首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study aimed to determine the influence of catchment characteristics and flood type on the relationship between streamflow and a number of chemical characteristics of streamwater. These were specific electrical conductivity (SC), pH, the concentrations of main ions (Ca2+, Mg2+, Na+, K+, HCO 3 ? , SO 4 2? , and Cl?), and nutrients (NH 4 + , NO 2 ? , NO 3 ? , and PO 4 3? ). These relationships were studied in three small catchments with different geological structure and land use. Several flood types were distinguished based on the factors that initiate flooding and specific conditions during events. Geological factors led to a lower SC and main ion concentrations at a given specific runoff in catchments built of resistant sandstone versus those built of less resistant sediments. A lower concentration of nutrients was detected in the semi-natural woodland catchment versus agricultural and mixed-use catchments, which are strongly impacted by human activity. The strongest correlation between streamflow and the chemical characteristics of water was found in the woodland catchment. Different types of floods were characterized by different ion concentrations. In the woodland catchment, higher SC and higher concentrations of most main ions were noted during storm-induced floods than during floods induced by prolonged rainfall. The opposite was true for the agricultural and mixed-use catchments. During snowmelt floods, SC, NO 3 ? , and most main ion concentrations were higher when the soil was unfrozen in the agricultural and mixed-use catchments versus when the soil was frozen. In the case of the remaining nutrients, lower concentrations of NH 4 + were detected during rain-induced floods than during snowmelt floods. The opposite was true of PO 4 3? .  相似文献   

2.
Ion mass and H+ budgets were calculated for three pristine forested catchments using bulk deposition, throughfall and runoff data. The catchments have different soil and forest type characteristics. A forest canopy filtering factor for each catchment was estimated for base cations, H+, Cl? and SO 4 2? by taking into account the specific filtering abilities of different stands based on the throughfall quality and the distribution of forest types. Output fluxes from the catchments were calculated from the quality and quantity of the runoff water. Deposition, weathering, ion exchange, retention and biological accumulation processes were taken into account to calculate catchment H+ budgets, and the ratio between external (anthropogenic) and internal H+ sources. In general, output exceeded input for Na+, K+, Ca2+, Mg2+, HCO 3 ? (if present) and A? (organic anions), whereas retention was observed in the case of H+, NH 4 + , NO 3 ? and SO 4 2? . The range in the annual input of H+ was 22.8–26.3 meq m?2 yr?1, and in the annual output, 0.3–3.9 meq m?2 yr?1. Compared with some forested sites located in high acid deposition areas in southern Scandinavia, Scotland and Canada, the catchments receive rather moderate loads of acidic deposition. The consumption of H+ was dominated by base cation exchange plus weathering reactions (41–79 %), and by the retention of SO 4 2? (17–49 %). The maximum net retention of SO 4 2? was 87% in the HietajÄrvi 2 catchment, having the highest proportion of peatlands. Nitrogen transformations played a rather minor role in the H+ budgets. The ratio between external and internal H+ sources (excluding net base cation uptake by forests) varied between 0.74 and 2.62, depending on catchment characteristics and acidic deposition loads. The impact of the acidic deposition was most evident for the southern Valkeakotinen catchment, where the anthropogenic acidification has been documented also by palaeolimnological methods.  相似文献   

3.
In the Vosges Mountains (NE of France), integrated plot-catchment studies have been carried out since 1985 in the Strengbach basin to study the influence of acid atmospheric inputs on surface water quality and element budgets. In this paper, available mid-term time series (1985–1991) have been considered to detect obvious trends, if any, in surface water chemistry and element budgets. Air quality data showed a slight decline for SO2, whereas NO2 slightly increased over the period, but these trends are not very significant. This is in agreement with increased N concentration (mainly as NH 4 + ) and with the stability of SO 4 2? in open field precipitation. Because of a significant decrease in rainfall amount over the period, only inputs of NH 4 + increased significantly whereas H+ and SO 4 2+ inputs declined. In spring and streamwaters, pH and dissolved Si concentration increased mainly as a result of a reduced flow. Na+, K+, Cl? and HCO-3~? concentrations remained stable whereas Ca2+, Mg2+ and SO 4 2+ concentrations declined significantly. Only NO 3 ? concentration increased significantly in springwaters. The catchment budgets revealed significant losses of base cations, Si and SO 4 2? . These losses decreased over the period. Nitrogen was retained in the ecosystem. However, a longer record is needed to determine whether or not changes in surface water chemistry have resulted from short-term flow reductions or long-term changes in input-output ion budgets. This is specially true with N because the decline in SO 4 2? output was accompanied by N accumulation.  相似文献   

