首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 359 毫秒
1.
植被覆盖是陆地生态系统的主体,研究植被空间分布格局与土地利用之间的关系,对于生态环境保护和水土流失防治具有积极意义.以南水北调中线工程水源地,丹江流域为研究对象,利用MODIS 250 m NDVI数据,结合地理信息系统技术,对丹江流域NDVI等级分布图和DEM图叠加,得到NDVI在不同海拔、坡度和坡向等地形因子的分布情况,并且与土地利用进行相关分析.结果表明:1)丹江流域NDVI平均值为0.84,表明流域植被覆盖较好.高植被覆盖分布于流域边缘高山区,东北和东南较集中;中植被覆盖分布于丹江流域河道两侧川塬区和低山区,西北和南部较集中;低植被覆盖位于丹江流域川道区,呈点和线状分布.2)不同海拔和坡度,植被覆盖面积呈单峰分布,平地的植被覆盖面积接近0;不同坡向植被覆盖面积差异不明显.3)除坡向外,不同海拔和坡度,高、中植被覆盖与耕地、林地和草地显著相关;不同地形因子下,低植被覆盖与建设用地和水域显著相关.丹江流域植被覆盖度与人类活动范围呈逆向分布,说明人类活动对植被分布影响较大;优化土地利用,适当增加林地覆盖面积,有利于提高丹江流域的水土保持功能.  相似文献   

2.
岷江上游流域植被覆盖度及其与地形因子的相关性   总被引:5,自引:3,他引:2  
[目的]研究岷江上游流域植被覆盖度随不同高程带、坡度带、坡向分布变化的特征及相关性,为该地区利用有利地形加强生态环境建设和防治水土流失提供依据。[方法]在GIS和RS技术支持下,利用Landsat-8OLI遥感影像和DEM数据提取植被覆盖度和地形因子进行叠加分析,构建统计样本定量分析植被覆盖度与地形因子间的相关关系。[结果]研究区总体植被覆盖情况良好,中度以上植被覆盖区占研究区面积75.0%,低植被覆盖区仅占15.2%。植被覆盖度随海拔高度和坡度的增加呈先增加后降低的趋势,在海拔2 500~3 000m和坡度25°~45°达到最大值;阳坡的植被覆盖度略大于阴坡。各地形因子对不同植被覆盖度的影响程度不同,低植被覆盖区受坡度影响较显著,极高度植被覆盖区受海拔高度影响较显著,其他植被覆盖区与地形因子的相关性无明显规律。[结论]岷江上游流域植被覆盖度与地形因子关系紧密,地形因子变化对生态环境有重要影响。  相似文献   

3.
基于中国土壤流失方程模型的区域土壤侵蚀定量评价   总被引:5,自引:1,他引:4  
王略  屈创  赵国栋 《水土保持通报》2018,38(1):122-125,130
[目的]用中国土壤流失方程(CSLE模型)对区域土壤侵蚀定量计算的方法进行初步探索,以期提高土壤侵蚀监测精度,有效、客观地反映水土流失治理效果。[方法]采用CSLE模型、遥感解译与统计分析相结合的方法,对准格尔旗境内的皇甫川流域进行土壤侵蚀定量评价。[结果]研究区2015年侵蚀总量1.38×10~7 t,年均侵蚀模数4 920.23t/(km~2·a)。土壤侵蚀强度以中度为主,轻度和强烈次之。[结论]用CSLE模型进行土壤侵蚀定量分析,综合考虑了降雨、土壤、植被、地形、措施等多项因子,可用于区域土壤侵蚀定量研究。  相似文献   

4.
[目的]分析牛栏江流域上游保护区水土流失治理模式,以期为流域水土流失治理提供新的思路。[方法]基于DEM数据在ArcGIS内进行子流域自动提取,结合遥感影像进行人工交互解译、修正以确定子流域;以划分的子流域为基本单元进行定性与定量赋分并计算综合得分,依据综合得分确定流域水土保持分区及其主导功能;根据确定的水土保持分区主导功能进行“四型”小流域治理模式配置。[结果]牛栏江流域上游保护区共划分9个子流域,确定4个水土保持分区;在各水土保持分区分别构建以生态安全型、生态景观型、生态经济型和生态清洁型为主的“四型”小流域治理模式。[结论]子流域可作为牛栏江流域上游保护区“四型”小流域水土流失治理模式配置的基本单元,水土保持主导功能可作为“四型”小流域模式配置的依据,提供因型施策、精准至区的水土流失科学治理模式。  相似文献   

