首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Many soil microorganisms are able to transform insoluble forms of phosphorus to an accessible soluble form, contributing to plant nutrition as plant growth-promoting microorganisms (PGPM). The objective of this work was to isolate, screen and evaluate the phosphate solubilization activity of microorganisms in maize rhizosphere soil to manage soil microbial communities and to select potential microbial inoculants. Forty-five of the best isolates from 371 colonies were isolated from rhizosphere soil of maize grown in an oxisol of the Cerrado Biome with P deficiency. These microorganisms were selected based on the solubilization efficiency of inorganic and organic phosphate sources in a modified Pikovskaya's liquid medium culture containing sodium phytate (phytic acid), soybean lecithin, aluminum phosphate (AlPO4), and tricalcium phosphate (Ca3(PO4)2). The isolates were identified based on nucleotide sequence data from the 16S ribosomal DNA (rDNA) for bacteria and actinobacteria and internal transcribed spacer (ITS) rDNA for fungi. Bacteria produced the greatest solubilization in medium containing tricalcium phosphate. Strains B17 and B5, identified as Bacillus sp. and Burkholderia sp., respectively, were the most effective, mobilizing 67% and 58.5% of the total P (Ca3(PO4)2) after 10 days, and were isolated from the rhizosphere of the P efficient L3 maize genotype, under P stress. The fungal population was the most effective in solubilizing P sources of aluminum, phytate, and lecithin. A greater diversity of P-solubilizing microorganisms was observed in the rhizosphere of the P efficient maize genotypes suggesting that the P efficiency in these cultivars may be related to the potential to enhance microbial interactions of P-solubilizing microorganisms.  相似文献   

2.
To confirm whether endophytes are members that play important roles in phosphorus (P) solubilization in red acidic soil, five endophytes that have the potential to dissolve insoluble P were isolated from cassava (Manihot esculenta Crantz) root. Based on the maximum amount of soluble P in Ca3(PO4)2, AlPO4, and FePO4 liquid NBRIP, the strain Pantoea dispersa was selected to investigate the ability to solubilize phosphate over time. Our results showed that the solubilizing process of P. dispersa was accompanied by acid production. Beside succinate, oxalic acid, and citric acid, two special organic acids, salicylic acid, and benzeneacetic acid were found during microbial P solubilization. Based on PCR-DGGE (denaturing gradient gel electrophoresis) analysis, soil application of P. dispersa triggered natural soil microbial activity. This phenomenon could be maintained up to 25 days, suggesting that the endophyte P. dispersa would be a suitable candidate for optimizing agro-microecological systems via soluble P release in red acidic soil.  相似文献   

3.
Phosphate-solubilizing microorganisms play an important role in plant nutrition by enhancing phosphorus (P) availability to roots through converting the insoluble phosphates into soluble ions. We isolated phosphate-solubilizing bacteria (PSB) from acidic soil (Ultisols) in the field from the layer of 0–150 mm at a tea garden located at 28°38′26″ N and 116°24′27″ E. The capacity of bacterial isolates to solubilize mineral phosphate was tested on aluminum phosphate (AlPO4) in liquid medium. Among these PSB, isolate B1 (identified as Bacillus thuringiensis) exhibited the maximum P-solubilizing ability and was particularly efficient at solubilizing AlPO4 (up to 321 mg L?1) in vitro. The isolate B1 was inoculated to an acidic soil to study its effect on phosphate solubilization and growth of peanuts (Arachis hypogeae). The Olsen-P in the tested soil increased from 14.7 to 23.4 mg kg?1, with solubilization of 16.4 mg kg?1 soil of Occluded-P after 14-day incubation. The inoculation by B1 significantly increased plant height (from 37.7 to 45.7 cm), number of branches (from 34.0 to 52.7 per plant), hundred-seed weight (from 42.1 to 46.9 g) and crude protein content (from 243.5 to 268.2 g kg?1 dry weight). The phosphate-solubilizing B. thuringiensis strain B1 showed potential as a biological phosphorus fertilizer.  相似文献   

