首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Naturally occurring stable isotopes of carbon and nitrogen are powerful tools to investigate food webs, where the ratio of 15N/14N is used to assign trophic levels and of 13C/12C to determine the food source. A shift in δ15N value of 3‰ is generally suggested as mean difference between two trophic levels, whereas the carbon isotope composition of a consumer is assumed to reflect the signal of its diet. This study investigates the effects of food quality, starvation and life stage on the stable isotope fractionation in fungal feeding Collembola. The fractionation of nitrogen was strongly affected by food quality, i.e. the C/N ratio of the fungal diet. Collembola showed enrichment in the heavier isotope with increasing N concentration of the food source. Δ15N varied between 2.4‰, which assigns a shift in one trophic level, and 6.3‰, suggesting a shift in two trophic levels. Starvation up to 4 weeks resulted in an increase in the total δ15N value from 2.8‰ to 4.0‰. Different life stages significantly affected the isotope discrimination by Collembola with juveniles showing a stronger enrichment (Δ15N=4.9‰) compared to adults (Δ15N=3.5‰). Δ13C varied between −2.1‰ and −3.3‰ depending on the food quality, mainly due to compensational feeding on low quality diet. During starvation δ13C value decreased by 1.1‰, whereas the life stage of Collembola had no significant effect on isotopic ratios. The results indicate that the food resource and the physiological status of the consumer have important impact on stable isotope discrimination. They may cause differences in fractionation rate comparable to trophic level shifts, a fact to consider when analysing food web structure.  相似文献   

2.
Copper compounds are commonly used to kill algal blooms in fish and shrimp ponds. However, indiscriminate use of copper in the aquaculture ponds may have a negative impact on the production of rotifers, which, in turn, can influence the final yield. In this work we studied the combined effects of chronic toxicity of copper (0, 0.125, 0.25, 0.5 and 1.0 mg L-1 of copper sulphate) and algal (Tetraselmis suecica) levels (0.05 × 106 and 0.10 × 106 cells ml-1) on the population growth of the saline water rotifer B. plicatilis at 25 °C, pH 8.5 and salinity 36‰. The population of B. plicatilis increased with increasing levels of T. suecica. Regardless of the food level, rotifers exposed to 1 mg L-1 of copper did not survive beyond 3 days. Copper of 0.125 mg L-1 caused a reduction in the population of B. plicatilis but only at low algal food level; at the high (0.2 × 106) food concentration, the growth was comparable to that observed in the control suggesting that higher algal levels had an ameliorating effect on the toxicity of copper to B. plicatilis. The relation between the rotifer density and the egg-ratio was inverse and statistically significant in controls. However, this relation was non-significant in rotifers subjected to the copper concentration. The peak population density of B. plicatilis in controls varied from 36 to 251 ind. ml-1 depending on the food level. The rate of population increase per day (r) in the controls varied from 0.24–0.63 depending on the food level. In general, an increase in food level resulted in higher peak population abundance and growth rates. The presence of copper resulted in the reduction of both r values and peak population densities of B. plicatilis. The results have been discussed in light of protective role of algae in reducing the toxicity of heavy metals to rotifers.  相似文献   

3.
The importance of food as radionuclide source for the crustaceanDaphnia magna was investigated using a planktonic food chain composed of young pre-adult daphnids and two algal species(Scenedesmus obliquus and Cyclotella meneghiana). Daphnids placed in a tank containing natural 0.45 μm filteredwater were fed on algae previously kept during 4 days in natural water contaminated by 110mAg, 60Co, 137Cs and 54Mn. After about one week of exposure, daphnids wereplaced in non-contaminated water on a diet of non-labelled algae,in order to monitor radionuclide release. The results suggest that the Trophic Transfer Factor (TTF) of radionuclides in daphnids was generally greater for the transfer via Scenedesmus than via Cyclotella> and that it could be linked to the intracellular fraction of accumulated radionuclidesand consequently to their biochemical behaviour. For theradionuclide transfer via Cyclotella meneghiana, the biological periods ranged, for the first compartment, from 7 to 30 min and for the second, from 10 h to 1.8 d. As regards thetransfer via the green algae Scenedesmus obliquus the biological half-lives were longer, since Tb1 characterizing the first compartment, ranged from 11 min to 5.2 h, whereas Tb2 ranged from 1.2 to 2.1 d. From an operational point of view, this paper underlines the importanceof considering the food contamination in the models of radionuclide transfer through trophic chains, in order to widentheir applications in different seasons or ecosystems.  相似文献   

