首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
K. SMITH  D. WATTS  T. WAY  H. TORBERT  S. PRIOR 《土壤圈》2012,22(5):604-615
Tillage and fertilization practices used in row crop production are thought to alter greenhouse gas emissions from soil.This study was conducted to determine the impact of fertilizer sources,land management practices,and fertilizer placement methods on greenhouse gas(CO2,CH4,and N2O)emissions.A new prototype implement developed for applying poultry litter in subsurface bands in the soil was used in this study.The field site was located at the Sand Mountain Research and Extension Center in the Appalachian Plateau region of northeast Alabama,USA,on a Hartsells fine sandy loam(fine-loamy,siliceous,subactive,thermic Typic Hapludults).Measurements of carbon dioxide(CO2),methane(CH4),and nitrous oxide(N2O)emissions followed GRACEnet (greenhouse gas reduction through agricultural carbon enhancement network)protocols to assess the effects of different tillage(conventional vs.no-tillage)and fertilizer placement(subsurface banding vs.surface application)practices in a corn(Zea mays L.)cropping system.Fertilizer sources were urea-ammonium nitrate(UAN),ammonium nitrate(AN)and poultry litter(M)applied at a rate of 170 kg ha-1 of available N.Banding of fertilizer resulted in the greatest concentration of gaseous loss(CO2 and N2O)compared to surface applications of fertilizer.Fertilizer banding increased CO2 and N2O loss on various sampling days throughout the season with poultry litter banding emitting more gas than UAN banding.Conventional tillage practices also resulted in a higher concentration of CO2 and N2O loss when evaluating tillage by sampling day.Throughout the course of this study,CH4 flux was not affected by tillage,fertilizer source,or fertilizer placement method.These results suggest that poultry litter use and banding practices have the potential to increase greenhouse gas emissions.  相似文献   

2.
Sustainable agricultural practices have been steadily increasing in the last couple of decades. These management practices frequently involve cover crops, less or no-tillage, and organic fertilization. In this study, we evaluated the effects of cropping systems,tillage and no-tillage, and the application of poultry litter(PL) on selected soil physicochemical properties and soil test nutrients. Soil samples were collected from the topmost surface(0–5 cm) and subsurface(5–10 cm) layers. The general effect trend was PL application no-tillage cover crop cropping type. There were more statistically significant(P ≤ 0.05) correlations between the 18 soil attributes at the topmost surface than at the subsurface. This could be due to the accumulation of external C inputs and nutrients by crop residues and PL application as well as the retaining effects of no-tillage on less mobile nutrient components. Because of their high mobility and volatile nature, total nitrogen(N), ammonia-N(NH_4~+-N), and nitrate-N(NO_3~--N) levels varied greatly(high standard deviations), showing no consistent patterns among the treatments. Compared to the soybean cropping system, corn, especially with the wheat cover crop, contributed more to the total carbon(C) and sulfur(S) in the topmost surface soils(0–5 cm). Poultry litter application greatly increased pH, cation exchange capacity(CEC), base saturation, magnesium(Mg), phosphorus(P), calcium(Ca),sodium(Na), potassium(K), manganese(Mn), copper(Cu), and zinc(Zn) in both soil layers. Contrast comparisons revealed that PL application had more of an effect on these soil chemical properties than no-tillage and cropping systems. These results will shed light on developing better nutrient management practices while reducing their runoff potentials.  相似文献   

3.
Changes in soil organic matter (SOM) can affect food security,soil and water conservation,and climate change.However,the drivers of changes in SOM in paddy soils of China are not fully understood because the effects of agricultural management and environmental factors are studied separately.Soil,climate,terrain,and agricultural management data from 6 counties selected based on representative soil types and cropping systems in China were used in correlation analysis,analysis of variance,and cforest modeling to analyze the drivers of changes in SOM in paddy soils in the Middle and Lower Yangtze River Plain from 1980 to 2011.The aims of this study were to identify the main factors driving the changes in SOM and to quantitatively evaluate their individual impacts.Results showed that the paddy SOM stock in the study area increased by 12.5% at an average rate of 0.023 kg m-2 year-1 over the 31-year study period.As a result of long-term rice planting,agricultural management practices had a greater influence than soil properties,climate,and terrain.Among the major drivers,straw incorporation,the most influential driver,together with fertilization and tillage practices,significantly increased the accumulation of SOM,while an increase in temperature significantly influenced SOM decomposition.Therefore,to confront the challenge of rising temperatures,it is important to strengthen the positive effects of agricultural management.Rational fertilizer use for stabilizing grain production and crop straw incorporation are promising measures for potential carbon sequestration in this region.  相似文献   