4.
Hydrochemical data have been collected for between 6 and 9 years from forest harvesting experiments in small catchments (>10 ha) at Plynlimon and Beddgelert, Wales, UK. Felling resulted in rapid increases in NO 3 ? and K+ concentrations at both sites. A maximum of 3.2 mg N L?1 was observed at Plynlimon about one year after the start of felling. Concentrations declined to control stream values (0.5 mg N L?1) after 5 years. At Beddgelert, NO 3 ? concentrations in the manipulated catchments remained above those in the unfelled control catchment for three years, before declining below control values. The NO 3 ? pulse was related to increased rates of mineralization and nitrification in the soil after felling. The initial increase in K+ concentration after felling at Plynlimon was followed by a slow decline, but concentrations were still above those in the control stream after 5 years. From 4 to 8 years after felling at Beddgelert, K+ concentrations fell below and then generally remained lower than control values. The NO 3 ? pulse after felling at Plynlimon sustained inorganic anion concentrations above those in the control stream for the first 18 months after felling. As the NO 3 ? pulse declined, inorganic anion concentrations decreased to below those in the control stream about 4 years after felling. At Beddgelert, the smaller increase in NO 3 ? concentrations had less of an effect on inorganic anion concentrations which decreased after felling relative to values in the control stream. The increase in NO 3 ? was associated with temporary streamwater acidification in the felled catchments due to the increased rates of nitrification and nitrate leaching. At Plynlimon, streamwater filterable Al concentrations declined after felling, but controls on Al behaviour are complex and not explained by simple equilibrium relationships with Al(OH)3 or by variations in inorganic anion concentrations. At Beddgelert, felling had no effect on stream water filterable Al concentrations. Felling at Plynlimon led to a large reduction in streamwater Cl?, Na+ and SO 4 2? concentrations. At Beddgelert reductions in SO 4 2? and ‘sea salt’ ion concentrations were less clear, reflecting the smaller proportions of the catchments which were harvested. Felling had no deleterious effects on water quality, apart from a temporary slight further decline in stream pH at Beddgelert. Increases in NO 3 ? concentrations were short-lived and concentrations were well below drinking water standards. Filterable Al concentrations were already higher than statutory standards, but were not increased or decreased through felling.  相似文献   

5.
The chemical composition of snowmelt, groundwater, and streamwater was monitored during the spring of 1991 and 1992 in a 200-ha subalpine catchment on the western flank of the Rocky Mountains near Steamboat Springs, Colorado. Most of the snowmelt occurred during a one-month period annually that began in mid-May 1991 and mid-April 1992. The average water quality characteristics of individual sampling sites (meltwater, streamwater, and groundwater) were similar in 1991 and 1992. The major ions in meltwater were differentially eluted from the snowpack, and meltwater was dominated by Ca2+, SO 4 2? , and NO 3 ? . Groundwater and streamwater were dominated by weathering products, including Ca2+, HCO 3 ? (measured as alkalinity), and SiO2, and their concentrations decreased as snowmelt progressed. One well had extremely high NO 3 ? . concentrations, which were balanced by Ca2+ concentrations. For this well, hydrogen ion was hypothesized to be generated from nitrification in overlying soils, and subsequently exchanged with other cations, particularly Ca2+. Solute concentrations in streamwater also decreased as snowmelt progressed. Variations in groundwater levels and solute concentrations indicate that most of the meltwater traveled through the surficial materials. A mass balance for 1992 indicated that the watershed retained H+, NH 4 + , NO 3 ? , SO 4 2? and Cl? and was the primary source of base cations and other weathering products. Proportionally more SO 4 2? was deposited with the unusually high summer rainfall in 1992 compared to that released from snowmelt, whereas NO 3 ? was higher in snowmelt and Cl? was the same. The sum of snowmelt and rainfall could account for greater than 90% of the H+ and NH 4 + retained by the watershed and greater than 50% of the NO 3 ? .  相似文献   