4.
More research is required to validate and refine natural abundance stable isotope ratio techniques as a tool for the investigation of the feeding ecology of soil animals and trophic relations in soil food webs. Isotope ratios of C (δ13C) and N (δ15N) were measured in herbivorous and detritivorous invertebrate groups, namely lumbricid earthworms (7 species), enchytraeid worms (3 species), slugs (3 taxa), and their potential food sources in an arable system. Intrapopulation δ15N variation in the slug Deroceras reticulatum (n=52) was large (range 4.2‰), possibly reflecting spatial variability in the food sources. Significant correlations between C:N ratios and isotope ratios in earthworms suggest that factors other than feeding may influence isotopic patterns. One enchytraeid species, Enchytraeus buchholzi, was enriched in 13C and strongly depleted in 15N compared to all other groups. Invertebrates formed a continuum when considered in relation to C and N separately, but fell into two distinct groups on the basis of combined C and N isotope ratios. The less enriched group represents herbivorous and litter-feeding species, while the more enriched group represents soil feeders. It is concluded that δ13C measurements could provide a means of assigning separate baseline δ15N values to primary and secondary decomposers, which in turn could improve the inference of higher trophic levels, omnivory and intraguild predation.  相似文献   

5.
Summary The influence of surface growth of inoculated cyanobacteria (blue-green algae) on subsurface properties of a brown earth, silt loam soil was studied in reconstituted flooded soil columns. One blue-green algae species, Nostoc muscorum, become dominant within the first 7 days of inoculation. In light control columns (not inoculated) a bryophyte, Barbula recurvirostra, was dominant although significant growth of indigenous blue-green algae occurred. The blue-green algae counts were in the range of 1×106 g-1 dry soil in the surface layer (0–0.7 cm) in both columns. Any effect of surface phototrophic growth on soil properties was restricted to the surface layer. In inoculated columns there was a twofold increase in microbial biomass and an eightfold increase in bacterial numbers by week 13. However, bacterial numbers declined so that there was only a 2.8-fold increase by week 21. Dehydrogenase (x2.1), urease (x2.8) and phosphatase (x3.1) activities and polysaccharides (+69%) increased by week 21 as a result of the blue-green algae inoculation along with a significant improvement in soil aggregation. However, similar increases occurred in the light control columns, indicating that given appropriate conditions of light and moisture indigenous species may be ultimately as effective as introduced species in bringing about biochemical and microbiological changes to soil.  相似文献   

6.
The biodegradation of polycyclic aromatic hydrocarbons (PAHs) via free-living and attached micro-organisms in soil/water systems was observed in order to examine the variability in the community dynamics and physiological profiles of the micro-organisms. As determined by fluorescence in situ hybridization (FISH), the Domain Bacteria, consisting of three phyla α-, β- and γ-Proteobacteria, reached 41.27–56.05% of all organisms in the soil/water system for PAH biodegradation. Among the free-living species, Proteobacteria, including Brevundimonas (Pseudomonas) diminuta, Caulobacter spp., Mycoplana bullata, Acidovorax spp. and Pseudomonas aeruginosa were found to be dominant—making up 93.51–99.80% of the population—and therefore seem to be associated with PAH biodegradation. Total plate count numbers and the count of Pseudomonas sp. present in the free-living population increased to between 103 and 106 CFU ml−1 when clay with very low organic matter content was used as the matrix for PAH degradation. However, total plate count microbial numbers increased to only 101–102 CFU ml−1 using natural soil from Taichung containing 1.883% organic matter. The soil organic content (SOM) seemed to affect the mass transfer of PAH in soil, leading to the difference in PAH biodegradation. Two different approaches, which included community-level physiological profiling (CLPP) and ectoenzymatic activities, were used to explain the functional diversity between free-living and attached bacteria. The free-living and attached bacterial communities from the clay system showed proportionately greater differences using CLPP. Relatively high levels of esterases, aminopeptidases and some specific glycolysis-gluconeogenesis enzymes gave an identifiable correlation with PAH biodegradation. The differences in bacterial composition, numbers and physiological characteristics show that free-living and attached micro-organisms may play different biochemical roles in PAH degradation in soil.  相似文献   

