首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Salinity is one of the most important agricultural problems in Iran. The effect of different levels of salinity and phosphorus on shoot length, root and shoot fresh and dry weight, nutrient elements (sodium (Na+), potassium (K+), phosphorus (P) and chloride (Cl?), proline and soluble sugar contents of barley were investigated. Two cultivars of barley, Hordeum murinum (wild resistant germplasm) and Hordeum vulgar, variety Afzal were treated in vegetative stage under hydroponics condition in a factorial arrangement based on completely randomized block (CRB) design with four levels of salinity [0, 100, 200 and 300 mM sodium chloride (NaCl)] and three levels of phosphorus (15, 30 and 55 μm L?1) with three replications. By increasing salinity, all the measured parameters, except sodium (Na+) content were reduced. Furthermore, with increased in phosphorus levels from 15 to 55 μm, Na+ content of the plant shoots decreased, but length, fresh and dry weights of roots and shoots and K+, P, Cl?, proline, and soluble sugars content of the shoots increased. The results indicated that accumulation of mineral ions for osmotic adjustment and restriction of Na+ accumulation in shoots were involved in phosphorus enhancement of the salt tolerance of barley. Thus, it seems that in saline soils, where there is no possibility for soil leaching and amending, application of phosphorus fertilizers can lead to a satisfactory growth and production in barely yield.  相似文献   

2.
We investigated the effect of exogenously applied silicon (Si) on the growth and physiological attributes of wheat grown under sodium chloride salinity stress in two independent experiments. In the first experiment, two wheat genotypes SARC-3 (salt tolerant) and Auqab 2000 (salt sensitive) were grown in nutrient solution containing 0 and 100 mM sodium chloride supplemented with 2 mM Si or not. Salinity stress substantially reduced shoot and root dry matter in both genotypes; nonetheless, reduction in shoot dry weight was (2.6-fold) lower in SARC-3 than in Auqab 2000 (5-fold). Application of Si increased shoot and root dry weight and plant water contents in both normal and saline conditions. Shoot Na+ and Na+:K+ ratio also decreased with Si application under stress conditions. In the second experiment, both genotypes were grown in normal nutrient solution with and without 2 mM Si. After 12 days, seedlings were transferred to 1-l plastic pots and 150 mM sodium chloride salinity stress was imposed for 10 days to all pots. Shoot growth, chlorophyll content and membrane permeability were improved by Si application. Improved growth of salt-stressed wheat by Si application was mainly attributed to improved plant water contents in shoots, chlorophyll content, decreased Na+ and increased K+ concentrations in shoots as well as maintained membrane permeability.  相似文献   

3.
A study of the salinity effect on mineral content in rice genotypes differing in salt tolerance was conducted in a factorial Completely Randomized Design experiment. The results indicated that the genotypes developed differently by mutation conventional breeding. NS15 represented as salt-sensitive, Pokkali was included as an internationally salt-tolerant check and Iratom24 was moderately tolerant. The content of Na+, Ca2+, Mg2+ and Cl? followed an increasing pattern in roots and shoots of all the rice genotypes due to increasing salinity levels except Ca2+ and Mg2+ in the root. However, the concentration of K+ showed more or less an increasing pattern in root and a decreasing pattern in shoot. The concentration of Na+ and Ca2+ sharply increased with increasing the salinity levels in both the roots and shoots of NS15. The concentration of K+ sharply decreased in shoot and increased in the root of susceptible genotype NS15 with increasing salinity over 6 dS m?1 salinity levels, where the transformation of K+ from root to shoot was disrupted by Na+. The Cl? content sharply increased with increasing salinity in the root of NS15 as compared to shoot. The effect of different salinity levels on Na+/K+ ratio in the shoots of the selected rice genotypes sharply increased in susceptible genotype NS15 as compared to the other genotypes.  相似文献   