6.
Many bryophytes rely to a large extent on atmospheric deposition for their nutrient uptake.However, increasing levels of atmospheric ammonium NH 4 + and nitrate NO 3 - attract concern as to the possible harmful effects onbryophytes from these two nutrient sources. Changes in nitrate reductase (NR) activities, cation(Ca, K and Mg), total nitrogen (N) and organic acid concentrations were investigated for themosses, Racomitrium lanuginosum, Rytidiadelphus loreus and Philonotis fontana, in response to asingle field misting with 3 mol m-3 NH 4 + and NO 3 - . Increases of 20% were recordedfor tissue N content, 48 hr after misting with N containing solutions. When labelled NH 4 + or NO 3 - were applied to R. Lanuginosum at 1, 3 and 6mol m-3 concentrations, partitioning ofincorporated 15N between different tissueregions occured, with the highest N uptake in the upper stem and leaves. High concentrations ofapplied N resulted in reduced efficiency of N uptake. NH 4 + applications caused declines in NR activities, organic acidsand cations, whereas, NO 3 - treatments causedthe reverse response. Changes in cation contents, organic acids and NR activity reflect short-termregulation of N metabolism in the presence of defined N sources, as well as potential mechanismsof regulating cell pH homoeostasis. The consistency of physiological responses, especially NRactivities, over short-term pollution episodes, provides evidence for their use as indicators of both NH 4 + and NO 3 - pollution.  相似文献   

7.
The reversibility of acidification is being investigated in a full scale catchment manipulation experiment at Lake Gårdsjön on the Swedish west coast using isotopes as environmental tracers. A 6300 m2 roof over the catchment enables researchers to control depositional variables. Stable S isotope values were determined in bulk deposition, throughfall, runoff, groundwater and soil-extracted water during one year prior to and two years of experimental control. Data collected prior to experimental control suggest that the inorganic SO 4 2? pool within the catchment has a homogeneousδ 34S value of about+5.5‰. Sprinkling of water spiked with small amounts of sea-water derived SO 4 2? started in April 1991. Theδ 34S value of this SO 4 2? is around+19.5‰. Since April 1991, the SO 4 2? concentration in runoff has decreased by some 30%, however, theδ 34S value have increased by only 0.5‰. This suggests mixing of sprinkling water S with a large reservoir of S in the catchment. Oxygen isotopes in SO 4 2? suggest that less than one third of the SO 4 2? in runoff is secondary SO 4 2? formed within the soil profile. This is, however, no evidence for net mineralization of S. The SO 4 2? in runoff in the roofed catchment is a mixture of SO 4 2? previously adsorbed in the soil, mineralized organic S and SO 4 2? from the sprinkler water. Calculations based on isotope data indicate that the turnover time of S within the catchment is on the order of decades. Since SO 4 2? facilitates base cation flow, the acidification reversal will take a much longer time than concentration decreases of SO 4 2? would suggest.  相似文献   

8.

Purpose

Nitrate (NO 3 ? ) is often considered to be removed mainly through microbial respiratory denitrification coupled with carbon oxidation. Alternatively, NO 3 ? may be reduced by chemolithoautotrophic bacteria using sulfide as an electron donor. The aim of this study was to quantify the NO 3 ? reduction process with sulfide oxidation under different NO 3 ? input concentrations in river sediment.

Materials and methods

Under NO 3 ? input concentrations of 0.2 to 30?mM, flow-through reactors filled with river sediment from the Pearl River, China, were used to measure the processes of potential NO 3 ? reduction and sulfate (SO 4 2? ) production. Molecular biology analyses were conducted to study the microbial mechanisms involved.