7.
We studied the composition of a litter detrital community in a temperate coniferous forest using stable isotopes of nitrogen and carbon. Samples of mineral soil, bulk litter material, macroarthropods and understory plants were collected from ten experimental forest stands. Half of the stands were previously thinned 17–42 years ago, the other half served as controls. Values of δ15N and δ13C were based on the analysis of almost 500 individuals of at least 22 species in 11 arthropod families. The isotopic analysis showed a significant increase in δ15N and δ13C values with soil depth. Isotopic signatures of macroarthropods ranged from −26.51‰ to −20.52‰ for δ13C and −2.85‰ to 5.10‰ for δ15N. All consumers showed levels of 13C enrichment substantially higher than those of primary producers and litter. Predators were generally significantly more 15N enriched than detritivores and herbivores, but their δ13C levels were similar to those of primary consumers. Our data indicate that this community consists of at least 2–3 trophic levels with a considerable amount of variation in the 15N enrichment among detritivores and predators. We suggest that the spread of δ15N values of predators likely reflects the diversity of potential prey among detritivores and a varying degree of intraguild predation among different species. Our findings generally agree closely with the results of similar studies from other forest litter communities. Thinning did not appear to influence the overall isotopic composition of the detrital food web. Extensive omnivory and intraguild predation among litter consumers may buffer long-term effects of thinning on the trophic structure of these species-rich communities.  相似文献   

8.
The population abundance of free-living and plant-parasitic nematodes was investigated in a long-term rotation/tillage/stubble management experiment at Wagga Wagga Agricultural Institute, New South Wales (NSW), Australia. The treatments were a combination of two crop rotations: wheat (Triticum aestivum)–wheat and wheat–lupin (Lupinus angustifolius); two tillage systems: conventional cultivation (CC) and direct drill (DD); and two stubble management practices: stubble retention (SR) and stubble burnt (SB). Plots of one of the wheat–wheat treatments received urea at 100 kg N ha−1 during the cropping season. Soil samples from 0–5 and 5–10 cm depths were collected in September (maximum tillering), October (flowering) and December (after harvest), 2001, to analyse nematode abundance. Soil collected in September was also analysed for concentrations of total and labile C, and pH levels.Three nematode trophic groups, namely bacteria-feeders (primarily Rhabditidae), omnivores (primarily Dorylaimidae excluding plant-parasites and predators) and plant-parasites (Pratylenchus spp. and Paratylenchus spp.) were recorded in each soil sample. Of them, bacteria-feeders (53–99%, population range 933–2750 kg−1 soil) dominated in all soil samples. There was no difference in nematode abundance and community composition between the 0–5 cm and 5–10 cm layers of soil. The mean population of free-living and plant-parasitic nematodes varied significantly between the treatments in all sampling months. In most cases, total free-living nematode densities (Rhabditidae and Dorylaimidae) were significantly (P < 0.001) greater in wheat–lupin rotation than the wheat–wheat rotation irrespective of tillage and stubble management practices. In contrast, a greater population of plant-parasitic nematodes was recorded from plots with wheat–wheat than the wheat–lupin rotation. For treatments with wheat–wheat, total plant-parasitic nematode (Pratylenchus spp. and Paratylenchus spp.) densities were greater in plots without N-fertiliser (295–741 kg−1 soil) than the plots with N-fertiliser (14–158 kg−1 soil).Tillage practices had significant (P < 0.05) effects mostly on the population densities of plant-parasitic nematodes while stubble management had significant effects (P < 0.05) on free-living nematodes. However, interaction effects of tillage and stubble were significant (P < 0.01) for the population densities of free-living nematodes only. Population of Rhabditidae was significantly higher in conventional cultivated plots (7244 kg−1 soil) than the direct drilled (3981 kg−1 soil) plots under stubble retention. In contrast, plots with direct drill and stubble burnt had significantly higher populations of Dorylaimidae than the conventional cultivation with similar stubble management practice. No correlations between abundance of free-living nematodes, and concentration of total C and labile C in soil were observed in this study. These results showed that stubble retention contributed for enormous population density of free-living (beneficial) nematodes while conventional cultivation, irrespective of stubble management, contributed for suppressing plant-parasitic nematodes.  相似文献   

