首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Soil characteristics regulate various belowground microbial processes including methanogenesis and, consequently, affect the structure and function of methanogenic archaeal communities due to change in soil type which in turn influences the CH4 production potential of soils. Thus, five different soil orders (Alfisol, Entisol, Inceptisol, Podzol and Vertisol) were studied to assess their CH4 production potential and also the methanogenic archaeal community structure in dryland irrigated Indian paddy soils. Soil incubation experiments revealed CH4 production to range from 178.4 to 431.2 μg CH4 g-1 dws in all soil orders as: Vertisol<Inceptisol<Entisol<Podzol<Alfisol. The numbers of methanogens as quantified using real-time quantitative polymerase chain reaction (qPCR) targeting mcrA genes varied between 0.06 and 72.97 (×106 copies g-1 dws) and were the highest in Vertisol soil and the least in Alfisol soil. PCR-denaturing gradient gel electrophoresis (DGGE)-based approach targeting 16S rRNA genes revealed diverse methanogenic archaeal communities across all soils. A total of 43 DGGE bands sequenced showed the closely related groups to Methanomicrobiaceae, Methanobacteriaceae, Methanocellales, Methanosarcinaceae, Methanosaetaceae and Crenarchaeota. The composition of methanogenic groups differed among all soils and only the Methanocellales group was common and dominant in all types of soils. The highest diversity of methanogens was found in Inceptisol and Vertisol soils. Methane production potential varied significantly in different soil orders with a positive relationship (p?<?0.05) with methanogens population size, permanganate oxidizable C (POXC) and CO2 production. The present study suggested that CH4 production potential of different soils depends on physicochemical properties, methanogenic archaeal community composition and the population size.  相似文献   

2.
3.
Percolating water was sampled from the plow layer and subsoil layer in a Japanese paddy field, and the bacterial communities were compared together with floodwater by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) targeting a partial 16S rRNA gene and subsequent sequencing. The number of DGGE bands ranged from 16 to 28 with no significant differences among the sampling sites and times. Only 2 bands were common for the three sources of water samples. DGGE bands specific for the floodwater samples and percolating water samples from the plow layer were identified, while percolating water samples from the subsoil layer did not show specific bands but displayed common bands to those of the floodwater samples (7 bands) and percolating water samples from the plow layer (1 band). Cluster analysis of the DGGE banding patterns showed a distinct clustering in the samples of percolating water from the plow layer and a closer relationship between the others. These results suggest that the bacterial communities in percolating water changed during downward movement through the plow layer and subsoil layer. Sequences of the DGGE bands specific for the samples of percolating water from the plow layer showed a close relationship with anaerobic bacteria such as iron-reducers or uncultured bacterial DNA isolated from environments that are considered to be less oxic. On the other hand, the sequences of the bands specific for the samples of floodwater and percolating water from the subsoil layer showed a close relationship with uncultured bacterial DNA isolated from freshwater environments.  相似文献   

4.
Paddy field is a major emission source of methane. Methane is the terminal product of anaerobic decomposition of organic matter and generated by methanogenic archaea under flooded conditions in paddy fields. This study aimed to reveal the effect of winter flooding on methanogenic archaeal community structure in paddy fields of Andosols under organic farming. Soil samples were collected from experimental paddy fields in the Field Science Center, Tohoku University, for two years. They were under flooding conditions during winter with organic farming, under non-flooding conditions during winter with organic farming and under non-flooding conditions during winter with conventional farming (non-organic farming). Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis of methanogenic archaeal 16S rRNA gene revealed that the DGGE patterns were nearly the same irrespective of the treatment and sampling times. Twenty-three bands were observed from each treatment and 4, 13 and 6 sequences were closely related to Methanomicrobiales, Methanosarcinales and Methanocellales, respectively. Real-time quantitative PCR analysis indicated that the abundance of methanogenic archaeal 16S rRNA gene and mcrA gene, encoding α subunit of methyl-coenzyme M reductase, was not significantly different among the paddy fields. This study first revealed a methanogenic archaeal community in an Andosol paddy field and showed that the community was not affected by winter flooding under organic farming.  相似文献   