Results and discussion

Simultaneous NO3 ? removal and SO4 2? production were observed with the different NO 3 ? concentrations in the sediment samples collected at different depths. Potentially, NO 3 ? removal reached 72 to 91?% and SO 4 2? production rates ranged from 0.196 to 0.903?mM?h?1. The potential NO 3 ? removal rates were linearly correlated to the NO 3 ? input concentrations. While the SO 4 2? production process became stable, the NO 3 ? reduction process was still a first-order reaction within the range of NO 3 ? input concentrations. With low NO 3 ? input concentrations, the NO 3 ? removal was mainly through the pathway of dissimilatory NO 3 ? reduction to NH 4 + , while with higher NO 3 ? concentrations the NO 3 ? removal was through the denitrification pathway.

Conclusions

While most of NO 3 ? in the sediment was reduced by denitrifying heterotrophs, sulfide-driven NO 3 ? reduction accounted for up to 26?% of the total NO 3 ? removal under lower NO 3 ? concentrations. The vertical distributions of NO 3 ? reduction and SO 4 2? production processes were different because of the variable bacterial communities with depth.  相似文献   

9.
A long-term hydrological and water chemistry research was conducted in three experimental microbasins differing in land cover: (1) a purely agricultural fertilized microbasin, (2) a forested microbasin dominated by Carpinus betulus (European hornbeam), and (3) a forested microbasin dominated by Picea abies (L.) (Norway spruce). The dissolved inorganic nitrogen (DIN: NH 4 + , NO 2 ? , NO 3 ? ) budget was examined for a period of 3 years (1991–1993). Mean annual loads of DIN along with sulfate SO 4 2? and base cations Ca2+, Mg2+, Na+, K+, and HCO 3 ? were calculated from ion concentrations measured in stream water, open-area rainfall, throughfall (under tree canopy), and streamwater at the outlets from the microbasins. Comparison of the net imported/exported loads showed that the amount of NO 3 ? leached from the agricultural microbasin is ~3.7 times higher (43.57 kg ha?1?a?1) than that from the spruce dominated microbasin (11.86 kg ha?1?a?1), which is a markedly higher export of NO 3 ? compared to the hornbeam dominated site. Our analyses showed that land cover (tree species) and land use practices (fertilization in agriculture) may actively affect the retention and export of nutrients from the microbasins, and have a pronounce impact on the quality of streamwater. Sulfate export exceeded atmospheric rainfall inputs (measured as wet deposition) in all three microbasins, suggesting an additional dry depositions of SO 4 2? and geologic weathering.  相似文献   

10.
The effect of different anions on the balance of heavy metal cations in the soil-solution system has been assessed under model laboratory conditions. It has been found that the uptake of the Cu, Zn, and Pb cations by an ordinary chernozem from solutions of different salts is accompanied by the displacement of the exchangeable cations to the solution in the following order: Ca2+ > Mg2+ > Na+ > K+. The sum of the displaced exchangeable cations in most cases exceeds the amount of the adsorbed heavy metal cations. According to the effect of the anions on the displacing capacity of the metal cations, the following series are formed: for copper, SO 4 2? ? Cl? > OAc? > NO 3 ? ; for lead, Cl? ? NO 3 ? > OAc?; and, for zinc, SO 4 2? ? Cl? ? OAc? > NO 3 ? .  相似文献   

11.
Nitrification is a process in which ammonia is oxidized to nitrite (NO 2 ? ) that is further oxidized to nitrate (NO 3 ? ). The relations between these two steps and ambient ammonia concentrations were studied in surface water of Chinese shallow lakes with different trophic status. For the oxidations of both ammonia and NO 2 ? , more eutrophic lakes generally showed significantly higher potential and actual rates, which was linked with excessive ammonia concentrations. Additionally, both potential and actual rates for ammonia oxidation were higher than those for NO 2 ? oxidation in the more eutrophic lakes, while in the lakes with lower trophic status, both potential and actual rates for ammonia oxidation were almost equivalent to those for NO 2 ? oxidation. This can be explained by the excessive unionized ammonia (NH3) concentration that inhibits nitrite-oxidizing bacteria in the more eutrophic lakes. The laboratory experiment with different ammonia concentrations, using the surface water in a eutrophic lake, showed that ammonia oxidation rates were proportional to the ammonia concentrations, but NO 2 ? oxidation rates did not increase in parallel. Furthermore, NO 2 ? oxidation was less associated with particles in natural water of the studied lakes. Without effective protection, it would be selectively inhibited by the excessive ammonia in hypereutrophic lakes, resulting in NO 2 ? accumulation. Shortly, the increased concentrations of ammonia cause a misbalance between the NO 2 ? -producing and the NO 2 ? -consuming processes, thereby exacerbating the lake eutrophication.  相似文献   

