首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
雨滴机械打击和消散作用对土壤团聚体的破坏特征   总被引:10,自引:1,他引:9       下载免费PDF全文
土壤团聚体是土壤结构的基本单元,其稳定性是描述土壤抵抗侵蚀过程中破坏作用的重要指标。但溅蚀过程中,雨滴对团聚体的消散和机械打击两种破坏作用的相对贡献及其破坏机制尚未明晰。利用酒精和超纯水作为雨滴形成材料,模拟机械打击单独作用及消散和机械打击共同作用,分别在五个高度(0.5、1、1.5、2和2.5 m)对塿土和黄绵土进行溅蚀实验。结果表明:当降雨动能相同时,塿土的溅蚀率均小于黄绵土。同时,超纯水雨滴对土壤的机械打击和消散共同作用所导致的溅蚀率均大于酒精雨滴单一机械打击作用的溅蚀率。随着降雨动能增加,两种雨滴对两种土壤的溅蚀率均呈幂函数增加;团聚体因消散破坏作用和机械打击作用的溅蚀率均亦随之增加。但两种土壤的消散破坏作用和机械打击作用的贡献率分别随着降雨动能增加而减小和增加。在相同降雨动能时,塿土消散破坏作用的贡献率均大于黄绵土,而机械打击作用贡献率均小于黄绵土。研究结果对深入理解溅蚀过程中团聚体破坏机理及评价溅蚀过程中团聚体稳定性具有重要意义。  相似文献   

2.
Purpose

In the humid Caribbean region characterized by high-intensity tropical rainfall, soil aggregate breakdown and pore blocking due to slaking pressures are major land degradation mechanisms. In this research, we investigated the susceptibility of soils to slaking pressures under rapid wetting as influenced by soil properties and the depositional origin from which the soil is formed using water-stable aggregates (WSAr) and percolation stability (PSc) as indices of the strength of aggregate inter-particle cohesion.

Materials and methods

Wet sieving and percolation stability analyses were employed to investigate WSAr and pore blocking, respectively. The combined effect of soil properties of clay, organic matter (OM), cation exchange capacity (CEC), and exchangeable sodium percentage (ESP) was used to determine the slaking sensitivity score (SSc) of 14 physiogeographically important soils in Trinidad, comprising of nine alluvial and five residual soils.

Results and discussion

Results showed that irrespective of alluvial or residual depositional nature of the parent material, samples had high SSc with an average WSAr of 37.8% and PSc of 6.0 mm/10 min. The linear relationships between SSc with WSAr (r2?=???0.12) and SSc with PSc (r2?=???0.012) of all the 14 soils although negative were weak. Clay content accounted for 94.0% of the variation in CEC in alluvial soils and had strong negative relationships with WSAr (r2?=???0.74) and PSc (r2?=???0.79) in residual soils. Additionally, OM with WSAr (r2?=?0.52) and PSc (r2?=?0.24), and CEC with WSAr (r2?=?0.46) and PSc (r2?=?0.39) showed significant positive linear relationships in residual soil.

Conclusions

The predominantly micaceous and kaolinitic clay mineralogy of these soils, coupled with the low OM contents, increases the proneness of the soils to slaking. This suggests that clay mineralogy is responsible for the high slaking sensitivity rather than clay content or just the depositional origin of the soils. As CEC increases, an accompanying increase in OM is required to increase inter-particle cohesion and to impart partial hydrophobicity, which in turn decreases mineralogically induced susceptibility of individual aggregates to slaking.

  相似文献   

3.
Slaking characteristics of some Australian and British soils   总被引:4,自引:0,他引:4  
Aggregates (9.5–12.7 mm) from ten soils were equilibrated at a range of matric suctions (Ψa) between 1 kPa and 100 MPa before immersion in water or wetting on a porous plate at zero suction. The soils were from cultivated and grassland sites and included hardsetting and non-hardsetting Australian and British soils as well as a Vertisol. The initial rate of wetting of each aggregate, and the composition and size distribution of the slaked fragments were measured. There was a significant inverse linear relation between the amount of slaking produced by plate wetting air-dry soil (Ψa=100 MPa) and its organic carbon content (r= 0.82***). The three cultivated hardsetting soils shared several common features. Their slaking was the most pronounced after plate wetting and occurred at the smallest Ψa(10 kPa). Their slaking also increased linearly with rate of wetting and the particle-size distribution of their slaked fragments varied significantly and considerably with Ψa. This last observation demonstrates that it is not always helpful to call the fragments produced by slaking, microaggregates. Possible explanations for our results and their agricultural implications are discussed.  相似文献   