4.
In order to study the effects of salinity and water stress on growth and macronutrients concentration of pomegranate plant leaves, a factorial experiment was conducted based on completely randomized design with 0, 30, and 60 mM of salinity levels of sodium chloride and calcium chloride (1:1) and three irrigation intervals (2, 4, and 6 days) with 3 replications on ‘Rabab’ and ‘Shishegap’ cultivars of pomegranate. The results of the shoot and root analysis indicated that the salinity and drought affected the concentration and distribution of sodium (Na+), potassium (K+), chloride (Cl?), calcium (Ca2+), magnesium (Mg2+), and phosphorus (P+) in pomegranate leaves. Mineral concentrations of sodium (Na+), chloride (Cl-), potassium (K+), in shoots and roots were increased with increasing salinity. Drought treatments increased the concentration of Cl?, Na+, and Mg2+ in the shoot. Both cultivars showed significant differences in the concentrations of elements, however the most accumulation of Na+ and Cl? was observed in ‘Rabab,’ while the ‘Shishegap’ cultivar had the most absorption of K+. ‘Shishegap’ cultivar showed higher tolerance to salinity than ‘Rabab’ through maintaining the vegetative growth and lower chloride transport to the shoot, and improvement of potassium transport to shoot.  相似文献   

5.
Bermudagrass (Cynodon dactylon) is a salinity-tolerant turfgrass that has good use potential in the saline-alkali lands of warm regions. However, the systematic Na+ and K+ regulation mechanisms under salinity stress remain unclear at the whole plant level. Two bermudagrass cultivars differing in salinity tolerance were exposed to 0, 50, 100, 200, or 300 mM NaCl in a hydroponic system. Growth, absorption, transportation, and secretion of Na+ and K+, and gas exchange parameters were determined in both cultivars. K+ contents were decreased and Na+ contents and Na+/K+ ratios were increased in both bermudagrasses with increased salinity; however, lower Na+ content and Na+/K+ ratio and more stable K+ content were found in the leaves of the salinity-tolerant ‘Yangjiang’ than the salinity-sensitive ‘Nanjing’. Higher Na+ contents in root cortical cells were found than in the stele cells of ‘Yangjiang’, but the opposite was observed in ‘Nanjing’. Lower Na+ contents and higher K+ contents were found in vessels for ‘Yangjiang’ than for ‘Nanjing’. Salinity stress increased the selective transport of K+ over Na+ from roots to leaves and the Na+-selective secretion via salt glands, which were stronger in ‘Yangjiang’ than ‘Nanjing’. Net photosynthetic rate and stomatal conductance decreased in the two bermudagrasses with increased salinity; however, they were more stable in ‘Yangjiang’. The results suggested that bermudagrass could reduce Na+ accumulation and maintain K+ stability in leaves under salinity stress by restricting Na+ into vessels in roots, selectively transporting K+ over Na+ from roots to leaves, selectively secreting Na+ via leaf salt glands, and maintaining suitable stomatal conductance.  相似文献   

6.
Osmotic and specific ion effects are the most frequently mentioned mechanisms by which saline substance reduces plant growth. However, the relative importance of osmotic and specific ion effect on plant growth seems to vary depending on the salt tolerance of the plant under study. Tall wheatgrass (TW), perennial ryegrass (PR), African millet (AM) and Rhodesgrass (Rh) were grown in nutrient solution with sodium chloride (NaCl), sodium sulfate (Na2SO4), potassium chloride (KCl), and potassium sulfate (K2SO4) salinity up to electrical conductivity (EC) 27 dS m?1. Growth of all plant species decreased significantly at high level (EC 27 dS m?1) of NaCl and Na2SO4 salts. However, the growth of none of the plant species was affected significantly by KCl and K2SO4 at any level. Even leaf and shoot fresh weights were enhanced by K2SO4 in all plant species, except AM. Chlorine (Cl) was taken up in similar quantities from KCl and NaCl solutions and the content of the respective cations was similar to each other. Further sensitivity to sulfate and chloride was equal when sodium concentrations in shoots were equal, regardless of the anion composition of the media. The sodium (Na) concentration of the leaves of the plant species increased with increased NaCl and Na2SO4 levels in the nutrient solutions. The leaf Na concentration of TW was lower than that of the other plant species. However, the root Na concentration of TW was higher than that of the other plant species. Increased NaCl and Na2SO4 concentrations had a marked effect on leaf water potential of all plant species, and the TW showed higher leaf water potential at all levels of salts. Tall wheatgrass adjusted osmotically by accumulating electrolytes from the nutrient solution and by accumulation of glycinebetaine. Sodium was generally found more injurious than Chloride in all the four forage species. Salt tolerance could be ascribed as greater exclusion of Na ion.  相似文献   