12.
At Lange Bramke (Harz) soil solution and runoff concentrations of major elements were observed over 16 yr. During this period acid deposition was high but showed a marked decrease of H+ and SO 4 2? both in concentrations and fluxes over the last five years. Among others, this record reveals the following patterns: seasonality in the signals for SO 4 2? and NO 3 ? in runoff which are synchronous; an accumulation of SO 4 2? in the soil, initially up to 50% of the deposition fluxes; apparently no correlation between runoff and SO 4 2? concentration, and no long-term trend in runoff concentration of SO 4 2? . In this paper we use these patterns in the data set from Lange Bramke to test two established acidification models. The test criterion is that the algorithms employed by the SO 4 2? modules of these models must be able to reproduce these features. To that end, both models need not to be run as it can be shown that even with completely unrestricted parameter values the two algorithms are unable to match the observed SO 4 2? dynamics. The MAGIC model (Cosbyet al., 1985) is unable to reproduce, given the existence of net SO 4 2? accumulation, the constant SO 4 2? concentration in runoff during the last 16 years. The second model, BEM (Prenzel, 1986), is succesful in reconstructing the constant SC>4~ levels in runoff. However, on a monthly time scale BEM predicts a shift between the periodic maximum concentrations of SO 4 2? and NO 3 ? which is not observed in the data.  相似文献   

13.
Atmospheric deposition and surface water chemistry have been monitored intensively at 5 geologically “sensitive” sites in southeastern Canada. The sites receive differing acid inputs that span the entire range found in Canada. Surface water data collected at 9 stations from 1981 to 1993 for SO 4 2? , NO 3 ? , Alkalinity, DOC, pH, Ca2+ and Mg2+ have been analyzed to detect monotonic trends. Similarities between the temporal patterns and trends for SO 4 2? in deposition and surface water suggest that they are strongly linked at our sites. Our 13-year datasets showed significant negative SO 4 2? trends at the 3 Ontario sites and a positive trend in Nova Scotia. A climatically-induced SO 4 2? increase in northwestern Ontario has been reversed. Mobilization and export of adsorbed SO 4 2? and/or reoxidized S from the basins of central Ontario sites is delaying their recovery. Two of our 9 stations (in Quebec and central Ontario) are continuing to acidify. The 2 Nova Scotia stations have the highest DOC levels and both exhibit a decreasing trend. Ionic compensation for declining SO 4 2? varies from station to station, sometimes involving an Alk increase, sometimes a base cation decrease, and sometimes more complex combinations. Additional factors (e.g. climatic variation) also influence variable trends, and data records longer than those presently available will be needed to unequivocally verify acidification recovery.  相似文献   

14.
Data from two national precipitation chemistry monitoring networks, and several regional air and precipitation chemistry networks are used to describe some broad-scale features of acidic deposition in eastern North America. In northeastern North America, the coefficient of variation is shown to increase from 10–16% for annual averages to nearly 100% for daily values. There is a strong annual cycle in H+, SO inf4 sup= and NH inf4 sup+ deposition and some of the other ions although these cycles are not all in phase. The wet NO inf3 sup? deposition contributes relatively more than SO inf4 sup= to the acidity of snow as compared to rain. Wet deposition is highly “episodic” with about 50% to 70% of the total annual deposition of SO inf4 sup= and NO inf3 sup? accumulating in the highest 20% of the days. Estimates made in various ways indicate that, over eastern North America as a whole, dry deposition is approximately equal to wet for both SO inf4 sup= and NO inf3 sup? . Dry may exceed wet in the high emissions zone but drops to about 20% of the total deposition in more remote areas. Deposition via fog or low cloud impaction is an important input to high elevation forests, but more data are required to quantify the magnitude and regional extent of this.  相似文献   