5.
Diversity of methanogenic archaeal communities in Japanese paddy field ecosystem was evaluated by the denaturing gradient gel electrophoresis (DGGE) after PCR amplification of the 16S rRNA genes (16S rDNAs), sequencing analysis and data evaluation by principal component analysis. Data were obtained from samples collected from the plowed soil layer, rice roots, rice straws incorporated in soil, plant residues (mixture of weeds, rice litters, rice roots, and rice stubbles) in soil, and composing rice straw. The number of bands of DGGE profiles ranged from 12 to 26 with the highest numbers in rice roots and rice straws incorporated in soil. However, the diversity indices based on both the numbers and intensity of bands indicated that the community of the plowed soil layer was the most diverse, even, and stable. Sequencing of the main DGGE bands showed the presence of Methanomicrobiales, Methanosarcinales, Methanobacteriaceae, and Methanocellales. The plowed soil layer included all phylogenetic groups of the methanogenic archaea of the other studied habitats, with prevalence of the members of Methanomicrobiales and Methanocellales. The phylogenetic diversity was compared with that of paddy soils collected in Italy, China, and the Philippines and that of 12 anaerobic environments (fen, waste, coast, permafrost, natural gas field, bovine rumen, riparian soil, termite, ciliate endosymboints, lake sediment, landfill, and seep rumen). The phylogenetic diversity was more similar among paddy soils than with the other anaerobic environments. Probably, the methanogenic archaeal communities of the paddy field soils were characterized by indigenous members and some of the members of the community of the plowed soil layer colonized rice roots, rice straws, and plant residues.  相似文献   

6.
In the subsurface horizons of some paddy fields at the Kojima polder, Okayama Prefecture, the authors noticed a peculiar Mn-mottling, which had not been found in the common paddy fields. Several paddy soils in varying stages of maturity were carefuIIy surveyed at the Kojima polder. The soils were tentatively named OK4, OK7, OKS, and OK9. The ages of the fields after reclamation were about 10, 100, 150, and 250 years, respectively. Undisturbed samples were collected from 3 soils (OK4, OK7, and OKS) for microscopic observation and chemical analysis.  相似文献   

7.
The community structure of methanogenic archaea is relatively stable,i.e.,it is sustained at a high abundance with minimal changes in composition,in paddy field soils irrespective of submergence and drainage.In contrast,the abundance in non-methanogenic oxic soils is much lower than that in paddy field soils.This study aimed to describe methanogenic archaeal community development following the long-term submergence of non-methanogenic oxic upland field soils in pot and field experiments.In the pot experiment,a soil sample obtained from an upland field was incubated under submerged conditions for 275 d.Soil samples periodically collected were subjected to culture-dependent most probable number(MPN)enumeration,polymerase chain reaction-denaturing gradient gel electrophoresis(PCR-DGGE)analysis of archaeal 16 S r RNA gene,and quantitative PCR analysis of the methyl-coenzyme M reductase alpha subunit gene(mcr A)of methanogenic archaea.The abundance of methanogenic archaea increased from 102 to 103 cells g-1 dry soil and 104 to 107 copies of mcr A gene g-1 dry soil after submergence.Although no methanogenic archaeon was detected prior to incubation by the DGGE analysis,members from Methanocellales,Methanosarcinaceae,and Methanosaetaceae proliferated in the soils,and the community structure was relatively stable once established.In the field experiment,the number of viable methanogenic archaea in a rice paddy field converted from meadow(reclaimed paddy field)was monitored by MPN enumeration over five annual cycles of field operations.Viability was also determined simultaneously in a paddy field where the plow layer soil from a farmer’s paddy field was dressed onto the meadow(dressed paddy field)and an upland crop field converted from the meadow(reclaimed upland field).The number of viable methanogenic archaea in the reclaimed paddy field was below the detection limit before the first cultivation of rice and in the reclaimed upland field.Then,the number gradually increased over five years and finally reached 103–104 cells g-1 dry soil,which was comparable to that in the dressed paddy field.These findings showed that the low abundance of autochthonous methanogenic archaea in the non-methanogenic oxic upland field soils steadily proliferated,and the community structure was developed following repeated and long-term submergence.These results suggest that habitats suitable for methanogenic archaea were established in soil following repeated and long-term submergence.  相似文献   