5.
[目的]优化中国土壤侵蚀模型CSLE的因子计算方法,提高该模型在鲁中低山丘陵小流域的模拟精度,为低山丘陵区小流域的土壤侵蚀因子动态监测方法提供技术支撑。[方法]以淄博市郝峪小流域为研究区,将国产高分卫星数据和无人机低空遥感数据相结合,对CSLE模型中的地形地貌因子和植被覆盖与生物措施因子进行了算法优化,通过与国家监测数据的对比,验证优化后土壤侵蚀模型因子的优越性。[结果](1)模型因子算法优化验证结果表明,坡度坡长因子频率曲线相似度为0.91,可以进行土壤侵蚀计算;(2)对于植被覆盖度提取的尺度转换模型,拟合优度系数R~2为0.686 8,可以进行植被覆盖与生物措施因子计算。(3)优化模型后的土壤侵蚀数据与国家监测的土壤侵蚀数据的相关系数为0.686 8。[结论]优化了CSLE模型中因子提取计算的方法提高了模型的模拟精度。因子优化后计算的土壤侵蚀模数更符合当地实际情况。  相似文献   

6.
高分遥感在黄河流域水土流失动态监测中的应用   总被引:1,自引:0,他引:1  
[目的]总结和分析黄河流域水土流失动态监测项目所采用的遥感监测技术,为流域水土流失动态监测探索和推广一种崭新、高效的方法。[方法]基于资源3号高分辨率卫星影像,采用面向对象的影像分类方法对准格尔旗2014年的土地利用信息进行半自动分类,并构建植被覆盖度回归模型,对项目区植被覆盖度进行反演研究。[结果]面向对象的土地利用半自动分类结果和植被覆盖度回归模型反演结果,其野外验证精度达到90%以上,满足水土流失动态监测高解析度和高精确度基础数据获取的需求。[结论]面向对象的土地利用分类方法和植被覆盖度回归模型计算,能够有效避免传统人工目视解译导致的成果误差,节约人力成本和时间成本,提高数据获取的精度和效率。  相似文献   

7.
以多源遥感影像为信息源,基于ArcGIS平台的空间分析与数据管理等功能,获取苕溪流域土地利用、植被覆盖、水土保持措施等数据,对降雨、土壤、地形、植被、水土保持措施等数据进行处理,提取各土壤侵蚀因子,应用中国土壤流失方程(CSLE)计算土壤侵蚀模数,得到苕溪流域水土流失动态监测成果。监测结果表明,2020年苕溪流域土地利用以林地、建设用地和耕地为主;耕地主要分布在≤2°坡度级;植被覆盖状况良好,九成以上的园、林、草地植被覆盖度大于60%;流域水土流失总面积304.45 km~2,侵蚀强度以轻度侵蚀为主;水土流失主要分布在茶园、人为扰动用地、其他林地及旱地,其中极强烈及以上侵蚀主要分布在人为扰动用地、茶园和坡耕地;整体来看,土壤侵蚀强度改善的区域面积大于加剧的区域面积。  相似文献   

8.
研究选用中国科学院南京土壤研究所卜兆宏水土流失定量监测模型QRSM,应用"3S"技术,选用高分辨率1∶1万地形图和ALOS遥感数据,将影响水土流失的各因子值可精确计算到每个像元,以丹江口库区西河小流域为重点试验研究区在长江上游地区进行了研究。对模型各因子计算进行了误差处理和参数调整,并对QRSM模型中雨量预报PI算法与USLE模型经典算法EI两种不同算法得出的R值进行了精度对比,结果表明PI算法雨量预报准确率达到86.2%。监测结果得出,西河小流域水土流失面积1 901.00hm2,占总面积的48.4%,其中轻度流失面积685.64hm2,中度流失面积253.86hm2,强度流失面积428.16hm2,极强度流失面积450.04hm2,剧烈流失面积83.30hm2,分别占流失总面积的36.1%,13.4%,22.5%,23.7%,4.3%。流域内年土壤侵蚀总量为10 350t,侵蚀模数为2 633t/(km2·a),属中度水土流失类型区。流域的北部是治理区,南部是对照区,北部治理区水土流失面积降低到了15%以下。选择侵蚀程度严重的马槽沟子流域,通过模型监测水土流失量与实测泥沙量数据比较,模型水土流失预报精度高达89.6%。该研究将监测模型推广应用到长江流域上游地区,对逐步实现对长江流域水土流失的监测预报具有前瞻性,并对其它小流域也有一定的理论参考和实践推广示范及技术支撑等价值。  相似文献   