4.
不同土壤管理措施下基于水蚀过程的含沙量变异及其驱动   总被引:2,自引:0,他引:2  
In order to prevent soil erosion in southern China, a study was performed to determine the drivers of sediment concentration variation using simulated rainfall and four soil management systems under field condition. Four soil management systems, i. e., forest and grass coverage (FG), forest coverage with disturbed soil surface (FD), contour tillage (CT) and downslope tillage (DT), were exposed to two rainfall intensities (40 and 54 mm h-1) using a portable rainfall simulator. The drivers of sediment concentration variation were determined by the variations of runoff rate and sediment concentration as well as their relationships. The effects of the four soil management systems in preventing water and soil losses were compared using runoff rates and sediment concentrations at steady state. At runoff initial stage, sediment concentration variation was mainly driven by rainfall and management. The degree of sediment concentration variation driven by flow varied with different soil management systems. Three best relationships between runoff rate and sediment concentration were identified, i. e., reciprocal (CT), quadratic (FG and FD) and exponential (DT). At steady state, runoff rates of the four soil management systems varied slightly, whereas their sediment concentrations varied greatly. FG and CT were recommended as the best soil management systems for preventing water and soil losses.  相似文献   

5.
Nitrification inhibitors can effectively decrease nitrification rates and nitrous oxide(N2O)emission while increasing crop yield under certain conditions.However,there is no information available on the effects of nitrification inhibitors and tillage practices on N2O emissions from maize cropping in Iran.To study how tillage practices and nitrapyrin(a nitrification inhibitor)affect N2O emission,a split factorial experiment using a completely randomized block design with three replications was carried out in Northeast Iran,which has a cold semiarid climate.Two main plots were created with conventional tillage and minimum tillage levels,and two nitrogen(N)fertilizer(urea)management systems(with and without nitrapyrin application)were created as subplots.Tillage level did not have any significant effect on soil ammonium(NH4+)and nitrate(NO3-)concentrations,cumulative amount and yield-scaled N2O emission,and aboveground biomass of maize,whereas nitrapyrin application showed significant effect.Nitrapyrin application significantly reduced the cumulative amount of N2O emission by 41%and 32%in conventional tillage and minimum tillage practices,respectively.A reduction in soil NO3-concentration by nitrapyrin was also observed.The average yield-scaled N2O emission was 13.6 g N2O-N kg-1N uptake in both tillage systems without nitrapyrin application and was significantly reduced to 7.9 and 8.2 g N2O-N kg-1N uptake upon the application of nitrapyrin in minimum tillage and conventional tillage practices,respectively.Additionally,nitrapyrin application increased maize biomass yield by 4%and 13%in the minimum tillage and conventional tillage systems,respectively.Our results indicate that nitrapyrin has a potential role in reducing N2O emission from agricultural systems where urea fertilizers are broadcasted,which is common in Iran due to the practice of traditional farming.  相似文献   

6.
长期施肥和耕作管理对华北平原土壤肥力的影响   总被引:16,自引:0,他引:16  
In the North China Plain, fertilizer management and tillage practices have been changing rapidly during the last three decades; however, the influences of long-term fertilizer applications and tillage systems on fertility of salt-affected soils have not been well understood under a winter wheat (Triticum aestivum L.)-maize (Zea mays L.) annual double cropping system. A field experiment was established in 1985 on a Cambosol at the Quzhou Experimental Station, China Agricultural University, to investigate the responses of soil fertility to fertilizer and tillage practices. The experiment was established as an orthogonal design with nine treatments of different tillage methods and/or fertilizer applications. In October 2001, composite soil samples were collected from the 0–20 and 20–40 cm layers and analyzed for soil fertility indices. The results showed that after 17 years of nitrogen (N) and phosphorous (P) fertilizer and straw applications, soil organic matter (SOM) in the top layer was increased significantly from 7.00 to 9.30–13.14 g kg-1 in the 0–20 cm layer and from 4.00 to 5.48–7.75 g kg-1 in the 20–40 cm layer. Soil total N (TN) was increased significantly from 0.37 and 0.22 to 0.79–1.11 and 0.61–0.73 g N kg-1 in the 0–20 and 20–40 cm layers, respectively, with N fertilizer application; however, there was no apparent effect of straw application on TN content. The amounts of soil total P (TP) and rapidly available P (RP) were increased significantly from 0.60 to 0.67–1.31 g kg-1 in the 0–20 cm layer and from 0.52 to 0.60–0.73 g kg-1 in the 20–40 cm layer with P fertilizer application, but were decreased with combined N and P fertilizer applications. The applications of N and P fertilizers significantly increased the crop yields, but decreased the rapidly available potassium (RK) in the soil. Straw return could only meet part of the crop potassium requirements. Our results also suggested that though some soil fertility parameters were maintained or enhanced under the long-term fertilizer and straw applications, careful soil quality monitoring was necessary as other nutrients could be depleted. Spreading straw on soil surface before tillage and leaving straw at soil surface without tillage were two advantageous practices to increase SOM accumulation in the surface layer. Plowing the soil broke aggregates and increased aeration of the soil, which led to enhanced organic matter mineralization.  相似文献   