8.
The effect of free-air CO2 enrichment (FACE) on the methanogenic archaeal communities inhabiting rice roots was studied in a Japanese rice field by separately collecting rice roots three times (at mid-tillering, panicle initiation, and heading stages) according to their nodal number, extracting DNA from the roots and subjecting it to polymerase-chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) and sequence analyses. Appearance of roots indicated that aging and senescence occurred faster under the FACE conditions than under the ambient conditions. The number of DGGE bands of methanogenic archaeal communities tended to increase with the growth stages. Cluster analysis showed that the succession of methanogenic archaeal communities in the ambient plot preceded that in the FACE plot, while the trend of the appearance of rice roots was opposite. All the closest relatives associated with the DGGE bands belonged to Methanomicrobiales and Rice cluster I, and FACE did not affect the phylogenetic position of the closest relatives associated with the characteristic DGGE bands. Faster succession of methanogenic archaeal communities in the ambient plot and similar phylogenetic members between the plots were observed in rice roots in years with both warmer (1999) and cooler (2003) weather during the rice cultivation period than in average years.  相似文献   

9.
Paddy fields are one of the largest anthropogenic sources of global CH4 emission. A decrease in paddy CH4 emission can contribute significantly towards the control of global warming. Recent studies have demonstrated that the application of biochar in paddy soils has such a capability, but its underlying mechanism has yet to be elucidated. In this investigation, we studied CH4 emission, methanogenic archaeal, as well as methanotrophic proteobacterial communities, from microcosms derived from two paddy soils, Inceptisol and Ultisol. Both soils were amended with biochar at different pyrolysis temperatures (300 °C, 400 °C and 500 °C) at field condition. The soil CH4 flux was monitored across whole rice season in 2010; the functional guilds communities were analyzed by PCR–DGGE and real-time quantitative PCR (qPCR). It is found that paddy CH4 emissions significantly decreased under biochar amendments, which, interestingly, didn't result from the inhibition of methanogenic archaeal growth. qPCR further revealed that biochar amendments (1) increased methanotrophic proteobacterial abundances significantly, and (2) decreased the ratios of methanogenic to methanotrophic abundances greatly. These results shed insight on the underlying mechanism of how biochar decreases paddy CH4 emission. This knowledge can be applied to develop a more effective greenhouse gas mitigation process for paddy fields.  相似文献   

10.
Community structure of methanogenic archaea in paddy field soil under double cropping (rice [Oryza sativa L.] and wheat [Triticum aestivum L.]) was studied by the denaturing gradient gel electrophoresis (DGGE) method. Soil samples under flooded and upland conditions were collected 7 and 6 times, respectively, from two paddy fields throughout a year, and two primer sets, 0357F-GC/0691R and newly designed 1106F-GC/1378R, were used for DGGE analysis. The 25 and 29 different bands were observed on the DGGE gels with the primers 0357F-GC/0691R and 1106F-GC/1378R, respectively. DGGE band patterns of the methanogenic archaeal community were stable throughout a year including the cultivation periods of rice under flooded conditions and of wheat under upland conditions. Cluster analysis and principal component analysis suggested that the difference in the soil type (sampling region) largely influenced the community structures of methanogenic archaea in paddy field soil, while the effects of sampling period and different fertilizer treatments on them were small. Most of the sequences obtained from the DGGE bands were closely related to Methanomicrobiales, Methanosarcinaceae, Methanosaetaceae and Rice cluster-I.  相似文献   

11.
Abstract. Between 1978 and 1985 16 experiments tested crop response to subsoil loosening by either the Wye Double Digger or a winged subsoiler. Additionally, response to incorporation of 350 kg ha of P2O5and K2O into the subsoil was tested. Soil types were mainly well-drained light-and medium-textured soils in arable rotations. Subsoil loosening increased the yield of spring-sown crops on sandy soils in years of moderate to severe drought. Response was associated with deeper rooting and improved water extraction from the subsoil. No yield increases were recorded with autumn-sown crops which were largely grown on the medium and heavy textured soils. There was a trend towards yield reductions on deep silty soils in wetter years. At one site only did the response to phosphorus and potassium fertilizer incorporated into the subsoil exceed that of fertilizer applied to the topsoil.  相似文献   