15.
The fluxes of N–NO 3 ? , N–NH 4 + , S–SO 4 2? , Na+, K+, Ca2+ and Mg2+ from bulk precipitation to throughfall, stemflow and soil water surface flows were studied during 1999–2003 in planted Norway spruce forest stands of different ages (11, 24, 91 and 116 years in 1999). Also, runoff from the corresponding Potok Dupniański Catchment in the Silesian Beskid Mts was studied. N deposition was above the critical load for coniferous trees. The interception increased with stand age as well as leaf area index and so did the leaching from the canopy of almost all the analysed elements, but especially S–SO 4 2? , H+ and K+. The nutrient fluxes varied with age of the spruce stands. Throughfall showed a high amount of S and of the strong acids (S–SO 4 2? and N–NO 3 ? ) deposited to the soil, especially in older spruce age classes. Decomposition of organic matter caused a rise in water acidity and an increase in the concentrations of all the analysed ions; the leaching of minerals, however, was low (under 1%). The horizontal soil water flow showed an increase in the amount of water and amount of ions and contributed to a further decrease of pH at the soil depth of 20 cm. Element concentrations and their amounts increased with water penetrating vertically and horizontally on the slopes. Considerable amounts of ions, especially S and alkaline cations, were carried beyond the reach of the root system and then left the catchment. In the long term, these mineral losses will adversely affect health and growth of the spruce stands, and the increased acidity with stand age will presumably have negative effects on the runoff water ecosystem.  相似文献   

16.
Stable isotopes of S are used in conjunction with dissolved SO 4 2? concentrations to evaluate the utility ofδ 34S ratios in tracing contributions of bedrock-derived S to SO 4 2? in runoff. Water samples were collected over the annual hydrograph from two tributaries in the West Glacier Lake, Wyoming, catchment. Concentrations of SO 4 2? ranged from 12.6 to 43.0 Μeq L?1;δ 34S ratios ranged from ?1.8‰ to +4.9‰ Theδ 34S value of atmospherically derived SO 4 2? is about +5.6%c.; four samples of pyrite from the bedrock hadδ 34S ratios that ranged from +0.7 to +4.1‰ Concentrations of SO 4 2? were inversely related toδ 34S and discharge. The data for the tributary with the higher SO 4 2? concentrations were reasonably consistent with mixing between atmospheric S and S from a bedrock source with aδ 34S ratio of about ?4.5‰. The difference from the measured bedrock values presumably indicates that S isotopes in the bedrock pyrite are heterogeneously distributed. The data from the tributary with lower SO 4 2? concentrations did not follow a two-component mixing line. Deviation from a two-component mixing line is most likely caused by preferential elution of SO 4 2? from the snowpack during the early stages of snowmelt, although microbially mediated fractionation of S isotopes in the soil zone also may cause the deviation from the mixing line. Sulfur isotopes are useful in identifying whether or not there is a substantial contribution of bedrock S to runoff, but quantifying that contribution is problematic.  相似文献   

17.
Nitrogen emissions have grown in Spain during the last 15 years. As precipitation scavenges gases and aerosols from the atmosphere, an effect on rainwater concentrations can be expected. However, time-series studies on wet N concentrations in the Iberian Peninsula are very scarce. This paper aims to fill this gap by analysing weekly rainfall N concentrations at a set of rural sites in Catalonia (NE Spain) from 1995/1996 to 2007 and a forest site monitored from 1983 to 2007. The sites encompass a range of rural environments and climate conditions, from the inland pre-Pyrenees (Sort) to the Mediterranean coast (Begur) and from north (Sort and Begur) to central (Palautordera and La Castanya) and south Catalonia (La Senia). We found a 1-year cycle for concentrations of NH 4 + and NO 3 ? whereby higher values were reached at the end of spring–early summer, except at the easternmost coastal site of Begur. Weekly NH 4 + concentrations decreased with time at all sites (except at La Senia) whilst NO 3 ? concentrations increased at all sites during the same period. Rainfall SO 4 2? concentrations decreased with time at all sites. The opposite trends in NO 3 ? and SO 4 2? concentrations determined a shift in the relative acid contribution of those anions during the 12–13-year period. To interpret the increasing trend, mean annual NO 3 ? concentrations were regressed against NO2 Spanish emissions and to some indicators of local anthropogenic activity. The increase at Sort and Palautordera showed good correlation with local anthropogenic indicators. Wet inorganic N deposition ranged between 4.2 and 6.7 kg ha?1 year?1. When including estimates of dry deposition, total annual deposition rose up to 10–20 kg ha?1 year?1, values that have been found to initiate adverse effects on Mediterranean-type forest ecosystems.  相似文献   