4.
Interrill erosion depends on soil detachment and sediment transport, which are affected by seal formation and runoff. The objective of this study was to investigate the effect of wetting rate (WR) on runoff and soil erosion in semi-arid Israeli soils varying in clay content and exchangeable sodium percentage (ESP). Six soils, ranging in clay content between 90 and 680 g kg−1 and ESP between 0.9 and 20, were packed in 0.2 m×0.4 m trays, wetted at 3 WRs (2, 8, or 64 mm h−1), and thereafter exposed to 60 mm of distilled water rain in a laboratory rainfall simulator. Under non-sodic conditions (ESP<2), highest runoff and erosion were obtained from loam (220 g kg−1 clay and 350 g kg−1 silt) which was ascribed to its high susceptibility to seal formation, runoff and detachability. Runoff and erosion increased with an increase in ESP and WR. The effect of WR on runoff and erosion was negligible in loamy sand and generally increased with an increase in clay content. In clay soils (>600 g kg−1 clay), WR played a greater role in determining runoff and erosion compared with raindrop impact. A linear type dependence existed between erosion and runoff for soils with ESP<5 or when slow WR was used. For high ESP soils, or when medium or fast WR were used, an exponential type relation described better the dependence of erosion on runoff. It is suggested that for sodic soils or for conditions favoring aggregate slaking, runoff level and its velocity were high enough to initiate rill erosion that supplemented raindrop detachment in markedly increasing erosion.  相似文献   

5.
Organic carbon stocks and soil erodibility in Canary Islands Andosols   总被引:3,自引:0,他引:3  
Soil organic carbon (SOC) plays a key role in the structural stability of soils and in their resistance against erosion. However, and as far as andic soils are concerned, these mechanisms and processes, as well as the influence of the different types of SOC on aggregate stability, are not fully understood. The targets of this paper are: (i) to determine the content and forms of SOC in Andosols under evergreen forest vegetation [laurel (Laurus) and heather (Erica) forest] and (ii) to find out the role of soil organic matter (SOM) in the aggregate stability and in the resistance of Andosols to water erosion. Soil samples have been collected in 80 sites in a 40 km2 area under udic soil moisture regime. In them, fulvic and humic acids, Walkley–Black SOC, pyrophosphate-extractable SOC, Fe and Al, potassium sulphate extractable SOC, dissolved SOC, acid oxalate-extractable Fe, Al and Si, USLE K-factor and aggregate stability have been determined. The Andosols over volcanic ash are Aluandic Andosols (non-allophanic Andosols), whereas over basaltic lava flows are Silandic Andosols (allophanic Andosols). The surface (0–30 cm) samples analyzed contain 9.5–30 kg C m− 2 being significantly higher in allophanic Andosols (p < 0.5). Organic carbon adsorbed onto the mineral fraction (extractable pyrophosphate, Cp) accounts for 35–55% of the total SOC. All samples show a high stability to slaking and raindrop impact, being the first one highly correlated (r = 0.6) with pyrophosphate extractable C (Cp), Fe (Fep), and Al (Alp) in allophanic Andosols, unlike non-allophanic ones. The stability to raindrop impact correlates with pyrophosphate extractable C (Cp) and Fe (Fep) in both types of soils (r = 0.3–0.6, p < 0.05). These findings suggest that the high stability to both slaking and water-drop impact is due to the occurrence of allophane–Fe–OC complexes, rather than to the total OC, and the active Fe and Al forms, generated by the weathering of volcanic materials, constitute an essential constituent responsible for C sequestration and resistance to degradation in these soils.  相似文献   

6.
Simple tests of structural stability are needed for evaluating the ease with which soils slake and erode when in contact with water. In a laboratory study, we related the percolation stability (PS) of 22 Nigerian soils to land use, soil properties, structural stability indices and simulated rainfall erosion. All measurements were carried out with the 1–2 mm diameter air-dry aggregates. Land use influenced PS more than the type of soil. Forest soils, bush fallows, mulched, minimally tilled plots and pasture lands had rapid PS (>250 ml/10 min) values, whereas mulched conventionally tilled plots, bare fallows and continuously cultivated plots from where residues were removed by burning had relatively slow to moderate PS values (34–241 ml/10 min). The single most important soil property that correlated positively with PS is organic matter (OM) (r = 0.55*) followed by total Fe + Al (r = 0.52*). The significant inverse relationship (r = −0.49*) between log (PS) and log (pH/OM) indicates a decrease in PS of these acidic, low-OM soils with increasing pH levels. The percent water-stable aggregate (WSA) >0.20 mm diameter, aggregated clay index (AC) and clay dispersion ratio (CDR) correlated weakly with PS. Conversely, the sealing index (SI) (i.e. the ratio of saturated hydraulic conductivity of an uncrusted to that of a crusted soil) had a strong, inverse relationship with PS (r = −0.97***). These relationships indicate that PS measures the slakability (and not dispersibility) of soils. The relationship between PS and erosion (E) was an exponential decay form, E = 102 e−0.0043PS (r2 = 0.98) and showed that high interrill erosion rates would be expected on soils with PS < 250 ml/10 min. The PS which is simple to measure, is, therefore, a good indicator of structural stability for assessing the potential of these soils to erode.  相似文献   

