首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 152 毫秒
1.
株间除草装置横向偏移量识别与作物行跟踪控制   总被引:2,自引:2,他引:0  
株间机械除草技术与装置能有效摆脱田间除草的繁重体力劳动并消除化学除草方法所带来的危害,株间机械除草装置的牵引拖拉机在跟踪作物行时总会产生航向偏差,导致除草装置出现横向偏移,甚至无法进入除草的株间区域,同时还会增加伤苗率。为增大株间机械除草的作用区域和降低伤苗率,该文提出了通过作物行信息识别出株间机械除草装置与作物行横向偏移量的方法,并设计了株间机械除草作物行跟踪机构和控制器,实现了株间机械除草跟随作物行。采用正弦波和三角波2种标准信号作为横向偏移补偿量信号,对作物行跟踪控制器的性能进行了测试,试验结果表明:作物行跟踪控制器能较好地控制除草装置跟随横向偏移补偿信号,前进速度为0.5 m/s时正弦波信号跟踪最大误差10 mm,平均误差0.8 mm,三角波信号跟踪最大误差11 mm,平均误差1.2 mm。除草试验表明,作物行跟踪控制系统能较好地控制株间除草装置跟踪作物行,在0.5 m/s前进速度下跟踪最大误差为20.8 mm,平均误差2.5 mm;作物行跟踪控制明显减少了除草爪齿未进入株间区域的比例,在300 mm株距下,可保证93.3%的株间区域有除草爪齿进行除草作业,在200 mm株距下为85.9%;作物行跟踪控制降低了除草爪齿对作物的损伤,伤苗率从20%以上降到了12%以内,提高了株间机械除草的作业效果。  相似文献   

2.
基于爪齿余摆运动的株间机械除草装置研制与试验   总被引:10,自引:7,他引:3  
为了实现作物株间区域精确机械除草,设计了一种利用除草爪齿余摆运动原理的株间机械除草装置,研究了装置的除草和避苗工作原理,建立了相应数学模型并分析了除草爪齿余摆运动的参数对除草效果的影响,获得了合理的工作参数。在试验平台上进行了基于爪齿余摆运动的株间机械除草装置避苗试验研究,试验结果表明,基于爪齿余摆运动的株间机械除草装置除草爪齿避苗和除草切换控制快速可靠,室内试验的伤苗率小于8%;能够满足株距20cm及以上栽种的作物株间除草要求,可以保证每个株间区域均有除草爪齿进入实施除草;除草装置的前进速度不影响进入株间区域的除草爪齿数量,但前进速度的增加会导致伤苗率增大;进入株间区域的除草爪齿数量与作物栽种株距均匀性无关,仅与作物栽种的株距有关。该文为爪齿余摆株间除草装置精准控制提供依据。  相似文献   

3.
基于余摆运动的株间机械除草爪齿避苗控制算法   总被引:5,自引:3,他引:2  
为准确控制以余摆运动为原理的株间机械除草装置的除草爪齿避让作物,提出了基于余摆运动的株间机械除草爪齿避苗控制算法,介绍了爪齿余摆运动株间机械除草爪齿避苗控制算法的基本原理,根据余摆线运动特点推导出了除草爪齿避苗判断表达式,并设计了除草爪齿的旋转角速度控制器和除草爪齿避苗控制器。利用MATLAB对除草爪齿避苗控制算法进行了仿真分析,结果表明该算法能准确控制除草爪齿避让作物,前进速度对株间区域除草覆盖率影响小,但会受除草爪齿爪尖旋转半径影响,除草爪齿旋转半径越大,进入株间区域的除草爪齿根数越少,株间区域除草覆盖率降低。在试验平台上进行了验证试验,平均每个株间区域进入的爪齿根数和株间区域除草覆盖率与仿真分析结果一致。  相似文献   

4.
基于LabVIEW的八爪式机械株间除草装置控制系统   总被引:9,自引:9,他引:0  
基于LabVIEW设计了八爪式机械株间除草装置的控制系统,采用除草铲齿与作物之间的距离作为阈值实现株间除草控制,对八爪株间除草装置控制进行了试验验证。通过对试验数据的分析,得到八爪除草装置在控制系统的作用下能够满足株间除草和绕苗的要求,使平均株距在30 cm以上的作物的伤苗率控制在10%以内,株间间隙覆盖率达到50%以上,并得出伤苗原因与台车位移误差、电磁装置吸合时间、铲齿初始位置有关。  相似文献   