7.
X. Y. WANG  Y. ZHAO  R. HORN 《土壤圈》2010,20(1):43-54
Depth distribution of soil wettability and its correlations with vegetation type, soil texture, and pH were investigated under various land use (cropland, grassland, and forestland) and soil management systems. Wettability was evaluated by contact angle with the Wilhelmy plate method. Water repellency was likely to be present under permanently vegetated land, but less common on tilled agricultural land. It was mostly prevalent in the topsoil, especially in coarse-textured soils, and decreased in the subsoil. However, the depth dependency of wettability could not be derived from the investigated wide range of soils. The correlation and multiple regression analysis revealed that the wettability in repellent soils was affected more by soil organic carbon (SOC) than by soil texture and pH, whereas in wettable soils, soil texture and pH were more effective than SOC. Furthermore, the quality of SOC seemed to be more important in determining wettability than its quantity, as proofed by stronger hydrophobicity under coniferous than under deciduous forestland. Soil management had a minor effect on wettability if conventional and conservation tillage or different grazing intensities were considered.  相似文献   

8.
An incubation experiment was conducted to investigate the microbial biomass associated Cu in four contrasting soils to which an alkaline stabilised sewage sludge cake was applied. The organisms of sludge-amended and control soils were killed using γ-irradiation technique, and the aqueous and acid-extractable Cu concentrations were determined. Addition of the sludge product increased significantly the concentration of both the aqueous and dilute HOAc-extractable Cu in all the irradiated soils compared to the non-sterilised sludge/soil mixtures, but the increase was more pronounced in the dilute acid-extractable Cu, indicating thatthe Cu rendered extractable in water and dilute acetic acid by γ-irradiation existed in the both soil liquidand solid phases. The additional increase in extractable Cu following the biocidal treatment is likely to bedue to release of Cu from the same fraction of soil microbial biomass.  相似文献   

9.
In order to optimise land use systems, to prevent erosion-induced degradation and to restore the degraded red soils in subtropical China, five cropping systems and four agroforestry systems were conducted in red soils with a slope of 7° from 1993 to 1995. The results showed that erosion risk period occurred from April to June, and the annual runoff and the losses of soil and nutrients with sediment were alarming for two conventional farming systems, whereas they were negligible for the farming systems with ridge tillage. Enrichment ratios of the lost soils from erosion were more than 1.20 for all nutrients with much higher values for hydrolysable N and organic matter. Compared with the control, the alley cropping systems also distinctly decreased runoff by 30% or 50%. However, the coverage of soil surface varied with alley cropping systems for the competition of nutrients and soil water, which made a profound difference in runoff. The cropping systems of sweet potato intercropped with soybean, the alley cropping systems and the measures of mulching and ridge tillage were the alternatives for red soil reclamation so as to prevent erosion-induced degradation.  相似文献   

10.
Amino compounds(ACs),i.e.,amino acids and amino sugars,are the major forms of organic nitrogen(N)in animal manure and soil.To increase our understanding on the effect of long-term poultry litter(PL)application on soil AC pools and turnover,in this study,we determined the contents of 21 ACs in 23 PL samples,15 soil samples collected from 0–20,20–40,and 40–60 cm layers of five pasture plots with 0,5,10,15 and 20 years of PL applications,and 5 grass shoot samples grown on these pasture fields.The contents of 21 ACs were simultaneously determined by methanesulfonic acid hydrolysis/extraction and anion chromatography-pulsed amperometry.PL application increased soil total and individual AC contents with a distribution pattern similar to that of AC in PL.The highest AC-N concentrations were observed in the soils with 10-or 15-year PL applications,inconsistent with the order of annual application rates or cumulative applied PL amounts.Application of PL increased the AC contents in grass shoots whereby the highest increase of most ACs was with the shoots from the fields that received PL for 5 years.These observations suggested that both freshly applied and residual PL had contributions to the soil AC-N,and that PL application also accelerated AC-N transformation in soil.  相似文献   

