首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 275 毫秒
1.
Metapopulation theory is one of the most popular approaches to identify the factors affecting the spatial and temporal dynamics of populations in fragmented habitat networks. Habitat quality, patch area and isolation are mainly focused on when analyzing distribution patterns in fragmented landscapes. The effects of landscape heterogeneity in the non-occupied matrix, however, have been largely neglected. Here, we determined the relative importance of patch quality and landscape attributes on the occurrence, density and extinction of the Dupont’s lark (Chersophilus duponti), an endangered steppe passerine whose habitat has been extremely reduced to highly isolated and fragmented patches embedded in a mainly unsuitable landscape matrix. Habitat patch quality, measured in terms of vegetation structure, grazing pressure, arthropod availability, predator abundance, and inter-specific competition, did not affect occurrence, density or extinction. At the landscape scale, however, the species’ occurrence was principally determined by the interactions among patch size, geographic isolation and landscape matrix. Isolation had the main independent contribution to explaining the probability of occurrence, followed by landscape matrix composition and patch size. The species’ density was negatively correlated to patch size, suggesting crowding effects in small fragments, while extinction events were exclusively related to isolation. Our findings suggest that landscape rather than local population characteristics are crucial in determining the patterns of distribution and abundance of non-equilibrium populations in highly fragmented habitat networks. Consequently, conservation measures for these species should simultaneously involve patch size, isolation and landscape matrix and apply to the entire metapopulation rather than to particular patches.  相似文献   

2.
Forest managers are increasingly considering historic patterns of natural forest disturbance as a model for forest harvesting and as a coarse-filter ecosystem management tool. We evaluated the long-term (100-year) persistence of a grizzly bear population in Alberta, Canada using forest simulations and habitat modelling. Even with harvesting the same volume of timber, natural disturbance-based forestry resulted in a larger human footprint than traditional two-pass forestry with road densities reaching 1.39 km/km2 or more than three times baseline conditions and suggested maximum levels of security for grizzly bears. Because bears favour young forests and edges where food resources are plentiful, a future shift to young forests and more edge habitat resulted in a 20% projected increase in habitat quality and a 10% projected increase in potential carrying capacity. Human-caused mortality risk, however, offset any projected gains in habitat and carrying capacity resulting in the loss of all secure, unprotected territories, regardless of forest harvest method, within the first 20-30 years of simulation. We suggest that natural disturbance-based forestry is an ill-suited management tool for sustaining declining populations of grizzly bears. A management model that explicitly considers road access is more likely to improve grizzly bear population persistence than changing the size of clear-cuts. In fact, large clear cuts might be counter productive for bears since a diversity of habitats within each bear’s home range is more likely to buffer against future uncertainties.  相似文献   

3.
This study investigates the dynamics and viability of a marsh fritillary butterfly Euphydryas aurinia metapopulation in a Belgian successional landscape. Based on capture-mark-recapture and winter nest census data, we first estimated demography (survival and recruitment rates, population size, density dependence) and dispersal parameters (emigration rate, effect of patch connectivity on dispersal, mortality during dispersal). Then using RAMAS/GIS platform, we parameterised a population viability analysis (PVA) model with these parameters to simulate the future of this metapopulation under different scenarios.The metapopulation does not seem viable even if natural reforestation is controlled by adequate management. In its present state, the patch system is not able to sustain enough individuals: due to the large temporal fluctuations in demographic parameters, a carrying capacity far higher than currently would be necessary to limit extinction risk to 1%, suggesting the existence of an extinction debt for the species in Belgium. The situation of E. aurinia appears much worse compared to two other fritillary species threatened in Belgium, for which similar PVA are available. It is therefore urgent to increase the carrying capacity of the patch system. How and where it is achieved are of secondary importance for the gain in viability: improvement of habitat quality through restoration, or increase of habitat quantity via enlargement of existing patches and/or creation of new habitat in the matrix. A regime of management based on regular re-opening and maintenance of habitat patches may be the only guarantee of long-term persistence for this critically endangered species in Belgium.  相似文献   