4.
With the aim to explore the possible role of mineral phosphate-solubilizing bacteria (PSB) in phosphorus (P) cycling in iron-rich, acidic soils, we conducted a survey of PSB naturally colonizing a limonitic crust in the south-east region of Venezuela (Bolívar State). A total of 130 heterotrophic bacterial isolates showing different degrees of mineral tri-calcium phosphate (Ca3(PO4)2)-solubilizing activities were isolated from NBRIP plates. In contrast, no isolates showing iron phosphate (FePO4)- or aluminum phosphate (AlPO4)-solubilizing activities were detected by this experimental approach. The 10 best Ca3(PO4)2-solubilizers were selected for further characterization. These isolates were shown to belong to the genera Burkholderia, Serratia, Ralstonia and Pantoea by partial sequencing analysis of their respective 16S rRNA genes. All the PSB isolates were able to mediate almost complete solubilization of Ca3(PO4)2 in liquid cultures; in contrast, the PSB isolates were less effective when solubilizing FePO4. Two groups of PSB isolates were clearly differentiated on the basis of their Ca3(PO4)2 solubilization kinetics. Acidification of culture supernatants seemed to be the main mechanism for P solubilization. Indeed, gluconic acid was shown to be present in the supernatant of five isolates. Furthermore, detection of genes involved in the production of this organic acid was possible in three isolates by means of a PCR protocol.  相似文献   

5.
The phylogenetic diversity of phosphate solubilizing bacteria(PSB)distributed in P-rich soils in the Dianchi Lake drainage area of China was characterized,and the tricalcium phosphate(TCP)solubilizing activities of isolated PSB were determined.Among 1 328 bacteria isolated from 100 P-rich soil samples,377 isolates(28.39%of the total)that exhibited TCP solubilization activity were taken as PSB.These PSB showed different abilities to solubilize TCP,with the concentrations of solubilized P in bacterial cultures varying from 33.48 to 69.63 mg L-1.A total of 123 PSB isolates,with relatively high TCP solubilization activity(>54.00 mg L-1),were submitted for restriction fragment length polymorphism(RFLP)analysis,which revealed 32 unique RFLP patterns.Based on these patterns,62 representative isolates,one to three from each RFLP pattern,were seffected for 16S rRNA sequencing.Phylogenetic analysis placed the 123 PSB into three bacterial phyla,namely Proteobacteria,Actinobacteria and Firmicutes.Members of Proteobacteria were the dominant PSB,where 107 isolates represented by 26 RFLP patterns were associated with the genera of Burkholderia,Pseudomonas,Acinetobacter,Enterobacter,Pantoea,Serratia,Klebsiella,Leclercia,Raoultella and Cedecea.Firmicutes were the subdominant group,in which 13 isolates were affiliated with the genera of Bacillus and Brevibacterium.The remaining 3 isolates were identified as three species of the genus Arthrobacter.This research extends the knowledge on PSB in P-rich soils and broadens the spectrum of PSB for the development of environmentally friendly biophosphate fertilizers.  相似文献   

6.
黑土区高效溶磷真菌筛选及其溶解磷矿粉效果的研究   总被引:6,自引:1,他引:6  
黑土区高效溶P真菌筛选及其溶解磷矿粉效果的试验结果表明 ,溶P真菌溶P效果高于溶P细菌 ,且其溶P性状稳定。曲霉菌“P39”、“P37”和青霉菌“P6 6”、“P1”溶P效果高于其他供试菌 ,菌株之间溶P活性与培养液pH值和有机酸含量间不存在必然相关性 ,推测不同菌株间溶P活性差异与菌株产生的有机酸种类和数量有关  相似文献   

7.
We studied the effect of bacteria involved in rock phosphate (four isolates), iron phosphate (two isolates), and aluminium phosphate (two isolates) solubilization, and two phytate-mineralizing bacteria in terms of their interaction with two Glomus spp. on Pueraria phaseoloides growth and nutrition. The plant —Rhizobium sp. — mucorrhiza symbiosis system may increase in yield and nutrition in association with specific rhizosphere bacteria that solubilize calcium, iron, and aluminium phosphates. No benefit from phytate-mineralizing bacteria was found under these experimental conditions. P. phaseloides growth responses were influenced in different ways by specific combinations of the selected bacteria and arbuscular mycorrhizal fungi. Considerable stimulation of nutrient uptake was observed with fungus-bacteria combinations of Azospirillum sp. 1, Bacillus sp. 1 or Enterobacter (spp. 1 or 2) associated with G. mosseae. The fact that Bacillus sp. 1, a calcium-phosphate solubilizing isolate, positively interacted with G. mosseae and negatively with G. fasciculatum is an indication of specific functional compatibility between the biotic components integrated in the system. From our results, the interactions between bacterial groups able to solubilize specific phosphate and mycorrhizal fungi cannot be interpreted as occurring only via P solubilization mechanisms since no generalized effect was obtained. Iron-phosphate solubilizing microorganisms were more active alone than in dual associations with Glomus sp., but the aluminium-phosphate dissolving isolates positively interacted in mycorrhizal plants. Further work is needed in this area in order to elucidate the mechanisms that affect rhizosphere microorganism interactions. G. mosseae was more effective but less infective than G. fasciculatum in most of the combined treatments.  相似文献   