18.
Sulfate concentrations in rainwater and in air measured on four summer days at St. Louis were highly variable, both spatially or temporally. Maximum/minimum ratios of aerosol SO inf4 sup? varied by up to a factor of 9, and those in rainwater by a factor of 3 on the average. Generally, SO inf4 sup? concentration patterns in air and rainwater were similar, and consistent with wind direction and the location of sources. Direct relationships between SO inf4 sup? in air and in water were evident on two of the individual days, but not for all days together. The non-uniformity of the SO inf4 sup? pattern plus consideration of possible sources of SO inf4 sup? suggests that nucleation of SO inf4 sup? particles must be a major cause of S scavenging, with some possible influence from sub-cloud impaction.  相似文献   

19.
Fluxes of major ions in rainfall (RF), throughfall plus stemflow (TF + SF), and stream water (SW) were measured for five water years in a small catchment of a Japanese cedar forest near the Sea of Japan. The fluxes of most ions in RF and in TF + SF, including the non-sea-salt constituents, increased from late autumn to midwinter owing to the seasonal westerly wind. The concentrations of most ions in SW showed no obvious seasonal trend during the study period, whereas ${\text{NO}}_3 ^ - $ concentrations were lowest in summer, with a small seasonality. The Ca2+ and Mg2+ outputs in SW were approximately 3.7 and 1.8 times the TF + SF inputs of these cations, respectively. The large net outputs of base cations in the catchment may indicate a decrease in the soil's acid-neutralizing capacity. Annual dissolved inorganic nitrogen inputs in RF and in TF + SF were 17.7 and 17.9 kg N ha?1 year?1, respectively, which exceeded previously published thresholds in Europe and the U.S. (i.e., the values at which these inputs increased ${\text{NO}}_3 ^ - $ levels in SW) and equaled the highest level of nitrogen deposition previously reported in Japan. The ${\text{NO}}_{\text{3}} ^{\text{ - }} $ concentrations in SW were relatively high even in summer. During high-precipitation events, ${\text{NO}}_{\text{3}} ^{\text{ - }} $ concentrations in SW increased with increasing water discharge, and the pH decreased simultaneously during several events. Nitrogen deposition may contribute to the high ${\text{NO}}_{\text{3}} ^{\text{ - }} $ concentrations in SW and the temporary acidification that occurred during the rain events.  相似文献   

20.
The effect of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on N transformations and composition of ammonia-oxidizing bacteria (AOB) communities was investigated at the centimeter scale in a microcosm experiment under laboratory conditions. After 28 days, samples were collected from soil treated with urea or urea and DMPP at increasing distance from the fertilizer zone; this distance ranged from 0 to 5 cm in both horizontal and vertical directions. The results showed that DMPP application significantly increased soil pH and NH 4 + -N and mineral N (NH 4 + -N, NO 3 ? -N, and NO 2 ? -N) concentrations but decreased (NO 3 ? + NO 2 ? )-N concentration, and such effect was decreased by increasing the distance from the fertilizer zone. Fingerprint profiles of denaturing gradient gel electrophoresis showed that the number of bands decreased by increasing the distance from the fertilizer zone due to decreasing NH 4 + -N concentrations in the urea treatment. Compared to urea applied alone, DMPP application increased NH 4 + -N concentrations and decreased AOB diversity from 0 to 3 cm but promoted diversity from 3 to 5 cm distance from the fertilizer zone. A phylogenetic analysis showed that AOB communities were dominated by Nitrosospira cluster 3. Therefore, the nitrification inhibitor DMPP modified the composition of AOB communities by increasing the distance from the fertilizer zone and this probably was related to the changes in soil pH and inorganic N concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号