9.
Mercury bioaccumulation kinetics of two important macrobenthic species, the polychaete Hediste diversicolor and the bivalve Scrobicularia plana, were evaluated following a dietary pathway (i.e. contaminated algae), through a mesocosm laboratory experiment. Both studied species presented a similar model of Hg bioaccumulation kinetics, a linear pattern of accumulation through time being the mercury accumulation in the organisms proportional to the mercury concentration in the food. Mercury bioaccumulation rates were higher in the polychaete H. diversicolor (reaching approximately 0.15 μg g−1 at the end of the experiment) than in the bivalve S. plana (≈0.07 μg g−1), which could be related to their feeding strategies, ingestion rates and assimilation efficiencies. Moreover, the mercury bioaccumulation revealed to be quite a fast process especially for the polychaete, and despite the fact that this species is not an edible organism, it is an important prey item, which can greatly contribute to the transport of contaminants to higher trophic levels. Therefore, the bioaccumulation of mercury by these important macrobenthic species, especially the bivalves, represents a non-negligible risk for humans.  相似文献   

10.
Seven bacterial strains, most of them bearing natural or recombinant plasmids, were introduced in oak leaf litter or soddy-podzolic soil. In these substrata, which contained litter-dwelling diplopods and isopods, or endogenic earthworms, bacteria survival was followed. In the absence of the animals, the numbers of introduced strains gradually decreased. In the presence of the animals, plasmid-bearing strains of Pseudomonas putida survived at 105–107 CFUs g-1 up to 1.5 months in both leaves and soil. The total numbers of bacteria found in excrements from the soil macrofauna were 5–15 times higher than in the food. The numbers of P. putida in the excrements were equal to or higher than in the food. The numbers of Pseudomonas stutzeri JM302 (pLV1013) and Azospirillum brasiliense ATCC29710 (pFACII) in the excrements were always 2–10 times lower than in the food. The digestive fluid taken from the middle part of the gut of the diplopod Pachyiulus flavipes showed a strong antibacterial activity. Those bacteria with lower survival in the gut appeared to be more sensitive to digestion by the midgut fluid. In contrast, the hindgut fluid did not suppress the viability of P. stutzeri JM302 (pLV1013). We postulate that the introduced bacteria partially survive the midgut passage and then multiply with a high growth rate in the hindgut of the animals. The environmental consequences of the interactions between soil invertebrates and the released bacteria are discussed.Dedicated to Professor J. C. G. Ottow on the occasion of his 60th birthday  相似文献   

11.
Summary Field experiments were conducted to assess the effects of the application of P on growth and N yield of inoculated and indigenous blue-green algae (BGA). Addition of 17.4 kg P ha–1 in split applications led to the highest BGA biomass and N yield, 162 kg dry weight ha–1 and 6 kg N ha–1 per 15 days, respectively. When inoculum of Aulosira spp., Aphanothece spp., Gloeotrichia spp. were compared separately, Gloeotrichia spp. grew faster but Aulosira spp. fixed more N. The growth rate and N yield of Aulosira spp. decreased with high P applications, although growth continued until the application of 34.8 kg P ha–1. The effects of P on inoculum production by local species compared with those collected from other states showed the superiority of the local culture. Applications of P also enhanced the growth and N yield of indigenous BGA, with Wollea spp. showing the best results.  相似文献   