8.
This study determined the cell density in the field and the biological activity of culturable phosphate-solubilizing microorganisms (PSMs) present in the Elaeis guineensis Jacq. rhizosphere at two locations in a commercial plantation. Promising isolates found in two soils under different agronomic management conditions were selected. We first calculated the cell density of cultivable PSMs grown in SRS medium (Sundara-Rao and Sinha, 1963) supplemented with the insoluble phosphate sources Ca3(PO4)2, AlPO4, and FePO4. Twenty-two bacteria, ten filamentous fungi, and eight yeast isolates were found. The 16 isolates with the clearest P solubilization halo in Petri dishes were selected to estimate their P solubilization potential in SRS medium with Ca3(PO4)2. No solubilization activity was registered using AlPO4 or FePO4 as the P sources. Ten of the isolates presented solubilization efficiencies between 20 and 82%. Some of these isolates showed high percentages of identity with the 16S and ITS rDNA sequences of the genera Aspergillus, Penicillium, Klebsiella, Burkholderia, and Staphylococcus according to the NCBI and EzTaxon-e databases. The solubilization activity of the isolates was associated with a decrease in the pH and the release of organic acids, such as gluconic, citric, succinic, and acetic acids. Gluconic acid was mainly released by the genera Aspergillus and Penicillium, and these isolates also showed the highest solubilization activities (82 and 80%, respectively). Therefore, these isolates were selected as the most promising isolates present in the oil palm rhizosphere for phosphate solubilization.  相似文献   

9.
A way to bring phosphate-saturated soils back to an environmentally safe P level is by P mining through plants. Phosphate-solubilizing bacteria (PSB) could be very useful for increasing mining efficiency over time. The goal of this research was to investigate the adaptation and performance of PSB in conditions of high total P content in soil. In the first experiment, the P-solubilizing capacity of five PSB species (three Bacillus spp. and two Pseudomonas spp.) were tested under fully controlled conditions on several growth media with different forms of insoluble phosphate (FePO4, AlPO4, or (Ca)3(PO4)2) added at different rates. The colony growth after 14 days of inoculation demonstrated that all five bacteria were able to proliferate and solubilize P on each of the tested growth media, in contradiction with the normally used technique of halo determination. In the second experiment, the same bacterial species were inoculated in pure quartz sand amended with a nutrient solution and P was added separately in an insoluble form, as Fe–P, Al–P, or Ca–P. The extractable ammonium lactate ranged from 3.2 to 6.9 and 29.0 to 40.7 mg?kg?1 sand for the insoluble Al–P and Fe–P treatments, respectively. Pseudomonas putida and Bacillus brevis performed best as PSB at high P concentration where the P is fixed with Al or Fe. In the third experiment, P. putida and B. brevis were inoculated in an acidic sandy, P-saturated soil for 4 weeks. The inoculation of the PSB gave promising results in solubilizing P.  相似文献   

10.
The oxygen isotope composition of phosphate (δ18O‐PO4) has successfully been used to study the biological cycling of phosphorus (P) in seawater and marine sediments. However, only a few studies have used this approach in soils. In order to analyse δ18O‐PO4, phosphate must be extracted from the soil, purified and converted to silver phosphate (Ag3PO4). The published extraction methods, successfully applied to marine waters and sediments, lead to the precipitation of impure Ag3PO4when used with soils or organic‐rich samples. Here we present an improved purification protocol, designed for soils and other organic‐rich samples. After extraction with HCl, phosphate is purified with multiple mineral precipitations that do not require extreme pH adjustments of the solutions. We show that contaminant‐free Ag3PO4 can be produced from fertilizers and various soils with different chemical and physical characteristics. Our first isotopic results confirm that differences in P status and availability in soils are expressed in the δ18O‐PO4 signal, indicating the potential of this isotopic tracer to understand P dynamics in soil systems.  相似文献   