7.
Abstract

Silicon (Si) is the second most abundant element in soil and effectively counteracts the effects of various abiotic stresses, such as drought, heavy metal toxicity and salinity, on plants. In the present study the ameliorating effects of Si nutrition supplied as 2?mmol?L?1 sodium silicate were investigated on hydroponically grown canola (Brassica napus L.) plants under salinity stress (i.e. 150?mmol?L?1 sodium chloride). Salinity decreased plant growth parameters such as tissue fresh and dry weights. These decreases were accompanied by increased lignin contents, Na+ ion accumulation, increased lipid peroxidation and decreased chlorophyll contents in plants. Silicon nutrition, however, enhanced plant growth parameters and led to the prevention of lignin and the Na+ accumulation in shoots, reduced levels of lipid peroxidation in the roots and higher levels of chlorophyll. As a result of salinity, catalase activity in the whole plant and both soluble and cell wall peroxidase activities in the shoots decreased. Silicon nutrition, however, increased the reactive oxygen species scavenging capacity of salt-stressed plants through increased catalase and cell wall peroxidase activities. Thus, silicon nutrition ameliorated the deleterious effects of salinity on the growth of canola plants through lower tissue Na+ contents, maintaining the membrane integrity of root cells as evidenced by reduced lipid peroxidation, increased reactive oxygen species scavenging capacity and reduced lignification.  相似文献   

8.
Abstract

Effects of increasing salt concentrations 0, 180, 360 mol im3 sodium chloride (NaCl), on growth, succulence, mineral composition, and glycinebetaine content in Haloxylon recurvum was investigated. Fresh and dry weight of plants increased with an increase in salinity. Succulence of shoots increased at low salinity and decreased at high salinity. Root and shoot Ca+, Mg+, and K+content decreased with increasing salinity while both Na+ and Cl content increased, reaching 4,900 and 5,300 mmol kg‐1 dry weight, respectively. Glycinebetaine (mol m‐3 tissue water) significantly increased in shoots at 360 mol m‐3 NaCl, but did not differ significantly in roots treated with from 0 to 360 mol m‐3 NaCl. Haloxylon recurvum is a highly salt tolerant stem succulent plant which accumulate a high quantity of salt, which makes it a good candidate to use for phytoremediation in highly saline areas of the sub‐tropics.  相似文献   

9.
Strawberry is listed as the most salt sensitive fruit crop in comprehensive salt tolerance data bases. Recently, concerns have arisen regarding declining quality of irrigation waters available to coastal strawberry growers in southern and central California. Over time, the waters have become more saline, with increasing sodium (Na+) and chloride (Cl?). Due to the apparent extreme Cl? sensitivity of strawberry, the rising Cl? levels in the irrigation waters are of particular importance. In order to establish the specific ion causing yield reduction in strawberry, cultivars ‘Ventana’ and ‘Camarosa’ were grown in twenty-four outdoor sand tanks at the ARS-USDA U. S. Salinity Laboratory in Riverside, CA and irrigated with waters containing a complete nutrient solution plus Cl? salts of calcium (Ca2+), magnesium (Mg2+), Na+, and potassium (K+). Six salinity treatments were imposed with electric conductivities (EC) = 0.835, 1.05, 1.28, 1.48, 1.71, and 2.24 dS m?1, and were replicated four times. Fresh and dry weights of ‘Camarosa’ shoots and roots were significantly higher than those of ‘Ventana’ at all salinity levels. Marketable yield of ‘Camarosa’ fruit decreased from 770 to 360 g/plant as salinity increased and was lower at all salinity levels than the yield from the less vigorous ‘Ventana’ plants. ‘Ventana’ berry yield decreased from 925 to 705 g/plant as salinity increased from 0.835 to 2.24 dS m?1. Relative yield of ‘Camarosa’ decreased 43% for each unit increase in salinity once irrigation water salinity exceeded 0.80 dS m?1. Relative ‘Ventana’ yield was unaffected by irrigation water salinity up to 1.71 dS m?1, and thereafter, for each additional unit increase in salinity, yield was reduced 61%. Both cultivars appeared to possess an exclusion mechanism whereby Na+ was sequestered in the roots, and Na+ transport to blade, petiole and fruit tissues was limited. Chloride content of the plant organs increased as salinity increased to 2.24 dS m?1 and substrate Cl increased from 0.1 to13 mmolcL?1. Chloride was highest in the roots, followed by the leaves, petioles and fruit. Based on plant ion relations and relative fruit yield, we determined that, over the range of salinity levels studied, specific ion toxicity exists with respect to Cl?, rather than to Na+ ions, and, further, that the salt tolerance threshold is lower for ‘Camarosa’ than for ‘Ventana’.  相似文献   