7.
Crust formation process initiates from aggregate disinategration occurred through the combined effects of inherent soil properties and external actions. Rainfall plays a major role in determining the moisture conditions of the soil surface and in triggering aggregate disintegration mainly through slaking and the impact off raindrops. To analyze the relations between rainfall characteristics and crust formation, three artificially granulated aggregates were exposed to natural rainfall events. The rainfall characteristics were expressed in terms of the distribution pattern of rainfall intensity, I 10min; mean weighted drop diameters, D n; raindrop concentration, N Dn,; rainfall energy, Et;and kinetic energy, KE; as well as conventionally used parameters, such as total amount and mean intensity of rainfall. The degree of crusting was evaluated in terms of the water permeability and morphological observation just after the rainfall treatment. Based on a comparison of the rainfall characteristics and degree of crusting, we confirmed the following relations. Rainfall characteristics at the onset of the event considerably influence the degree of crusting, i.e. initial rainfall with high I 10min; and large drop size promotes aggregate disintegration by slaking due to rapid wetting, whereas initial gentle rainfall prevents slaking by slow wetting and subsequent crusting. When initial rainfall is not saaficient for slaking but Beads to a weakening sf the aggregates, subsequent disintegration and crusting are promoted by impact together with the residual influence of slaking. Impact is a dominant factor for aggregate disintegration under wet conditions after initial rainfall which is so gentle that slaking never occurs. Responses of the soils under different natural rainfall conditions were almost consistent with the results under simulated rainfall reported in the previous papers (Tanaka et $1.1997: Soil Sci. Plant Nutr., 43, 99-107, 109-115). Crusting was not observed in the Fujino 1–3 soil gender any rainfall events. In the Wokuei 1–3 soil, characterized by a susceptibility to slaking and stability to impact, crusting was only formed under the rainfall with high I 10 min at the onset. For the Shimazu 1 soil, impact played a dominant role in crusting under any rainfall events, and a larger degree of crusting was found when the effects of impact and slaking were combined. The characteristics of rainfall monitored in this study may be within a normal range as natural rainfall in terms of the amount and the mean intensity, suggesting that crusting likely to occur if the aggregate stability of soils is Bower than or similar to that sf the Shimaza 1 and the Hokuei 1–3 soils.  相似文献   

8.
During raindrop impact soil, aggregates breakdown and produce finer, more transportable particles and micro-aggregates. These particles and micro-aggregates appreciably affect the processes of infiltration, seal and crust development, runoff, and soil erosion. Aggregate stability is, therefore, an important property that may explain, quantify, and predict these processes. This study was designed to develop improved formulae for assessing interrill erosion rate by incorporating the aggregate stability index (As) in the prediction evaluations for soil erodibilites of Ultisols in subtropical China. Field experiments of simulated rainfall involving rainstorm simulations with medium and high rainfall intensity were conducted on six cultivated soils for which the soil aggregate stability was determined by the LB-method. This study yielded two prediction equations Di = 0.23AsI2(1.05 − 0.85 exp−4sin θ) and Di = 0.34AsqI(1.05 − 0.85 exp−4sin θ) that allowed a comparison of their efficiency in assessing the interrill erosion rate. As is an aggregate stability index, which reflected the main mechanisms of aggregate breakdown in interrill erosion process, θ is the slope angle, I is the rainfall intensity, and q is the runoff rate. Relatively good agreement was obtained between predicted and measured values of erosion rates for each of the prediction models (R2 = 0.86**, and R2 = 0.90**). It was concluded that these formulae based on the stability index, As, have the potential to improve methodology for assessing interrill erosion rates for the subtropical Chinese Ultisols. Considering the time-consuming and costly experimentation of runoff rate measurements, the equation without runoff rate (q) was the more convenient and effective one to predict interrill erosion rates on Ultisols of subtropical China.  相似文献   