11.
The influence of tillage and nutrient amendment management on nutrient cycling processes in soil have substantial implications for environmentally sound practices regarding their use. The effects of 2 years of tillage and soil amendment regimes on the concentrations of soil organic matter variables (carbon (C), nitrogen (N) and phosphorus (P)) and C and N mineralization and P release were determined for a Dothan fine-sandy loam soil in southeastern Alabama. Tillage systems investigated were strip (or conservation) and conventional tillage with various soil nutrient amendments that included no amendment, mineral fertilizer, and poultry waste (broiler litter). Surface soil (0–10 cm depth increment) organic matter variables were determined for all tillage/amendment combinations. Carbon and N mineralization and P release were determined on surface soils for each field treatment combination in a long-term laboratory incubation. Soil organic P concentration was 60% greater in soils that had been conventionally tilled, as compared with strip-tilled, both prior to and following laboratory incubation. Carbon and N mineralization results reflected the effects of prior tillage amendment regime, where soils maintained under strip-till/broiler litter mineralized the greatest amount of C and N. Determination of relative N mineralization indicated that strip tillage had promoted a more readily mineralizable pool of N (6.1%) than with conventional till (4.2%); broiler litter amendments had a larger labile N fraction (6.7%) than was found in soils receiving either mineral fertilizer (4.1%) or no amendment (4.7%). Tillage also affected P release measured during the incubation study, where approximately 20% more inorganic P was released from strip-tilled soils than from those maintained under conventional tillage. Greater P release was observed for amended soils as compared with soils where no amendment was applied. Results from this study indicate that relatively short-term tillage and amendment management can significantly impact C, N, and P transformations and transfers within soil organic matter of a southeastern US soil.  相似文献   

12.
A major source of runoff phosphorus (P) from agricultural soils is land-applied animal manure. Our work reports P levels in pasture soils in northern Alabama affected by long-term (0–20 years) application of poultry litter (PL). Sequential fractionation revealed different buildup patterns of labile and stable P fractions in these soils. Phosphorus built up in subsurface (20–40 cm and 40–60 cm deep) soils with lower application rates than P accumulated in surface (0–20 cm deep) soils, indicating a greater potential for surface runoff than leaching from these pasture fields. Correlation analysis of the surface soils showed levels of stable P extractable by sodium hydroxide (NaOH) were related to the cumulative amount of PL applied. The level of water-extractable P increased because PL application was significantly related to the number of years the soil receiving PL, not the annual application rate or the cumulative amount of PL applied.  相似文献   

13.
Abstract

Most ethnic populations worldwide consume poultry products. Whereas poultry litter (PL) is a traditionally inexpensive and effective fertilizer to improve soil quality and agricultural productivity, overapplication to soils has raised concerns because excess nutrients in runoff could accelerate the eutrophication of fresh bodies of water. A long‐term field experiment of land application of PL to soils used for pasture growth has been maintained for nearly two decades in the Sand Mountain region of north Alabama, USA. In this work, several soil parameters impacted by the long‐term applied litter were characterized. The findings clearly support previous general observations that long‐term applied litter on pasture soils altered soil properties and macrocation levels. Unlike other studies, however, the effects of applied litter at multiple rates and years were examined, thus revealing the dynamic impacts on soil properties. Hay yields increased with the increase of years of PL application, regardless of the applied rate. This observation was consistent with previous observations that the labile phosphorus (P) portion in these soils increases with application years whereas total P increases with the cumulative applied PL amounts. Poultry litter application did not markedly affect soil electric conductivity, bulk density, or sodium (Na) or potassium (K) levels, especially at the soil surface (0–20 cm). Soil pH, carbon (C), C/nitrogen (N) ratio, calcium (Ca), and magnesium (Mg) were profoundly affected at all three soil depths (0–20, 20–40, and 40–60 cm). Most soil parameters analyzed in this study reached peak values with 10–15 years of applied litter. This observation suggests that there was a turning point of impact for applied litter around 10 years: prior to that the soil macrocations were altered positively as a result of accumulative functions. Continuous litter application may negatively alter a soil's capacity to retain macrocations, leading to less impact observed in this study. In other words, pasture soils with more than 10 years of applied litter would have higher potential for leaching and runoff. Our observation suggested that best management practices for land application of PL should take into consideration the different effects of PL application history.  相似文献   