4.
The appropriateness of using carrying capacity (CC) estimates to indicate habitat utilisation for a particular species, and thus as a tool for conservation population planning, has been questioned. We argue individual fitness is driven by resource availability, and we therefore assume individuals select habitats with a higher quality, abundance, and availability of key resources. In the past such selection has been related to the CC of a habitat. We tested whether we can use CC estimates to indicate habitat selection by individuals using a selective forager, black rhinoceros Diceros bicornis, for which CC approaches underpin species conservation plans. We tested for correlation of individuals’ habitat selection with predicted CC values at three spatial scales of selection. Individual selection was not related to the value of the habitat according to our CC estimates for any of the three scales we tested at. We discuss how density-dependence, environmental variables, scale of selection, individual variation and intra- and inter-specific dynamics may have influenced these results. Following this, we question the use of a priori calculations of potential resource quality and abundance of habitats (CC estimates), which do not take into account the various factors that influence an animal’s selection of a habitat, as an indicator of species habitat selection. We raise caution regarding the use of such CC models to determine optimal population numbers for an area.  相似文献   

5.
The Lower Keys marsh rabbit (LKMR, Sylvilagus palustris hefneri), a marsh rabbit subspecies endemic to the Lower Keys, Florida was protected in 1990, however, populations continue to decline despite recovery efforts. We hypothesized on-going habitat loss and fragmentation due to succession and hardwood encroachment has lead to increased edge, reduced habitat quality, and increased activity by native raccoons (Procyon lotor). These factors reduce the suitability of patches in a later successional state, thus threatening LKMR recovery and metapopulation persistence. We surveyed 150 LKMR patches in 2008, tallying adult and juvenile rabbit pellets, estimating measures of habitat succession and quality (woody and herbaceous ground cover, distribution of herbaceous species) and recording raccoon activity (number of raccoon signs). We calculated patch edge (patch shape index) using ArcGIS. We evaluated the relationship between patch and habitat attributes and LKMR using regression analysis and model selection. We found both adult and juvenile LKMR pellet counts were lower in patches with higher shape indices and higher in patches with greater occurrence of bunchgrasses and forbs. We also found adult LKMR pellet counts were lower in patches with higher raccoon activity. Our results suggest patch edge, habitat succession and quality, and raccoons pose a threat to the persistence and recovery of LKMR populations. Recovery efforts should focus on reducing these trends through habitat management and raccoon removal implemented in carefully controlled experiments with proper monitoring. Measures of patch and habitat attributes important to LKMR should be incorporated into long-term metapopulation monitoring and used to evaluate recovery actions.  相似文献   

6.
There is mounting evidence that both patch networks and the intervening matrix influence species persistence in fragmented landscapes, though the relative importance of each of these factors in determining spatial population structure remains poorly understood. This study examined this issue using a three-year data set on the distribution of Cabrera voles (Microtus cabrerae) in Mediterranean farmland. The spatial pattern appeared consistent with a metapopulation structure, as voles occupied discrete tall herb patches scattered across the agricultural landscape, where local extinctions and colonizations induced temporal changes in occupancy patterns. Patch dynamics determined deviations from classical metapopulation assumptions, with over half the extinctions resulting from agricultural disturbance or vegetation succession, and recolonizations often occurring after the recovery of suitable habitat conditions sometime after disturbance. Occupancy in undisturbed patches was more stable, with vole occurrence in one year strongly reflecting that in the previous year. Overall, occupancy increased with both patch size and connectivity, but the unique contribution of patch variables to explain variation in vole occurrence was far smaller than that of matrix attributes. Voles occurred more often in patches surrounded by natural pastures, while prevalence declined with increasing cover by shrubland, pine plantations, improved pastures and grazed cropland. It is hypothesised that unfavourable land uses may increase the effective isolation of habitat patches through increased predation risk of dispersing voles. Conservation of the Cabrera vole in Mediterranean farmland should thus strive to maintain lightly grazed fields surrounding well-connected networks of suitable habitat patches.  相似文献   