10.
The effect of varying hydrogel (0, 0.5, and 1.0% w/w) supply on some agro-physiological properties, such as dry matter, nutrient contents, chlorophyll contents, proline content, and ionic balance of bean plants in different salt sources and stress due to doses were investigated. Plants were treated with eight salt sources [sodium chloride (NaCl), sodium sulfate (Na2SO4), calcium chloride (CaCl2), calcium sulfate (CaSO4), potassium chloride (KCl), potassium sulfate (K2SO4), magnesium chloride (MgCl2), magnesium sulfate (MgSO4)] and four concentrations (0, 30, 60, and 120 mM doses) for 60 days in a growth media. Salt type, doses, and hydrogel (HG) affected the soil electrical conductivity. Soil salinity affected the parameters considered, and changed the nutrient balance of plants. High salt concentration caused substantial reduction in plant growth. Different salt concentrations negatively affected plant dry weight. The highest decrease of plant root dry weight was obtained with NaCl application followed by Na2SO4, CaCl2, CaSO4, MgCl2, MgSO4, KCl, and K2SO4, and similarly NaCl, Na2SO4, CaCl2, CaSO4, KCl, K2SO4, MgCl2, and MgSO4 in root dry weight. Total chlorophyll and nitrate contents of plants decreased with increasing salt doses, and the lowest value was obtained for NaCl application. Proline contents of plants were increased with increasing salt doses, and the highest value was obtained with the NaCl application. The effects of salt concentrations in nitrogen (N), potassium (K), and phosphorus (P) content of plants were significant. The presence of salt in the growth medium induced an important decrease the macro nutrient of the root and shoot part of plant such as N, P, K, calcium (Ca), and magnesium (Mg) content, but the N and P content of root and shoot part of the plant were increased with increasing of the HG application doses. The highest N and P increases were obtained with the 1.0 HG application for all salt types for both the root and shoots of plants. The HG added to saline soil significantly improved the variables affected by high salinity and also increased plant N and P, reduced soil electricity conductivity, nitrate, proline, and electrolyte leakage of plants, enhanced plant root and shoot dry weight by allowing nutrients and water to release to the plant as needed. The results suggested that HG has great potential for use in alleviating salinity stress on plant growth and growth parameters in saline soils of arid and semi-arid areas. This HG appears to be highly effective for use as a soil conditioner in vegetable growing, to improve crop tolerance and growth in saline conditions. It is intended to confirm the results of these studies by field trials.  相似文献   