12.
Flooded paddy fields are the major anthropogenic sources of methane (CH4) emission, and organic materials of rice plant origin were estimated to be important as its source. This study used rice (Oryza sativa L. cv, Yukihikari) callus cells as a model material for slough-off root cap cells, and carbon-13 (13C)-labelled callus cells were subjected to decomposition in aerobic and anaerobic soil microcosms for 56 days. DNA was extracted from a soil incubated with carbon-12 (12C)- and 13C-callus cells and subjected to buoyant density gradient centrifugation to identify methanogenic archaeal species that assimilated carbon from the callus cells. 13C-labelled 16S rRNA gene (16S rDNA) fragments from methanogenic archaea were not polymerase chain reaction (PCR)-amplified in heavy fractions under aerobic soil conditions, while they were successfully done from day 3 onwards under anaerobic soil conditions. Eighty-four denaturing gradient gel electrophoresis (DGGE) bands in heavy fractions were sequenced, revealing that they were members of Methanosarcina spp. (20 clones), Methanosaeta spp. (18 clones), Methanocella spp. (25 clones), Methanomicrobiales (10 clones), Methanobacterium spp. (7 clones) and Cluster ZC-I (2 clones). They included hydrogenotrophic and acetoclastic methanogens and were phylogenetically different from those residing in rice roots and, presumably, from those assimilating root exudate and mucilage-derived carbon. This study indicates that carbon of slough-off root cap cells propagates specific methanogenic species in rice rhizosphere under anaerobic soil conditions and thus augments the diversity of the total rhizospheric methanogenic community.  相似文献   

13.
【目的】研究苏南地区稻麦轮作农田转变为桃园对土壤理化及生物学性质的影响,旨在为苏南地区土地合理利用和土壤质量管理提供数据支撑。【方法】于2017年麦季 (5月) 和稻季 (7月) 采集研究区稻麦轮作田及由其改为桃园的土壤样品,采用常规方法测定土壤理化性质,96微孔酶标板荧光分析法测定土壤酶活性,实时荧光定量方法测定细菌16S rRNA和真菌ITS基因丰度。【结果】当土地利用方式由稻麦轮作田转变为桃园后,土壤理化性质发生明显变化。与水旱轮作田相比,桃园土壤容重增加,总孔隙度没有明显改变,但毛管孔隙度显著降低,而非毛管孔隙度显著增加,土壤更加紧实,pH有进一步降低的趋势;土壤有机质含量下降,全磷和有效磷含量增加;土壤细菌16S rRNA基因丰度下降,真菌ITS rRNA基因丰度升高,有机质降解的微生物群落由“细菌型”向“真菌型”转化。相应地,土壤中与氮转化相关酶和过氧化氢酶活性降低。从春季到夏季,稻麦轮作田和桃园土壤有机碳含量均下降,稻田降幅较大。另外,两种利用方式下土壤的细菌16S rRNA基因丰度、真菌ITS rRNA基因丰度、纤维素酶和蔗糖酶的活性均显著下降。【结论】苏南地区农业土地利用方式的转变显著增加了土壤容重,改变了土壤孔隙性,增加了土壤全磷和有效磷含量,降低了土壤pH,进而大幅度降低了土壤中氮转化酶活性,并促使土壤微生物菌群由细菌型向真菌型转变,最终影响土壤的养分循环及固碳潜力。因此,土地利用方式改变后,应注重土壤养分的管理。  相似文献   