7.
Within species habitat use may depend on age, season or sex of an individual. The distribution of males and females may vary both temporally and spatially due to differences in the costs of reproduction and the distribution of critical resources. Conservation of a species requires knowledge of the habitat use of both sexes in order to predict the population size and protect all habitats that a species requires. Adult dragonfly populations often have highly male-biased sex ratios at the breeding habitat. This bias has been attributed to females using alternative habitats to avoid male harassment, or to high female mortality. We monitored adult Hine’s emerald dragonfly (Somatochlora hineana Williamson) populations, in breeding and non-breeding habitats in Door County, Wisconsin and found significant differences in habitat use between males and females. Males primarily used wetland habitats, while females primarily used dry meadows and marginal breeding habitats, only coming into wetlands to lay-eggs or find mates. We assessed food resources in the different habitats and found that high quality insect prey (primarily adult Diptera) were more available in the wetland habitat, indicating that these areas were likely a more productive foraging area for adult dragonflies. The fact that females appear to avoid the wetland habitat is consistent with the hypothesis that male harassment alters female distribution patterns. Consideration of the patterns of habitat use by S. hineana indicates the need to develop a broader understanding of the importance of non-wetland areas in the conservation of wetland species.  相似文献   

8.
Successful forest wildlife management is dependent on information that estimates long-term viability of populations in response to different management practices. In this paper we couple information captured in a GIS database, relationships between habitat attributes and habitat quality, and the dynamics of those habitat attributes, to assess the long-term metapopulation viability of a forest-dependent arboreal marsupial, greater glider Petauroides volans Kerr, in the Ada Forest Block in south-eastern Australia. Estimates of the size and spatial distribution of populations in remnant patches of old-growth forest, and the dynamics of key elements of that habitat, are input to ALEX, a computer package for population viability analysis. The model is used to predict the probability of persistence of P. volans within the Ada Forest Block concentrating on scenarios that assess the value of different old-growth patches and the impact of wildfire. We conclude that small patches of old-growth forest ( <20 ha) make almost no contribution to the persistence of the species. In addition, control of wildfire will significantly increase the viability of the species in the remaining habitat.  相似文献   

9.
Previous in situ studies of orchid population dynamics with conservation relevance have focused on one or a few populations in a limited area. Many species of orchids occur as hyperdispersed populations in ephemeral habitats (epiphytic, twig epiphytes, short lived or vulnerable host). In this contribution, we show that orchid populations that are patchily distributed and that exist in disturbance-prone environments may act somewhat like a metapopulation with high turnover and low correlation in population dynamics. We tested for evidence of metapopulation dynamics in the riparian orchid Lepanthes rupestris by sampling over 1000 sites (250 initially occupied, 750 initially unoccupied) in biannual surveys for 5 years. Extinction and colonization of groups of orchids on a single substrate or patch (either trees or boulders) was common and more or less consistent across different time periods, and asynchronous subpopulation dynamics were evident among the populations. From this we predict non-zero equilibrium values for site occupancy () of L. rupestris. Nevertheless, this study species differed from a typical Levins’ metapopulation system in that small populations were more likely to go extinct than large populations, and that colonization of previously occupied sites was more common than colonization of initially unoccupied sites suggesting that site quality may influence population persistence and colonization. A major difficulty applying the metapopulation approach to orchid conservation is identifying empty sites suitable for colonization. In spite of this limitation, our study highlights the necessity of following multiple orchid subpopulations (e.g., an entire orchid “metapopulation” in the broad sense) may provide a more accurate basis for predicting persistence in epiphytic orchids.  相似文献   

10.
Little is known about the distribution and habitat use of northern pygmy owls (Glaucidium gnoma), in Alberta or throughout their range. In Alberta they are ranked as ‘sensitive’, meaning they are not believed to be at immediate risk of extirpation or extinction but may require special attention or protection to prevent them from becoming at risk.Diurnal broadcast surveys were conducted to determine distribution and habitat selection throughout a 28,500 km2 study area situated along the eastern slopes of the Alberta Rocky Mountains. Surveys lasted for eight weeks in 2001, during which time 1532 site visits were made. Forty-eight responses were recorded at 42 sites representing 40 individual northern pygmy owls. Predictive models of habitat selection were developed using stepwise logistic and autologistic regression. Autologistic models accounted for observed spatial dependencies and as a result, produced better fitting models that more accurately reflect the role of predictor variables in influencing species occurrence. All models considered biophysical variable selection at two spatial scales, the minimum (75 ha) and maximum (300 ha) home range size. Northern pygmy owls showed a preference for older, structurally diverse mixedwood habitats, with line-of-sight enhanced by increased edge and terrain roughness.The use of habitat selection models resulting from this project and Geographic Information Systems as a tool, will enable managers to identify key habitat features, focus future survey efforts, set habitat goals and evaluate the effects of management decisions on current and future habitat availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号