11.
Infection with Neotyphodium spp. endophytes increases resistance to drought stress and soil mineral imbalances in tall fescue (Festuca arundinacea Schreb. = Lolium arundinaceum (Schreb.) S. J. Darbysh.) and meadow fescue (Festuca pratensis Huds. = Lolium pratense (Huds.) Darbysh.). We hypothesized that resistance of these grasses to salinity stress may also be attributed to endophyte infection. Two tall fescue genotypes, Fa75 and Fa83, and one meadow fescue genotype, Fp60, infected (E+) with their endophytic fungi, Neotyphodium coenophialum (Glenn, Bacon and Hanlin) and N. uncinatum (Glenn, Bacon and Hanlin), respectively, and their noninfected counterparts (E–) were cultured in nutrient solution at three salinity levels of 0, 85, and 170 mM NaCl. Except for genotype Fa75, E+ plants exhibited higher leaf survival rates than E– clones at a high salinity level (170 mM). Root dry matter was higher in E+ than in E– plants, but shoot dry matter was not affected by endophyte infection. This resulted in a lower shoot‐to‐root ratio in E+ plants (1.63) compared with E– plants (2.40). Sodium (Na+) and chloride (Cl) concentrations were greater in roots of E– than in E+ clones. In shoots, Na+ and Cl concentrations were not affected by the endophyte. In contrast, E+ plants accumulated more potassium (K+), which resulted in a greater K+ : Na+ ratio in shoots of E+ than in those of E– plants. Our results show that endophyte infection reduced Na+ and Cl concentrations in tall fescue and meadow fescue roots but increased K+ concentrations in the shoots. Based on these results, we conclude that endophyte‐infected grasses may thrive better in salinity‐stress environments.  相似文献   

12.
The effects of nitrogen (N) forms (ammonium- or nitrate-N) on plant growth under salinity stress [150 mmol sodium chloride (NaCl)] were studied in hydroponically cultured cotton. Net fluxes of sodium (Na+), ammonium (NH4+), and nitrate (NO3?) were also determined using the Non-Invasive Micro-Test Technology. Plant growth was impaired under salinity stress, but nitrate-fed plants were less sensitive to salinity than ammonium-fed plants due mainly to superior root growth by the nitrate-fed plants. The root length, root surface area, root volume, and root viability of seedlings treated with NO3-N were greater than those treated with NH4-N with or without salinity stress. Under salinity stress, the Na+ content of seedlings treated with NO3-N was lower than that in seedlings treated with NH4-N owing to higher root Na+ efflux. A lower net NO3? efflux was observed in roots of nitrate-fed plants relative to the net NH4+ efflux from roots of ammonium-fed plants. This resulted in much more nitrogen accumulation in different tissues, especially in leaves, thereby enhancing photosynthesis in nitrate-fed plants under salinity stress. Nitrate-N is superior to ammonium-N based on nitrogen uptake and cotton growth under salinity stress.  相似文献   

13.
We studied the growth and ionic composition of five wheat genotypes (Inqlab-91, Uqab 2002, SARC-1, SARC-3, and SARC-5) grown under salinity stress to applied silicon. Plants were grown with three levels of salinity [0, 60, and 120 mM sodium chloride (NaCl)] in the presence of 0, 2, and 4 mM Si in nutrient solution for 40 days. Salinity stress significantly decreased shoot and root biomass in plants with varying degrees. Genotype SARC-3 exhibited higher salt tolerance than other genotypes. Silicon (Si) application significantly (P < 0.05) increased plant biomass at both control as well as under saline conditions. Genotypes differed significantly for their response to applied Si in terms of biomass production. Silicon application significantly (P < 0.01) increased potassium (K+) concentration in shoots. Enhanced salinity tolerance in wheat by Si application was attributed to increased K+ uptake thereby increasing K+/sodium (Na+) ratio and lower Na+ translocation towards shoot.  相似文献   

14.
15.
To investigate the influence of potassium (K+) on the salinity tolerance of Chinese cabbage (Brassica pekinensis Rupr.) seedlings, the plants were cultured at three K+ levels (0, 5, or 10?mM), under normal (0?mM NaCl) and high-salt (100?mM NaCl) conditions. The results indicated that the dry weight of Chinese cabbage increased with the application of K+ under salt stress. Addition of K+ increased K+ concentrations and suppressed sodium (Na+) concentration, which eventually increased the K+/Na+ ratios in roots or shoots. Application of K+ enhanced the uptake of K+ and suppressed the uptake of Na+. Moreover, the ratios of shoot-K+/root-K+ increased considerably, but the ratios of shoot-Na+/root-Na+ decreased in response to K+ application. It was concluded that the application of K+ could enhance the salt stress tolerance in Chinese cabbage because more K+ than Na+ was absorbed and translocated from roots to shoots.  相似文献   