5.
凸轮摆杆式生菜株间除草装置设计与试验   总被引:1,自引:1,他引:0  
针对目前温室生菜株间自动化除草装置缺乏问题,该研究设计了基于凸轮摆杆机构的轻量化电动株间除草装置,采用机器视觉对生菜苗进行识别定位,运动控制系统根据车速和保护半径区域实时计算凸轮各工作段转速,控制一对除草铲摆动避苗除草。以除草装置前进速度、推程段凸轮转速、除草铲入土深度作为试验因素,以伤苗率、除草率和株间除草单体避苗功耗为试验指标,采用响应面分析法,进行三因素三水平田间试验,分析各因素相互作用对作业性能指标的影响。试验结果表明,除草铲入土深度对除草率影响最显著(P<0.01),前进速度对伤苗率影响最显著(P<0.01),推程段凸轮转速和除草铲入土深度对株间除草单体避苗功耗影响最显著(P<0.01)。在最优组合为前进速度0.56 m/s,推程段凸轮转速242 r/min,除草铲入土深度12.8 mm时,实际作业除草率为93.22%,伤苗率2.87%,单体避苗平均功耗 55.2 W,各项性能指标基本满足温室散叶生菜株间低伤苗除草作业需求。  相似文献   

6.
非化学方式除草是摒弃除草剂、生产有机农产品的前提,传统的中耕锄草机主要解决行间锄草,由于株间苗草集聚,机械锄草难度较大,目前主要依靠人工,劳动成本高且效率低。智能株间锄草机器人是一种能够实时识别作物行和苗草信息,并能控制株间锄草刀高速作业的自动锄草装备,具有智能、高效、环保等特点,可大大减少劳动力,提高锄草效率,降低锄草成本。该文主要对近年来国外研究较为成熟的株间锄草机器人进行介绍,概述了中国该方面的研究进展,对苗草信息获取、对行、锄草装置、驱动方式、时速等几个技术点进行分析和比对,提出了如何提高信息获取速度,增强系统实时性,以及如何改进机器视觉标定方法,提高苗草定位准确性是苗草信息获取技术存在的关键问题,强调了锄草装置在系统中的重要性;针对不同形态作物、不同土质土壤研制针对性强、锄草效果好的锄草装置是锄草机器人的基础,同时由于系统集成性及动力系统与速度匹配仍无法满足田间高负载、高速的锄草作业要求,因此加强该方面研究力度,研制使用性强、效率高的株间锄草机器人仍是中国的研究重点和方向。最后,提出多传感器融合、模块化、小型化的株间锄草机器人将是未来发展趋势,是实现中国农业有机、精准、高效生产的重要依据。  相似文献   

7.
施用除草剂和机械除草是目前杂草控制的两种主要手段,受农田环境、机具作业能力等限制,单一机械或化学防治均存在一定的局限性。该研究以玉米田为研究对象,设置机械除草协同减量化学除草策略,选取2种机械除草方式(行间与株间)和3种化学减量比例(减量25%、50%、75%)及2种化学施药方式(全幅和苗行)组合进行除草试验。从除草效果和玉米生长方面综合研究了机械-化学协同除草方式的杂草防除效果。试验结果表明:机械除草方式能够疏松土壤,使除草区域的土壤紧实度降低64.4%以上。除草处理后2周,行间机械除草的株防效为83.4%,优于株间机械除草的株防效46.7%;玉米吐丝期,机械-化学协同处理的除草效果优于单一机械除草,行间机械除草协同除草剂减施处理的除草效果优于同水平施药量下的株间机械除草协同除草剂减施处理;无论是在吐丝期还是成熟期,机械-化学协同除草处理的玉米叶面积和干物质量大于单一机械除草或化学除草,机械-化学协同除草模式可促进植株营养元素累积和作物生长;行间机械-化学协同除草处理的平均产量分别高出单一机械和化学除草模式29.0%和20.4%,株间机械-化学协同除草处理的平均产量分别高出单一机械和化学除草模式55.9%和5.1%;从玉米产量及其构成来看,机械除草协同除草剂减施25%处理的增产效果最优,该处理下的千粒质量和产量均高于其他协同处理。该研究明确了机械-化学协同除草策略对农田杂草防除和作物生长的影响,机械协同除草剂减施处理能在不降低除草效果的前提下减少除草剂施用和增加玉米产量。该研究为杂草绿色防控提供了新思路,研究结果可为玉米田除草剂减施提供参考。  相似文献   

8.
中耕期玉米田间避苗除草装置设计与试验   总被引:3,自引:2,他引:1  
针对现有旱田避苗除草装置多依赖于智能导航平台,机械式避苗除草装置无法确定秧苗位置的问题,该文基于除草执行部件间歇式旋转运动的思想,设计了一种针对中耕期玉米田间使用的避苗除草装置,该装置由软轴、行程开关、步进电机、除草梳齿和测控系统等组成。当该装置需要执行避苗除草动作时,除草梳齿会旋转120°以躲避秧苗。在吉林大学的土槽实验室,进行了三因素四水平的正交试验,试验结果显示,在秧苗株距为26 cm,梳齿入土深度为20 mm,前进速度为5 km/h时,该装置的平均伤苗率为5.9%,平均除草率为94.7%,方差分析结果显示,玉米的种植株距对于伤苗率的影响最显著(P0.05),梳齿的入土深度对于伤苗率和除草率均有显著影响(P0.05),但是作业速度对于伤苗率和除草率无显著影响(P0.05)。该装置可以满足玉米田间"避苗除草"作业的要求,研究结果可为农田机械除草的优化和设计提供参考。  相似文献   