12.
We assessed the suitability of two nonnative poeciliid fishes—western mosquitofish (Gambusia affinis) and sailfin mollies (Poecilia latipinna)—for monitoring selenium exposure in desert pupfish (Cyprinodon macularius). Our investigation was prompted by a need to avoid lethal take of an endangered species (pupfish) when sampling fish for chemical analysis. Total selenium (SeTot) concentrations in both poeciliids were highly correlated with SeTot concentrations in pupfish. However, mean SeTot concentrations varied among fish species, with higher concentrations measured in mosquitofish than in mollies and pupfish from one of three sampled agricultural drains. Moreover, regression equations describing the relationship of selenomethionine to SeTot differed between mosquitofish and pupfish, but not between mollies and pupfish. Because selenium accumulates in animals primarily through dietary exposure, we examined fish trophic relationships by measuring stable isotopes (δ 13C and δ 15N) and gut contents. According to δ 13C measurements, the trophic pathway leading to mosquitofish was more carbon-depleted than trophic pathways leading to mollies and pupfish, suggesting that energy flow to mosquitofish originated from allochthonous sources (terrestrial vegetation, emergent macrophytes, or both), whereas energy flow to mollies and pupfish originated from autochthonous sources (filamentous algae, submerged macrophytes, or both). The δ 15N measurements indicated that mosquitofish and mollies occupied similar trophic levels, whereas pupfish occupied a slightly higher trophic level. Analysis of gut contents showed that mosquitofish consumed mostly winged insects (an indication of terrestrial taxa), whereas mollies and pupfish consumed mostly organic detritus. Judging from our results, only mollies (not mosquitofish) are suitable for monitoring selenium exposure in pupfish.  相似文献   

13.
The methanogenic populations able to use H2–CO2, methanol, and acetate were investigated in paddy field soil in situ under double cropping conditions [rice (Oryza sativa L.) as a summer crop under flooded conditions and wheat (Triticum aestivum L.) as an upland winter crop] over 2 years approximately bimonthly by the most probable number method. Three fields, one without fertilizer, one treated with inorganic fertilizer (mixed fertilizer including urea, ammonium phosphate, and potassium sulfate), and one treated with wheat straw plus inorganic fertilizer, were examined. The population of H2–CO2, methanol, and acetate utilizers in the paddy field soil at a depth of 1–6 cm was 103–104, 104–105, and 104–105 g-1 dry soil, respectively. These values were almost constant during the 2 years irrespective of moisture regime (flooded or nonflooded), crop (rice or wheat), fertilizer treatment, and soil depth (0–1, 1–10, and 10–20 cm).  相似文献   

14.
This study aimed at investigating the effects of agricultural exploitation on desert soil organic C, N and P, and soil aggregation. Four land uses were assessed: (1) 5-year wheat (Triticum aestivum L.)/barley (Hordeum vulgare L.) + 5-year maize (Zea mays L.); (2) 5-year wheat/barley + 5-year alfalfa (Medicago sativa L.); (3) 6-year wheat/barley + 4-year acacia (Robinia pseudoacacia L.) and (4) uncultivated desert soil. The desert soil contained total organic C (TOC) of 3.1, 3.7 and 4.2 g kg−1 and particulate organic C (POC) of 0.6, 0.7 and 0.8 g kg−1 at 0–10, 10–20 and 20–30 cm depths, respectively. The soil TOC concentration was increased by 32–68% under wheat–maize rotation and by 27–136% under wheat–acacia at 0–20 cm depth, and by 48% under wheat–alfalfa only at 0–10 cm depth. This contrasted with an increase in the soil POC concentration by 143–167% at depth 0–20 cm under wheat–maize and by 217%, 550% at depth 0–10 cm under wheat–alfalfa and wheat–acacia, respectively. The desert soil had 13 Mg ha−1 TOC stock and 2 Mg ha−1 POC stock at depth 0–30 cm, whereas crop rotations increased the soil TOC stock by 30–65% and POC stock by 200–350%. Over the 10-year period, the rates of TOC accumulation were 0.6, 0.3, 0.8 Mg ha−1 year−1 and the rates of POC accumulation were 0.4, 0.4 and 0.7 Mg ha−1 year−1 under wheat–maize, wheat–alfalfa and wheat–acacia rotations, respectively. At 0–30 cm depth, total soil N was increased by 61–64% under wheat–maize and wheat–acacia, but total soil P was reduced by 38% under wheat–alfalfa. A significant improvement in clay stability but not in aggregate water-stability was observed in cultivated soils. The results showed a significant increase in soil organic C pool but unimproved macro-aggregation of the desert soil after 10 years of cultivation.  相似文献   