14.
Addition of rice straw, which is a common practice in rice agriculture, generally results in enhanced production and emission of the greenhouse gas methane (CH4). However, it is unclear whether straw addition affects only the activity or also the composition of the methanogenic microbial community. It is also unclear to what extent methanogenic archaea would be able to proliferate in the soil. Anoxic slurries of Italian rice‐field soil produced CH4 after a lag, during which ferric iron and sulfate were reduced. Addition of rice straw slightly decreased this lag and greatly enhanced the subsequent production of CH4. At the same time, addition of rice straw enhanced the intermediate production of H2 and acetate that served as the methanogenic substrates. Compared with the unamended control, the addition of rice straw resulted in an increased concentration of phospholipid fatty acids in the soil. Quantitative ‘real‐time’ PCR targeting the 16S rRNA gene also showed increased copy numbers of both Bacteria and Archaea in the straw‐amended soil at the end of the experiment. The composition of the archaeal community was followed over time by terminal restriction length polymorphism (T‐RFLP) analysis of the archaeal 16S rRNA genes extracted from straw‐amended soil and the control. Rice Cluster‐I (RC‐I) methanogens and Methanosarcinaceae were the most abundant methanogenic populations, followed by Methanobacteriales, Methanomicrobiales and Methanosaetaceae. Addition of rice straw resulted in a relative increase of Methanosarcinaceae and Methanobacteriales and a relative decrease of RC‐I methanogens and Methanomicrobiales. Our results revealed a dynamic methanogenic community in anoxic rice‐field soil and showed that addition of organic matter selectively enhanced the growth of particular methanogenic populations, which were apparently better adapted to the presence of straw than the others. The extent of archaeal growth was consistent with that expected theoretically from the ambient Gibbs free energies of hydrogenotrophic and acetoclastic methanogenesis.  相似文献   

15.
为探明稻田厌氧氨氧化菌多样性及其对氮肥用量的响应状况,利用厌氧氨氧化菌16S rRNA基因特异引物对定位试验稻田土壤DNA进行PCR-DGGE(聚合酶链反应变性梯度凝胶电泳)并结合DNA克隆测序,研究了氮肥供应量对厌氧氨氧化菌群落结构的影响。DGGE图谱及依据其条带位置和亮度数值计算的多样性指数均显示:高氮处理[N3:225 kg(N).hm 2]的厌氧氨氧化菌群落结构多样性在表层或根层土壤中均显著(P<0.05)高于中、低氮[N2:150 kg(N).hm 2;N1:75 kg(N).hm 2]处理和不施肥对照(CK);同时,高氮处理下表层土壤厌氧氨氧化菌群落多样性指数显著高于根层土壤(P<0.05)。冗余分析(RDA)结果表明,表层土壤中厌氧氨氧化菌群落结构组成与不同氮肥水平处理存在显著相关性(P=0.006)。此外,本试验获得厌氧氨氧化菌DGGE条带DNA序列18条,登录GenBank并获得登录号。研究表明稻田厌氧氨氧化菌群落结构对高氮水平具有较强的响应,尤其是在表层土壤中。  相似文献   

16.
We observed the presence of reduced sulfur compounds in the buried soil layer of a paddy field on Sado Island, Niigata Prefecture. We sampled the paddy field soil from 0 to 300 cm depth and analyzed the physico-chemical properties of the soil and the numbers of sulfur-oxidizing bacteria and iron-oxidizing bacteria in order to elucidate both the sulfur-oxidizing mechanism and the function of sulfur-oxidizing bacteria in the subsoil. Based on the physico-chemical properties of the soil, layers 4 and 5, which were located below 1 m in depth, were found to be potential acid sulfate soils and to be under semi-anaerobic conditions. However, the concentrations of water-soluble sulfate ions in layers 4 and 5 (88.2 to 444 mg S kg−1) were higher than those in layers 1 and 3 (16.1 and 8.29 mg S kg−1, respectively) and a significant number of sulfur-oxidizing bacteria (102–6 MPN g−1) was detected in layer 4. These results suggested that the oxidation of reduced sulfur compounds by sulfur-oxidizing bacteria had occurred in layer 4. Since no iron-oxidizing bacteria were detected in any layers, and it was reported that sulfur-oxidizing bacteria such as Acidithiobacillus thiooxidans could not oxidize pyrite directly, it was considered that the oxidation of the reduced sulfur compounds in layer 4 occurred through the following processes. At first, reduced sulfur compounds such as pyrite were oxidized chemically by ferric ions to intermediary sulfur compounds such as thiosulfate ions. Subsequently, sulfur-oxidizing bacteria in layer 4 oxidized these intermediary sulfur compounds to sulfate ions. However, it was considered that the oxidation rate of the reduced sulfur compounds in layer 4 was far slower than would occur under aerobic conditions.  相似文献   