16.
Based on the literature, under-utilized hulled wheats could be tolerant to some harsh environmental conditions. The effect of salt stress on chlorophyll content, leaf area, dry weight, and ion concentrations in eight genotypes of tetraploid wheat (Triticum turgidum) using a three-replicate completely random design indoor experiment was studied. These genotypes included six hulled wheat (HW), T. turgidum subspp. Dicoccum, and two free-threshing wheat (FTW), T. turgidum subspp. durum. Salt stress was induced by adding sodium chloride (NaCl) to a hydroponic medium to 40, 80, and 120 mM, in addition to control. Salinity reduced leaf content of chlorophyll a (chl-a) at 120 mM but had not significant effect on chlorophyll b (chl-b) content. Salt stress decreased plant leaf area by nearly 63%. Plant top dry weight declined by 52% with increasing salinity to 120 mM level. Plant top calcium (Ca2+) content was not affected, whereas plant top sodium (Na+) concentration increased and potassium (K+) and magnesium (Mg+) concentration decreased with increasing salinity, averaged over genotypes. No significant interaction of genotype × salinity was detected for traits studied in this experiment. When contrasted as two groups of genotypes, i.e., HW vs. FTW, the former group suffered more severe decreases in terms of chl-a, chl-b, leaf area, dry weight, and Mg2+ concentration and a more pronounced increase in Na+ compared to the FTW. Overall, no evidence of salt tolerance was found for hulled tetraploid wheats of central Iran.  相似文献   

17.
This study assessed the relationships between external K+ supply and K+ : Na+ ratios associated with Na+ toxicity in Jatropha curcas. Plants were exposed to increasing external K+ concentrations (6.25, 12.5, 25, 37.5, and 50 mM), combined with 50 mM NaCl in a nutrient solution. Photosynthesis progressively increased as the external K+ : Na+ ratios increased up to 0.75. The increase of photosynthesis and plant dry matter correlated positively with K+ : Na+ in xylem and leaves. The transport rates of K+ and Na+ from roots to xylem and leaves were inversely correlated. These ions presented an antagonistic pattern of accumulation in all organs. Maximum rates of photosynthesis and plant growth occurred with leaf K+ : Na+ ratios that ranged from 1.0 to 2.0, indicating that this parameter in leaves might be a good indicator for a favorable K+ homeostasis under salinity conditions. The higher K+ affinity and selectivity compared with Na+ in all organs associated with higher xylem flux and transport to shoots are essential for maintaining adequate K+ : Na+ ratios at the whole‐plant level. These characteristics, combined with adequate K+ concentrations, allow J. curcas to sustain high rates of photosynthesis and growth even under toxic NaCl levels.  相似文献   