15.
Summary The nitrogen metabolism of wheat plants inoculated with various Azospirillum brasilense strains and nitrate reductase negative (NR) mutants was studied in two monoxenic test tube experiments. The spontaneous mutants selected with chlorate under anaerobic conditions with nitrite as terminal electron acceptor fixed N2 in the presence of 10 mM NO3 and were stable after the plant passage. One strain (Sp 245) isolated from surface-sterilized wheat roots produced significant increases in plant weight at both NO3 levels (1 and 10 mM) which were not observed with the NR mutants or with the two other strains. Similar effects were observed in a pot experiment with soil on dry weight and total N incorporation but only at the higher N fertilizer level. In the monoxenic test tube experiments plants inoculated with the mutants showed lower nitrogenase activities than NR+ strains at the low NO3 level (1 = mM) but maintained the same level of activity with 10 mM NO3 where the activity of all NR+ strains was completely repressed. The nitrate reductase activity of roots increased with the inoculation of the homologous strains and with the mutants at both NO3 levels. At the low NO3 level this also resulted in increased activity in the shoots, but at the high NO3 level the two homologous strains produced significantly lower nitrate reductase activity in shoots while the mutants more than doubled it. The possible role of the bacterial nitrate reductase in NO3 assimilation by the wheat plant is discussed.  相似文献   

16.
Summary The nematode community in litter and soil was examined for a year in the Chihuahuan desert, before and after supplemental rainfall application. Proportions of nematode-active or anhydrobiotic forms and population densities were determined for 3 treatments: control (natural rainfall), a single, large (25-mm) monthly irrigation pulse, and 4 smaller (6-mm) irrigations spaced at weekly intervals. In litter the greatest nematode abundance was in the 6 mm week–1 treatment (48 nematodes 20 g–1 litter). Bacteriovores and fungivores accounted for approximately 95% of the numbers and biomass in all treatments. In soil, water amendments had no significant effect (P < 0.05) on annual mean densities of total nematodes, fungivores, bacterivores, or omnivore predators. Phytophage densities were greater on both irrigation treatments, with highest densities (9268 m–2) in the 6 mm week–1 soils, which was 5.9% of the total soil nematode density. Total densities of individual trophic groups were not significantly different before or after rainfall. Soil nematode densities fluctuated independently with trophic group, month, and season. Bacterial feeders and omnivore predators were the largest contributor to total soil nematode density and biomass. Prior to irrigation, there were no differences in the percentage of anhydrobiotes on the three treatments. Anhydrobiotes decreased after irrigation in all treatments, and were significantly lower in soils of the larger, monthly irrigation. Nematodes were inactive (anhydrobiotic) and decoupled from decomposition processes when soil water matric potentials reached –0.4 MPa.Dedicated to the late Prof. Dr. M.S. Ghilarov  相似文献   