14.
The objective of this research is to investigate the effects of long-term broiler litter application on soil phosphorus (P) and water quality and examine the spatial variations of soil P at a private poultry farm in Mississippi. Results indicated that the littered soil had 86 times more Mehlich III–extractable P in the surface horizon compared to the nonlittered soil. When compared to the runoff from nonlittered soil, mean soluble phosphate (PO4)-P concentrations in the littered soil's runoff were 85 times greater throughout the study. Mass loss of P from the littered field was significantly greater than from the nonlittered field, and it decreased with each sequential runoff event. There were no linear relationships between the spatial variations of litter application rates and the P spatial variability in the littered soil; however, the variations in soil P levels could be a result of the cumulative effects of more than 20 years of litter application.  相似文献   

15.
Although introduced into UK farming to help ensure more even application of agrochemicals, tramlines (marked wheelways through crops) are a potential cause of surface runoff and transfer of diffuse pollutants, including sediment and phosphorus (P), into watercourses. To help quantify these potential effects, the impact of tramlines on sediment and P movement in surface runoff was assessed on an erosion‐prone sloping (5°) fine sandy soil over two successive winters. Three replicate and hydrologically isolated runoff plots measuring 15 m long and 2 m wide, and either with, or without, a tramline, were established on field demonstration areas which had received different soil (traditionally ploughed vs. reduced cultivated) and crop (early vs. late drilling) management practices. Reduced cultivation (minimum tillage) consisted of heavy discing (5–8 cm depth) instead of ploughing (20–25 cm depth). Over monitoring periods ranging up to 5 months, plots with tramlines running up and down the slope generated, on average, 46% more runoff (+1–2 mm) compared with plots without tramlines on ploughed soils. This extra runoff resulted in up to fivefold greater sediment loss (+0.4 t ha?1) and up to fourfold greater total P loss (+0.3 kg ha?1) from the plots. However, the presence of tramlines had no significant impact on runoff, or sediment and P transfers, where the soil received reduced cultivation. Plots with tramlines that were partially crop covered, or which ran across the slope rather than up and down the slope, produced the same amount of runoff, sediment and P transfer as plots without tramlines. Greatest entrainment of sediment and P in runoff occurred where tramlines coarsely indented the soil, or caused erosion rills to form. Establishing tramlines in dry soils reduced the degree of soil indentation and the risk of channelled runoff causing sediment and P entrainment. The data suggest that tramlines can be managed more sensitively on erosion vulnerable soils to help minimize the risk of sediment and P pollution of our surface waters, and various options are discussed.  相似文献   

16.
Subsoil compaction may reduce the availability and uptake of water and plant nutrients thereby lowering crop yields. Among the management options for remediating subsoil compaction are deep tillage and the selection of crop rotations with deep-rooted crops, but little is known of the effects of applications of organic amendments on subsoil compaction. The objectives of this study were to determine the effects of subsoil compaction on corn yield and N availability in a sandy-textured soil and to evaluate the use of deep tillage and surface applications of poultry manure to remediate subsoil compaction. A field experiment planted to corn (Zea mays L.) was conducted from 2000 to 2001 on a Reelfoot fine sandy loam (fine-silty, mixed thermic Aquic Argiudolls) formed in silty alluvium located in southeast Missouri near the Mississippi River. Treatments were arranged in a factorial design with three levels of subsoil compaction and subsoiling and four rates (averaging 0, 6, 11 and 18 Mg ha−1) of poultry manure. Subsoil tillage to a depth of 30 cm had multiple effects, including overcoming a natural or tillage-induced dense layer or pan and increasing volumetric soil water content and crop N uptake, especially in the 2001 cropping year with low early season precipitation. N recovery efficiency (NRE) was significantly higher in the subsoil treatment compared to the highest compaction treatment in 2001. No significant interactions between manure rates and compaction and subsoiling treatments were observed for corn grain and silage yields, N uptake and NRE. Average increases in corn grain yields over all manure rates due to subsoil tillage of compacted soil were 2002 kg ha−1 in 2000 and 3504 kg ha−1 in 2001. Application of poultry manure had a consistent positive effect on increasing grain yields and N uptake in 2000 and 2001 but did not significantly alter measured soil physical properties. The results of this study suggest that deep tillage and applications of organic amendments are management tools that may overcome restrictions in both N and soil water availability due to subsoil compaction in sandy-textured soils.  相似文献   

