization, leading to nutrient depletion. Soils from 12 profiles in a plinthitic landscape were analyzed for extractable micronutrients [iron (Fe), zinc (Zn), manganese (Mn), and copper (Cu)]. Soils of the landscape from crestal to lower‐slope position contain plinthite in the profile, whereas those of the valley floor are devoid of plinthite. The micronutrients were extracted using diethylenetriaminepentaacetic acid (DTPA) and 0.1 M hydrochloric acid (HCl). The results showed that 0.1 M HCl extracted more of the micronutrients than DTPA. The DTPA‐extractable Fe, Zn, Mn, and Cu in all the soils ranged from 1.15 to 12.44 (mean, 3.69); 0.71 to 2.75 (mean, 1.86); trace 12.44 (mean, 3.35), and trace 3.76 (mean, 0.63) mg kg?1, respectively. The DTPA‐extractable micronutrient contents were generally greater than the critical available level (4.5 mg kg?1 for Fe, 0.8 mg kg?1 for Zn, 1.0 mg kg?1 for Mn, and 0.2 mg kg?1 for Cu). The 0.1 M HCl‐extractable micronutrients in the landscape ranged from 8.00 to 30.40 (mean, 15.19); 0.30 to 6.49 (mean, 1.35); 1.00 to 27.20 (mean, 7.74); and 0.26 to 15.0 (mean, 2.77) mg kg?1 for Fe, Zn, Mn, and Cu, respectively. Both DTPA‐ and 0.1 M HCl‐extractable micronutrients were generally lower in the plinthitic horizons than in the nonplinthitic horizons and higher in the Ap than the subsoil horizons. Correlation analysis showed a significant relationship between DTPA‐Fe and DTPA‐Mn, Cu, and organic carbon (r = 0.913**, 0.411**, and 0.385**). There was a significant and positive relationship between 0.1 M HCl‐extractable Mn and organic carbon (C), total nitrogen (N), and available phosphorus (P) (r = 0.413**, 0.337**, and 0.350**, respectively).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号