18.
ABSTRACT

Effects of three supplemental calcium (Ca++; 2.5, 5.0, and 10 mole m?3) concentrations on ion accumulation, transport, selectivity, and plant growth of salt-sensitive species, Brassica rapa ‘Sani’ in saline medium were investigated. Supplemental Ca++ in the presence of 125 mol m?3 sodium chloride (NaCl) did not improve the dry weight and leaf area indicating no role played by Ca++ in the alleviation of salinity induced growth inhibition. However, calcium chloride (CaCl2) did significantly affect sodium (Na+), potassium (K+), and Ca++ contents of roots and shoots. The ion contents of shoots were significantly greater than those of roots per g dry weight, indicating ion transportation to shoots is greater than ion accumulation in roots. Use of CaCl2 in 125 mol m?3 NaCl reduced the Na+ content but increased K+ and Ca++ contents in shoots. Sodium contents in shoots differed among the supplemental Ca++ treatments indicating the role of CaCl2 in Na+ ions transportation. Calcium content in shoots declined significantly in the control treatment (0 CaCl2) but increased significantly in 10 mol m?3 CaCl2. The root also showed the effects of Ca++ on the reduction of Na+ content and the increase of K+ and Ca++ content. Unexpectedly, 5 mol m?3 CaCl2 induced the highest Na+ content in roots at 16 days after treatment. Supplemental CaCl2 application influenced the K+ or Ca++ selectivity over Na+ in two ways, ion accumulation at roots and transport to shoots. However, high CaCl2 treatments allowed greater Ca++ selectivity over Na+ than low CaCl2. Likewise, high supplemental CaCl2 showed higher K+ selectivity over Na+ than low CaCl2. A marked increase in K+ versus Na+ selectivity for the transport process occurred at 10 mol m?3 CaCl2 treatments. The roots and shoots exhibited higher K+/Na+ and Ca++/Na+ ratios in high CaCl2 treatment than in low. The results are discussed in context to supplemental Ca++ concentrations, ions accumulation, transportation and selectivity of salt sensitive Brassica rapa cultivar.  相似文献   

19.
An experiment with factorial arrangement of treatments on a randomized complete block (RCB) design basis with three replications was conducted in a greenhouse during Spring 2010 to investigate changes in sodium ion (Na+), potassium ion (K+), Na+/K+ and to determine proline, protein content, and superoxide dismutase (SOD) of four wheat and four barley cultivars. Three salt levels {1, control (no salt), 7, and 13 dS m?1 [2.5 and 5 g salt [sodium chloride (NaCl) and sodium sulfate (Na2SO4) in 1:1 ratio] per kg of soil, respectively]} were used in this investigation. Salt stress treatments were applied 4 weeks after planting (at 2 leaf stage). Leaf samples were taken four weeks after imposition of salt treatment. The results showed that salinity caused an increased in proline and protein content, and SOD in all wheat and barley cultivars. The highest proline and protein content of barley and wheat cultivars at all salinity levels were observed in ‘Nimrooz’ and ‘Bam’ cultivars, respectively. At all salinity levels, wheat and barley cultivars ‘Kavir’ and ‘Nimrooz’, respectively, had the lowest Na+ content. Barley cultivar ‘Kavir’ and wheat cultivar ‘Bam’ had higher K+ and K+:Na+ ratios. This might be related to salt tolerance in these two cultivars. Wheat and barley cultivars showed differences with regard to proline, protein, and SOD content, Na+, K+, and K+:Na+ ratio, indicating existence of genetic diversity among the cultivars. These findings indicated that higher K+, K+:Na+ ratio, proline, protein, and SOD content could be the key factors, which offer advantage to barley over wheat for superior performance under saline conditions.  相似文献   

20.
《Journal of plant nutrition》2013,36(8):1365-1374
ABSTRACT

Salt tolerance of Arthrocnemum macrostachyum (Moric.) C. Koch (Chenopodiaceae), a stem-succulent halophyte most commonly found in the intertidal regions of the provinces of Sind and Balochistan, Pakistan, was investigated. Plants were grown for 125 d at six sodium chloride (NaCl) concentrations from 0 to 1000 mM to determine the effects of salinity on ion accumulation, plant water status, and biomass. Shoot biomass was greatest at 200 to 400 mM NaCl, but it was inhibited at salinities of 600 mM NaCl or higher. Tissue water content (g g?1dry mass) of shoots under 200 to 600 mM NaCl treatments was higher than under the control nutrient solution, equal to the control at 800 mM NaCl, but significantly lower at 1000 mM NaCl than under all other treatments, indicating an increase in shoot succulence at salinity levels up to that of seawater. Ash content increased with added salt, but was about 60% of plant dry mass under all salinity treatments. The Na+ and Cl? concentrations of shoots were significantly higher under 1000 mM NaCl than under the control treatment. These results indicate that A. macrostachyum is salt tolerant and capable of accumulating large quantities of Na+ and Cl? when treated with from 200 to 1000mM NaCl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号