17.
Summary Hydroxamate siderophores (HS) are microbially produced, ferric-specific chelates, known to occur in soil, and to be capable of providing iron to higher plants. This study examined the potential for HS to influence the diffusion of both iron and phosphorus to plant roots in soil.The HS desferrioxamine-B (DFOB) and desferriferrichrome (ferrichrome) were compared with the synthetic chelates ethylenediamine [di(o-hydroxyphenylacetic)acid] (EDDHA) and ethylenediamine-tetraacetic acid (EDTA), and citrate, oxalate, and distilled water in their ability to increase diffusion of iron using a simulated root technique. Chelate solutions were pumped through porous fiber bundles imbedded in soil previously labeled with55Fe. In a sandy loam of pH 7.5,55Fe diffusion caused by 10–4 M DFOB was twice that of water, but similar to that caused by 10–4 M EDDHA. However, 10–3 M EDDHA resulted in greater diffusion than 10-3 M DFOB. The diffusions resulting from equimolar quantities of citrate, oxalate, and EDTA were similar to that with distilled water. In a clay soil of pH 5.2 previously labeled with55Fe and32 P, the response in55Fe diffusion to chelate treatments was: 10–4 M EDDHA > 10–4 M ferrichrome > 10–3 M DFOB > 10–4 M DFOB > water. Both ferrichrome and EDDHA caused2 P diffusion to increase substantially over that of distilled water. These results suggest that hydroxamate siderophores present in the rhizosphere could effectively increase the level of soluble iron for root uptake and possibly increase phosphorus uptake by solubilization of phosphorus from iron phosphates at acid pH.  相似文献   

18.
Background, Scope and Goal. The chemical, pesticide and biocide legislation of the European Union assembles a variety of bioassays. Among the ecotoxicological tests involved, the testing strategy for the aquatic compartment builds up on three tests reflecting the main trophic levels (algae,Daphnia, fish). For the soil compartment at least one trophic level for a basic food chain is missing, namely between microflora and earthworms. Protozoa are an ideal missing link as they were shown to be the most prominent faunal contributors to nutrient cycling in soil ecosystems and as they represent the lacking first level consumers as well as the highly diverse microfauna. As protozoa inhabit the soil pore water, they can serve as direct indicators for the solved and thus bioavailable portion of xenobiotics. In order to widen the spectrum of available toxicity tests for a meaningful effect assessment for the soil compartment, a test with the soil ciliateColpoda inflata (Ciliophora, Protozoa), introduced by Pratt et al. (1997), was improved.  相似文献   

19.
Soil nematodes were studied in 28 afforested sites on clay colliery spoil from opencast mining in the Czech Republic. The afforestations had four replicate sites and were represented by 20–33-year-old plantations of oak, alder, linden, spruce, larch, pine, and sites left to natural succession. The total abundance of nematodes in deciduous plantations plus natural successions was 1156 × 103 ind/m2 and in coniferous plantations 1236 × 103 ind/m2. The abundance of plant parasites and omnivores was significantly greater in deciduous than in coniferous plantations. The abundance of root–fungal feeders dominated by Filenchus was greater in spruce and pine plantations than in deciduous plantations. Bacterivorous Plectus predominated in larch plantations. Nematode assemblages in deciduous plantations had significantly greater numbers of species and genera, H’gen, MI, ΣMI, EI and SI values, and greater proportions of omnivores plus predators to other trophic groups than the assemblages in coniferous plantations. The nematode fauna indicated most advanced soil restoration on spoils under oak and alder plantations, intermediate under linden and spruce, and least under pine and larch. Nevertheless, some nematodes typical for developed forests were either found in low population densities (e.g. Teratocephalus) or were missing (e.g. Malenchus).  相似文献   

20.
Summary The earthworms Lumbricus rubellus (Hoffmeister) and Dendrobaena octaedra (Savigny) were studied in the laboratory to determine their effects on decomposition and nutrient cycling in coniferous forest soil. CO2 evolution was monitored, and pH, PO 4 3– –P, NH 4 + –N, NO 3 –N, total N, and total C in the leaching waters were measured. After three destructive samplings, numbers of animals, mass loss, pH, and KCl-extractable nutrients were analysed.The earthworms clearly enhanced the mass loss of the substrate, especially that of litter. L. rubellus stimulated microbial respiration by 15–18%, whereas D. octaedra stimulated it only slightly. The worms significantly raised the pH of the leaching waters and the humus; L. rubellus raised the value by 0.2–0.6 pH units and D. octaedra by 0.1–0.4 units. Both worms increased N mineralization. Although the biomass of both worms decreased during the experiment, the N released from decomposing tissues did not explain the increase in N leached in the presence of earthworms. The worms influenced the level of PO 4 3– –P only slightly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号