9.
This paper presents a new type of pressure cell associated with a zigzag-shaped time domain reflectometry (TDR) probe for determining the soil-water retention (θ(ψ)) curve of disturbed thin soil samples. The pressure cell, designed for pressures ranging between 0 and −500 kPa, consisted of a zigzag copper rod (150-mm long, 2 mm in diameter) vertically installed in a clear plastic cylinder (60-mm high, 50 mm in internal diameter) with six vertical copper rods (60-mm long, 2 mm in diameter) arranged around the inner wall of the plastic cylinder. The cylinder was closed at the base with a nylon cloth and placed on a porous ceramic disc. The inner rod and the six-rod grille of the cell were connected respectively to the inner and outer conductors of a coaxial cable. The results showed that the correlation between the apparent dielectric constant measured with a standard three-rod TDR probe and the zigzag-shaped TDR probe, both immersed in five different non-conductive fluids, was excellent (R2 = 0.99). On the other hand, the volumetric water content measured with the TDR probe of the pressure cell filled up with sand, 2-mm sieved loam and clay-loam soils was highly correlated to the corresponding values calculated from the gravimetric water content and the soil bulk density (R2 = 0.97; RMSE = 2.32 × 10−2). The parameters of the θ(ψ) curves measured for these three different soils with the TDR-pressure cell were within the range of values found in the literature. The cell was also used to study the θ(ψ) changes of a 2–4-mm sample of loam soil aggregates after a slow and a fast-wetting process. While negligible changes in both the soil structure and θ(ψ) were observed following slow wetting, fast wetting resulted in disintegration of aggregates and drastic changes in the shape of the θ(ψ) curve.  相似文献   

10.
This study evaluated carbon and nutrient distributions within water-stable aggregates (WSA) of soils of two contrasting ecosystems under different land uses. Surface soil samples were collected from uncultivated and cultivated land in rainforest and savannah agro-ecological areas and separated by wet-sieving technique into 4.76–2.0, 2.0–1.0, 1.0–0.50, 0.50–0.25 and <0.25 mm aggregate fractions. The results show that irrespective of the agro-ecological area, cultivation significantly (p < 0.05) reduced the macroaggregate fractions (>0.25 mm) to smaller diameters. Distribution of organic carbon (C), total nitrogen (N) and available phosphorus (P) within the WSA showed preferential enrichment of these elements in the large macroaggregate fraction (4.76–2.0 mm) for the uncultivated soils and microaggregate fraction (<0.25 mm) for the cultivated soils. The overall pattern indicates higher accumulation of C, N and P in the WSA of the uncultivated soils over the cultivated soils. Average distribution of total exchangeable bases (TEB), i.e., sum of Ca2+, Mg2+, K+ and Na+, within WSA of the uncultivated soils of the rainforest region were 7.35 and 7.39 cmol/kg for 4.76–2.0 and <0.25 mm fractions, respectively. The distributions of TEB for cultivated soils of the rainforest region were 2.76 cmol/kg (4.76–2.0 mm fraction) and 7.73 cmol/kg for <0.25 mm fraction. This showed that cultivation significantly (p < 0.05) led to 62% reduction in these nutrients in the 4.76–2.0 mm fraction and 5% increase in concentrations of these cations in <0.25 mm fraction. For savannah soils, distributions of TEB were 7.44 and 6.77 cmol/kg for 4.76–2.0 and <0.25 mm fractions, respectively, in uncultivated sites, whereas TEB were 2.19 cmol/kg (4.76–2.0 mm) and 6.35 cmol/kg (<0.25 mm) for cultivated savannah. This indicated that cultivation significantly (p < 0.05) led to 71% and 6% reductions in Ca2+, Mg2+, K+ and Na+ concentrations within the 4.76–2.0 and <0.25 mm aggregate fractions, respectively. However, there were 18% and 50% increase in these elements in the 2.0–1.0 and 1.0–0.50 mm fractions of the cultivated soils of the savannah region, respectively. The general trend showed that in uncultivated soils, the 4.76–2.0 and <0.25 mm fractions were preferentially enriched with Ca2+, Mg2+, K+ and Na +; whereas, cultivation led to redistribution of these elements into the smaller aggregates. Since smaller aggregates are preferentially removed by erosion, this study underscores the need for sustainable soil management practices that would minimize nutrient loss when forest or fallow lands are converted to cropland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号