11.
几株高效溶磷菌株对不同磷源溶磷活力的比较   总被引:3,自引:0,他引:3  
在液体培养条件下,研究了4株溶磷菌株(Bmp5、Bmp6、Bmp7和Fmp9)对不同磷源溶解能力的差异并与荧光假单孢菌As1.867和巨大芽孢杆菌As1.223进行了比较,探讨了菌株组合培养对溶磷活力的影响。结果表明,4株菌株对磷酸钙、磷酸铝、磷酸氢钙溶解能力明显高于磷酸铁和卵磷脂。以磷酸钙为磷源时,Fmp9的溶磷量比As1.867和As1.223分别高出约92%和48%;而以磷酸铝为磷源时,As1.223的溶磷量明显高于其他菌株;在磷酸氢钙为磷源的条件下,Bmp6为优势菌株,溶磷量高达785.51mg/L。对比研究发现,Bmp5、Bmp6、Bmp7及Fmp9的优势磷源分别为卵磷脂、磷酸氢钙、磷酸铝和磷酸钙。组合培养表明,Bmp5+Fmp9和Bmp6+Fmp9较单株菌的溶磷量有所增加,为较好的组合。试验得到的溶磷微生物配方已经应用于生物复合肥料的研究,并进行了盆栽实验,得到了较好的效果。该研究可为土壤生物肥料工业的微生物学研究提供借鉴。  相似文献   

12.
To identify plant growth promotion ability of phosphorus-solubilizing native bacteria, we have examined a collection of isolates representing the diversity of culturable phosphate-solubilizing bacteria from acid soils of the northeast of Argentina. Assays in growth medium supplemented with tricalcium phosphate revealed different phosphorus solubilization activity and temporal patterns of solubilization. Acidification of the broth medium coincided with phosphorus solubilization. The isolates were grouped according to their Rep fingerprinting profiles and phylogenetically classified by 16S rDNA and biochemical analyses. These isolates were assigned to the genera Enterobacter, Pantoea, Pseudomonas, Acinetobacter, Burkholderia, and Exiguobacterium. Four isolates showing high phosphorus solubilizing activity in in vitro assays were inoculated on common beans (Phaseolus vulgaris); some of them promoted plant growth and increased photosynthesis and the P and N content of leaves. The results indicated that the ability to in vitro solubilize P is not necessarily associated to the promotion of plant growth.  相似文献   

13.
C、N源及C/N比对微生物溶磷的影响   总被引:19,自引:1,他引:19  
以不同的氮源 (NH4+、NO3- 、尿素 )、不同的碳源 (葡萄糖、蔗糖、糖蜜和淀粉 )及碳氮比 (34∶1、20∶1、5∶1)为培养基研究不同C、N源和C/N比对微生物溶磷的影响。结果发现 ,曲霉 2TCiF2和 4TCiF6在以NO3-为氮源的培养基中表现出强的解磷活力 ,而节杆菌 1TCRi7和 1TCRi14的溶磷活性则在NO3-存在时降低 ,青霉 1TCRiF5、2TCRiF4、肠杆菌 1TCRi15和欧文氏菌 4TCRi2 2则只有在供给NH4+时 ,才具有溶解磷矿粉的能力。加入少量可溶性磷对大多数微生物的溶磷能力没有显著的影响。曲霉 2TCiF2在蔗糖为碳源时溶磷活力最高 ,节杆菌 1TCRi7只有在葡萄糖为碳源时才具有溶磷能力。培养基的C/N比越高 ,曲霉和欧文氏杆菌的溶磷活力越高 ,而青霉和肠杆菌则在C/N比最低时 ,其溶磷活力最强。这些微生物之所以具有溶解磷矿粉的能力 ,主要是由于分泌有机酸 ,但非有机酸物质的络合和螯合作用 ,可能在肠杆菌和欧文氏菌溶磷中起重要作用。氮源、碳源和碳氮比极大地影响微生物的代谢 ,尤其对分泌有机酸等物质的种类可能产生很大的影响。  相似文献   