9.
植被因子算式在土壤侵蚀定量监测中的应用研究   总被引:4,自引:1,他引:3  
植被覆盖度与植被因子作为水土保持学科上的一个重要指标,历来受到众多的研究人员重视,作为美国通用流失量方程USLE中的一个参数因子,必须将它加以量化计算,本文以南安市水土流失定量遥感监测为例,具体叙述了在南安市进行水土流失遥感定量监测过程中,植被因子C值的求算过程,并叙述其主要步骤,最后得到了植被因子的C值,为水土流失监测系统提供基础资料或作为反映地表植被覆盖状况的一个“量”的指标。  相似文献   

10.
北京市密云水库上游坡地水土流失监测系统的建立及应用   总被引:1,自引:0,他引:1  
以北京市密云水库上游为示范监测区,利用遥感及地理信息系统,通过坡度,土地利用和植被覆盖度专题图形制作,交叉分析和土壤侵蚀强度判别,进行流域自然状况及水土流失面积调查,根据坡地土壤侵蚀区分布及坡地水土保持治理情况布设坡地径流小区,观测各类型区水土流失量及污染物流失量,分析计算全流域的水土流失量,污染物流失量及治理措施的水土保持效益。  相似文献   

11.
[目的] 通过分析十大孔兑水土流失面积、强度及水土流失动态变化,为流域综合治理提供参考依据。[方法] 基于全国土壤侵蚀遥感调查结果和全国水土流失动态监测成果,对比分析流域水土流失及其分布、动态变化。[结果] 十大孔兑流域植被面积占流域面积的63.97%,以中低覆盖和低覆盖为主,分别占植被覆盖面积的48.85%和36.54%。2021年水土流失面积为4374.98 km2,占流域面积的40.63%;与2020年、1999年和1985年相比,2021年水土流失分别减少46.32,3 664.50,4 958.03 km2,水土流失主要分布在草地、林地、耕地和其他土地4个地类上,占水土流失总面积的96.69%。[结论] 十大孔兑依然是黄河流域水土流失治理的难点地区,高强度侵蚀减少与年度监测成果未考虑沟道侵蚀有关;该区应坚持以“以沙棘种植为主的植被建设,以淤地坝建设为重点的工程布局,以锁边固沙为前提的治沙方针,大力推进拦沙换水试点工程”的流域综合治理策略。  相似文献   

12.
黄河流域水土流失遥感监测中土地利用现状分类体系构建   总被引:1,自引:0,他引:1  
[目的]提出一种新的适于水土流失遥感监测的土地利用现状分类体系,并验证其合理性,为黄河流域水土流失遥感监测提供依据。[方法]以黄河流域不同地类水土流失的差异为出发点,按照科学性、可行性和完整性原则,参考国家土地利用现状分类标准,基于水利部颁布的土壤侵蚀分类分级标准,构建了黄河流域水土流失遥感监测土地利用现状分类体系。[结果]以坡耕地、梯田、林草地、在建开发用地、淤地坝、沙地和其他用地7个类型构建了黄河流域水土流失遥感监测土地利用现状分类体系,并用5个县(旗)的土地利用数据进行验证,结果表明该分类体系具有科学性。[结论]本研究提出的土地利用分类体系在获取同等精度水土流失评价结果的同时,又能提高水土流失遥感监测的效率。  相似文献   

13.
黄河流域陕西片土壤侵蚀预报模型研究   总被引:2,自引:0,他引:2  
以气候、地质、地形、植被及人类活动 5类因素中的 6个因子为预报因子 ,以陕西黄河流域水蚀区内 5大类型区中 3 3条小流域的实验观测资料和实地调查资料及有关科研单位的研究成果为基础 ,建立了适用于该区域的土壤侵蚀预报模型。据运用该模型对本区域内 4条小流域水土保持遥感普查成果和建模所用 3 3条小流域土壤侵蚀模数进行验证 ,证明该模型具有较高的精度 ,可以在陕西黄河流域水蚀区及条件相近的其他地区推广应用  相似文献   

14.
根据沂蒙山区遥感影像解译和水土流失遥感调查数据等资料,在通用土壤侵蚀方程的基础上,选择降雨侵蚀力、土壤可蚀性值、坡度和植被覆盖等自然因子建立土壤侵蚀敏感性评价指标体系。利用GIS方法对影响土壤侵蚀敏感性的单因子进行计算,并将各因子进行栅格化。运用空间分析方法对沂蒙山区土壤侵蚀敏感性进行综合评价,将沂蒙山区土壤侵蚀敏感性分为极敏感区、高度敏感区、中度敏感区、轻度敏感区和一般敏感区5个等级区域,并分析了不同土壤侵蚀敏感区的空间分布。  相似文献   