17.
Recently, changes in the utilization practices of animal manures for fertilization have been encouraged to reduce the potential of nonpoint pollution of lakes and streams from agricultural land. However, the potential impact of changing some of these practices has not been fully studied. The objective of this study was to examine the potential impact of limiting poultry litter application times on nutrient movement important to water quality. The WinEPIC model was used to simulate poultry litter applications during the winter months and chemical fertilizer application, with both cool season and warm season grass pastures on the major soil regions of Alabama. With the warm season grass, soluble nitrogen (N) losses could be reduced if the application of poultry litter was made after 30 December. With the cool season grasses, there was no significant difference in application dates for poultry litter for soluble N losses for any soil region, and no improvement could be noted for limiting applications in northern Alabama compared to southern Alabama. No significant difference was observed for soluble phosphorus (P) losses for application date for either warm season or cool season grass pastures. This indicates that factors other than plant P uptake during the growing season were the dominant regulators of the amount of soluble P lost in runoff. Also, the results would indicate that best management practices such as are administered with the P index are more important than plant growth factors in determining N and P losses to the environment.  相似文献   

18.
Poultry-litter applications to pastures can result in relatively high soil phosphorus (P) levels, which in turn can contaminate runoff and degrade surface water quality. New management protocols for temperate grasslands are needed to reduce the risk of P transport to surface water. The effects of three land-use treatments on soil characteristics related to P runoff were investigated using small watersheds with 8% slope near Booneville, Arkansas, U.S. The land use treatments were (1) haying of bermudagrass overseeded with winter annual forage (ryegrass or rye), (2) rotationally grazed, and (3) rotationally grazed with 12-m-wide tree buffer on the downhill portion of the plot. Plots and trees were established in 2003. Annual spring application of poultry litter (5.6 Mg ha?1) to the hayed or grazed portions of the plots was started in 2004. Grazing treatments were imposed shortly thereafter. By the summer of 2008 (4 years of treatments), soil concentrations of Bray 1–extractable P and soluble reactive P had increased significantly from approximately 40 and 4 mg P kg?1 soil, respectively, to more than 200 and 30 mg P kg?1 soil, respectively, in the areas of the plots receiving poultry litter. Soil bulk density in the portions of the plots being grazed had increased significantly also. The soil collected from the forested riparian buffer in 2008 had similar soil bulk densities and Bray 1–extractable P concentrations as the plots did in 2003 before treatments were imposed.  相似文献   

19.
Long-term tillage effects on soil quality   总被引:6,自引:0,他引:6  
Public interest in soil quality is increasing, but assessment is difficult because soil quality evaluations are often purpose- and site-specific. Our objective was to use a systems engineering methodology to evaluate soil quality with data collected following a long-term tillage study on continuous corn (Zea mays L.). Aggregate characteristics, penetration resistance, bulk density, volumetric water content, earthworm populations, respiration, microbial biomass, ergosterol concentrations, and several soil-test parameters (pH, P, K, Ca, Mg, Total-N, Total-C, NH4-N, and NO3-N) were measured on Orthic Luvisol soil samples collected from Rozetta and Palsgrove silt loam (fine-silty, mixed, mesic Typic Hapludalfs) soils. Plots managed using no-till practices for 12 years before samples were collected for this study had surface soil aggregates that were more stable in water and had higher total carbon, microbial activity, ergosterol concentrations, and earthworm populations than either the chisel or plow treatments. Selected parameters were combined in the proposed soil quality index and gave ratings of 0.48, 0.49, or 0.68 for plow, chisel, or no-till treatments, respectively. This indicated that long-term no-till management had improved soil quality. The prediction was supported by using a sprinkler infiltration study to measure the amount of soil loss from plots that had been managed using no-till or mold-board plow tillage. We conclude that no-till practices on these soils can improve soil quality and that the systems engineering methodology may be useful for developing a more comprehensive soil quality index that includes factors such as pesticide and leaching potentials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号