14.
林忠焱 《土壤学报》1983,20(3):279-285
土壤磷酸盐位是研究土壤磷有效度的具有相对能量意义的概念,它的提出为研究土壤磷的问题开辟了一条新的途径[2,3,11].磷位值是土壤有效磷的强度指标,把它运用于土壤需磷诊断上,使它成为指导磷肥施用的有用工具,在当前生产上有一定意义.  相似文献   

15.
In desert ecosystems, belowground characteristics are influenced chiefly by the formation and persistence of “shrub-islands of fertility” in contrast to barren plant interspaces. If soil microbial communities are exclusively compared between these two biogeochemically distinct soil types, the impact of characteristics altered by shrub species, especially soil C and N, are likely to be overemphasized and overshadow the role of other characteristics in structuring microbial composition. To determine how belowground characteristics influence microbial community composition, and if the relative importance of these characteristics shifts across the landscape (i.e., between and within shrub and interspace soils), changes in microbial communities across a 3000-year cold desert chronosequence were related to 27 belowground characteristics in surface and subsurface soils. When shrub and interspace communities in surface and subsurface soils were combined across the entire chronosequence, communities differed and were primarily influenced by soil C, NO3 concentrations, bulk density, pH, and root presence. Within shrub soils, microbial communities were shrub species-specific, especially in surface soils, highlighting differences in soil characteristics created by specific shrub species and/or similarity in stresses structuring shrub species and microbial communities alike. Microbial communities in shrub soils were not influenced by soil C, but by NO3 and NH4+ concentrations, pH, and silt in surface soils; and Cl, P, soil N, and NO3 concentrations in subsurface soils. Interspace soil communities were distinct across the chronosequence at both depths and were strongly influenced by dune development. Interspace communities were primarily associated with soil stresses (i.e., high B and Cl concentrations), which decreased with dune development. The distribution of Gram-positive bacteria, Actinobacteria, and fungi highlighted community differences between and within shrub and interspace soils, while Gram-negative bacteria were common in all soils across the chronosequence. Of the 27 belowground characteristics investigated, 13 separated shrub from interspace communities, and of those, only five emerged as factors influencing community composition within shrub and interspace soils. As dunes develop across this cold desert chronosequence, microbial community composition was not regulated primarily by soil C, but by N and P availability and soil stresses in shrub soils, and exclusively by soil stresses in interspace soils.  相似文献   

16.
The long-term fertilization results in accumulation of phosphorus especially in the top layer of the soils. Inundation of agricultural lands leads to a switch to anaerobic soil condition, causing reduction of iron and leaching of phosphate simultaneously. From the ecological and environmental perspective, high nutrients flux especially phosphorus will increase the possibility of eutrophication in aquatic system. The fern Azolla had a good potential to adsorb phosphorus, it also has distinctive nitrogen-fixing capacity. We conducted a 10-week aquarium experiment to investigate the phosphorus release capacity from two agricultural soils in the Netherlands with different Fe and P concentrations but comparable Fe/P ratios. Besides, the research questions rose to whether Azolla could use the mobilized phosphate released from the soils for growth. We also tried to find an effective indicator to estimate the actually phosphate mobilization from sediment to water layer. Results showed that the soils with high Fe and P concentrations had higher phosphate release rate compared with the soil with low Fe and P concentrations. Pore water Fe: PO43? ratios were valid to identify P release to surface water, when the Fe: PO43? ratios less than 8 mol mol?1 substantial phosphorus mobilization occurred. The conclusions showed that the actual mobilization of phosphate is more important than the phosphorus retained in the sediments for the internal PO43? fluxes. From 10-week experimental results, we found that Azolla can reuse the phosphate retained in soils thus removed the mobilized phosphate in a moderately low surface water nutrient loading.  相似文献   