15.
[目的]探究中尺度孤山川流域土地利用/覆盖变化对土壤侵蚀的影响,为认识理解黄河泥沙变化,完善土壤侵蚀模型提供理论支持.[方法]根据TM影像及中国土壤流失方程(CSLE)获取流域土地利用/覆盖数据与表征土壤侵蚀的植被作用因子,通过土地利用变化转移矩阵,重点分析流域土地利用/覆盖变化引起的植被作用因子的变化.[结果] 1975-1997年间,孤山川流域植被作用因子随着草地减少,耕地增加和植被覆盖度降低而增大,而在1997-2012年间,流域植被作用因子随着草地增加,耕地减少和植被覆盖度升高而增大.[结论]林地和草地是重要的林草措施,因此增加林草种植面积,对于减少土壤侵蚀具有重要意义.  相似文献   

16.
为提高县域尺度地块(栅格)土壤侵蚀模数估算的准确性,以河北省怀来县为例,基于CSLE模型,分别采用全域覆盖计算和4%密度抽样单元推算方法对全县土壤侵蚀进行计算和对比分析。结果表明:全域覆盖计算比4%抽样单元推算水土流失面积大59.0 km~2,相对差异达12.94%。全域覆盖计算可实现空间全覆盖,更准确地反映县域水土流失空间分布特点,适用于中、小尺度土壤侵蚀定量计算,但需要较高精度和全面的数据源保证;抽样单元推算适用于流域、区域等大尺度土壤侵蚀估算,但结果受抽样方法、抽样密度、外推或插值方法等因素影响较大。应进一步加强遥感解译准确性、侵蚀因子精度等对CSLE全域覆盖计算结果影响的研究,完善模型参数数据库,率定因子值,实现参数本地化。  相似文献   

17.
[目的]分析影响赣江上游流域土壤侵蚀的主要因素,为该区水土流失治理与科学管理提供科学依据。[方法]基于2015年Landsat 8遥感影像、MODIS NDVI数据、数字高程模型(DEM)、土壤类型和降雨数据,采用RUSLE模型和随机森林算法对赣江上游流域土壤侵蚀及其影响因子进行定量化分析。[结果] 2015年赣江上游流域土壤侵蚀强度由东南向西北逐渐加剧,总体上处于轻度侵蚀水平,土壤侵蚀总量为3.45×10~7 t/a,平均土壤侵蚀模数为1 046.38 t/(km~2·a),比南方红壤丘陵区土壤允许流失量[500 t/(km~2·a)]高出2倍之多;子流域9,11,15平均土壤侵蚀模数分别为1 672.66,1 715.83和1 565.36 t/(km~2·a),处于中度侵蚀级别,为研究区重点防治区域;其余子流域均为轻度侵蚀级别。[结论]各子流域的土壤侵蚀受植被覆盖与管理因子(C)和坡长坡度因子(LS)影响较大,两者重要程度分别在30%和20%以上,土壤可蚀性因子(K)和降雨侵蚀力因子(R)的重要程度偏低,均未超过10%。其中子流域9,11,21主要受LS因子影响,其余子流域均受C因子主控。  相似文献   

18.
[目的]揭示甘肃省长江流域调水保土效益、经济效益和生态效益,为实现水土流失区社会经济的可持续发展提供依据。[方法]运用甘肃省长江流域水土保持综合治理评价体系以及水土保持综合治理效益计算方法(GB/T15774-2008)计算分析了甘肃省长江河流域水土保持综合治理效益。[结果]甘肃省长江流域各措施累计调水2.01×1010 m3,其中坡面措施减水2.01×1010 m3,占总调水量的99.99%,累计保土3.59×108 t,其中坡面措施减蚀2.96×108 t,占总保土效益的82.45%;梯田、水保林、经济林、人工种草经济效益分别为58.08,180.02,29.69和15.20亿元,合计279.99亿元。[结论]通过水土保持措施对降雨径流的拦蓄,有效缓解了甘肃长江流域以及各类型区干旱、洪涝灾害及下游防洪压力,减轻了下游河道的泥沙淤积,同时改善了土壤肥力,增强土壤抗侵蚀能力。植被覆盖度由1980年的1.47%增长到2011年的29.83%,增长了28.36%,植被覆盖度增长幅度较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号