17.
The N recovery from 15N-labeled swine manure compost and rice bran with or without simultaneous application of unlabeled cattle manure compost was examined in a paddy field with direct-seeded rice during a 1-year period (1 crop season). In all the 15N-labeled materials including (15NH4)2SO4, the processes of N recovery from the 15N materials by rice plants were different between the plots with and without application of cattle manure compost. At the tillering stage, the N recovery rates from the 15N materials in the plots with application of cattle manure compost were significantly lower than those in the plots without application of cattle manure compost. These recovery rates, however, became close and no significant differences were observed at the maturity stage. Thus, simultaneous application of cattle manure compost could impede the N recovery from swine manure compost, rice bran as well as (NH4)2SO4.  相似文献   

18.
Decomposition in a peaty soil improved for pastoral agriculture   总被引:1,自引:0,他引:1  
Abstract. The rates of CO2 production and decomposition of 13C-enriched Lolium perenne leaves and roots in soil from the surface five cm of two upland stagnohumic gley soils were measured in laboratory experiments. One of the soils had been limed (pH 6.8) 13 years earlier. The other was unlimed (pH 3.7). Liming increased the rate of CO2 release from soil to which no L. perenne had been added. About 30% of the 13C in L. perenne leaves remained in both limed and unlimed soil after 224 days. By contrast, less 13C-remained in the limed soil amended with L. perenne roots (44%) than in the limed soils (55%). Although the daily rate of CO2 from the plant material-amended soils was initially greater in the improved than in the unimproved soil, it subsequently declined more rapidly.  相似文献   

19.
间隙灌溉和控释肥施用对稻田土壤产甲烷微生物的影响   总被引:1,自引:0,他引:1  
纪洋  于海洋  Conrad Ralf  徐华 《土壤》2017,49(6):1132-1139
间隙灌溉和控释肥施用影响稻田CH_4的产生和排放,然而其微生物机理尚不清楚。本研究通过采集稻季田间原位试验新鲜土样,采用核酸定量技术(qPCR)和末端限制性片段长度多态性(T-RFLP)技术,研究间隙灌溉和控释肥施用对稻田土壤产甲烷微生物群落丰度和结构的影响。结果表明,稻季CH_4排放量与古菌、产甲烷菌(mcr A基因)和甲烷氧化菌(pmo A基因)数量均呈极显著正相关关系(P0.01),而与细菌数量无显著相关性。间隙灌溉显著影响产甲烷菌和甲烷氧化菌数量的季节变化,其中烤田抑制产甲烷菌生长,而对甲烷氧化菌数量没有显著影响。与尿素相比,施用控释肥增加了稻田土壤细菌、古菌和产甲烷菌数量,降低了甲烷氧化菌数量。土壤古菌群落的优势T-RFs片段为184bp和391bp,其中184bp片段的相对丰度随着间隙灌溉的进行由45%~55%降低到23%~30%;而391bp片段则相反,其相对丰度由12%~18%增加到23%~26%。典型相关性分析(CCA)表明间隙灌溉显著影响土壤古菌群落结构(P0.001),而控释肥施用对土壤古菌群落结构没有明显影响。  相似文献   

20.
The systematic nature of the 34S natural abundance variations (δ34S) in a prairie and boreal forest ecosystem enabled construction of hypotheses regarding the origin and cycling of S in the two soil-plant systems. By considering the 34S abundance variations in relation to soil S transformations, a better understanding of S isotope fractionation in soils was also achieved.
The δ34S values suggest that atmospheric S becomes increasingly more important as a S input as pedogenesis proceeds in these soils. The origin and movement of sulphate salt in a saline seep was evaluated using δ34S values, demonstrating the usefulness of the δ34S technique in soil salinity studies. The 34S-enrichments and depletions found in soil organic S fractions were consistent with postulated differences in lability, mobility, and turnover rate. Wheat plants growing on the saline, sulphate-saturated prairie soil were found to be enriched in 34S relative to surrounding S sources, providing indirect evidence for release of 34S-depleted H2S by the plants as a S-stress relief mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号