17.
Phosphate-solubilizing bacteria (PSB) were isolated and characterized from the rhizosphere and bulk soils of Areca catechu plants. A long history of phosphate fertilizer use has elicited a direct effect on the incidence of soil PSB. Their abundance and ability to solubilize insoluble phosphate were significantly greater (P?<?0.0001) in soils with low available phosphorus (P) content than in other soil types. Three efficient PSB strains, namely, ASL12, ASG34, and ADH302, were identified as Acinetobacter pittii, Escherichia coli, and Enterobacter cloacae by characterizing 16S rRNA sequences and biochemical characteristics; they produced gluconic acid at concentrations of 7862.4, 4306.5, and 2663.8 mg L?1, respectively. The highest amount of solubilized P was determined in Pikovskaya (PVK) medium for the bacterial strain ASL12. The secretion of gluconic acid was related to the available P of rhizosphere soils and P solubilization. Under shaded conditions, the application of these three strains significantly improved plant height, shoot and root dry weight, and nutrient uptake of A. catechu seedlings. A further increase in P solubilization was observed by co-inoculating the three strains and also applying tricalcium phosphate (TCP) or aluminum phosphate (AP). A significant (P?<?0.05) correlation was also observed between P-solubilization activity and A. catechu plant growth in pot experiments. Thus, the three strains can be potentially applied as inoculants in tropical and aluminum-rich soils.  相似文献   

18.
Abstract

This study examined the effects of organic manure and chemical fertilizer on soil microflora, soil respiration, number of inorganic phosphate solubilizing bacteria, and organic phosphorus (P) mineralizing bacteria. The inorganic phosphate solubilizing rate, organic P mineralizing rate, and selected enzyme activities in a blue purple paddy soil were also studied. The results showed that organic manure significantly increased the total number of fungi, actinomyces, bacteria, P solubilizing bacteria, organic P mineralizing bacteria, P solubilizing rate and organic P mineralizing rate, soil respiration rate, and selected enzyme activities, whereas chemical fertilizer resulted in a smaller effect, and bacteria were affected more than fungi and actinomyces by organic manure. The enhancement of biological activities caused by organic manure might be due to the introduction of a large amount of living microorganisms and readily‐utilizable carbon source on which microorganisms live. This study showed that the augment of inorganic phosphate solubilizing bacteria and organic P mineralizing bacteria was one of the reasons that organic manure increased the avilability of P in a blue purple paddy soil.  相似文献   

19.
Ericoid mycorrhizal fungi increase the ability of their host plants to colonize soils polluted with toxic metals, although the underlying mechanisms are not clearly understood. Two mycorrhizal strains of Oidiodendron maius isolated from contaminated soil were previously shown to tolerate high concentrations of toxic metals. We investigated further the biological mechanisms that may explain metal tolerance, focussing on the interactions between insoluble metal species and extracellular fungal metabolites. In particular, we demonstrate that fungal strains derived from polluted and unpolluted soils mobilize insoluble inorganic zinc compounds to different extents. Strains from polluted soils showed in fact little ability to solubilize Zn from both ZnO and Zn3(PO4)2, whereas strains from unpolluted soils showed a higher solubilization potential. This different behaviour was confirmed when the solubilization abilities of a wider range of fungal strains (25 isolates) was examined. Induction of organic acids (malate and citrate) by the metal compounds was at least in part responsible for metal solubilization. Our results suggest that ericoid mycorrhizal strains from polluted and unpolluted soils may interact differently with metal compounds. We speculate that this may reflect specific strategies to maintain homeostasis of essential metals under different soil conditions.  相似文献   

20.
Phosphorus availability is a major limiting factor for yield of most crop species. The objective of this study was to compare the solubilization of three sources of phosphorus (P) by different fungal isolates and to determine the possible mechanisms involved in the process. Talaromyces flavus (S73), T. flavus var flavus (TM), Talaromyces helicus (L7b) and T. helicus (N24), Penicillium janthinellum (PJ), and Penicillium purpurogenum (POP), fungal strains isolated from the rhizosphere of crops, are known to be biocontrol agents against pathogenic fungi. The P solubilization efficiency of these fungal strains in liquid media supplemented either with tricalcium phosphate (Ca3(PO4)2; PC), aluminum phosphate (AlPO4; AP), or phosphorite (PP) depended on the source of P and the fungal species. The type and concentration of organic acids produced by each species varied according to the source of available P. In the medium supplemented with PC, the highest proportion was that of gluconic acid, whereas in the media supplemented with the other P sources, the highest proportion was that of citric and valeric acids. This suggests that the release of these organic compounds in the rhizosphere by these microorganisms may be important in the solubilization of various inorganic P compounds. Results also support the hypothesis that the simultaneous production of different organic acids by fungi may enhance their potential for solubilizing insoluble phosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号