9.
玉米行间导航线实时提取   总被引:10,自引:7,他引:3  
针对高地隙植保机底盘玉米田间植保作业压苗严重的现象,该研究提出了基于车轮正前方可行走动态感兴趣区域(Region of Interest,ROI)的玉米行导航线实时提取算法。首先将获取的玉米苗带图像进行像素归一化,采用过绿算法和最大类间方差法分割玉米与背景,并通过形态学处理对图像进行增强和去噪;然后对视频第1帧图像应用垂直投影法确定静态ROI区域,并在静态ROI区域内利用特征点聚类算法拟合作物行识别线,基于已识别的玉米行识别线更新和优化动态ROI区域,实现动态ROI区域的动态迁移;最后在动态ROI区域内采用最小二乘法获取高地隙植保机底盘玉米行间导航线。试验表明,该算法具有较好的抗干扰性能,能够很好地适应较为复杂的田间环境,导航线提取准确率为96%,处理一帧分辨率为1 920像素×1 080像素图像平均耗时97.56 ms,该研究提出的算法能够为高地隙植保机车轮沿玉米垄间行走提供可靠、实时的导航路径。  相似文献   

10.
基于自动Hough变换累加阈值的蔬菜作物行提取方法研究   总被引:10,自引:8,他引:2  
为解决机器视觉对生菜和绿甘蓝两种作物在整个生长时期内多环境变量对作物行识别影响的问题,同时提高机器视觉作物行识别算法的有效性,该文提出了一种基于自动Hough变换累加阈值的多作物行提取算法。首先,选用Lab颜色空间中与光照无关a分量对绿色作物进行提取,通过最优自适应阈值进行图像分割,并采用先闭后开形态学运算对杂草和作物边缘进行滤波。其次,采用双阈值分段垂直投影法对作物行特征点进行提取,通过对亮度投影视图中的目标像素占比阈值和噪声判断阈值设置,实现特征点位置判断和杂草噪声过滤,并对相邻特征点进行优化,剔除部分干扰特征。最后,采用Hough变化对特征点进行直线拟合,将不同Hough变换累加阈值获得的拟合直线映射到累加平面上,通过K-means聚类将累加平面数据聚类为与作物行数相同的类数,根据相机成像的透视原理提出基于聚类质心距离差和组内方差的最优累加阈值获取方法,将最优累加阈值下累加平面中的聚类质心作为识别出的真实作物行线。温室和田间试验表明,针对不同生长时期的生菜和绿甘蓝作物,该文算法均可有效识别出作物行线,最优阈值算法耗时小于1.5 s,作物行提取平均耗时为0.2 s,在田间和温室中作物行的平均识别准确率分别为94.6%、97.1%,识别准确率为100%的占比分别为86.7%和93.3%。研究结果为解决多环境变量影响因素下的算法鲁棒性和适用性问题提供依据。  相似文献   

11.
基于多特征的田间杂草识别方法   总被引:2,自引:5,他引:2  
该文阐述了通过利用植物的多种特征实现田间杂草的精准自动识别的方法。该方法先利用颜色特征分割土壤背景,然后利用位置和纹理特征识别行间和行内杂草,最后利用形态特征后处理误识别的作物和杂草。在实验室内利用实地采集的3~5叶期、不同作物行数的麦田图像对该方法进行了测试。作物和杂草的正确识别率最低为89%,最高为98%;处理时间最低为157 ms,最高为252 ms。试验结果表明:基于多特征的田间杂草识别方法具有较高的识别率和较快的识别速度。  相似文献   

12.
The selective soil covering mechanism of weed harrows on sandy soil   总被引:1,自引:0,他引:1  
Improvement of intra-row mechanical weed control is important to reduce the reliance on herbicides in arable crops and vegetables. Covering weeds by soil is an important weed control mechanism of weed harrows. A shallow post-emergence harrow cultivation controls weeds but also damages the crop to some extent. This paper explores how plants get covered by soil and how a plant’s resistance against being covered is related to its height, flexibility and shape of leaves. Seedlings of two contrasting species were sown in bins filled with a sandy soil and harrowed by a small model harrow in the laboratory. Covering selectivity (percentage covered ryegrass/percentage covered garden cress) could be influenced by soil moisture content, working depth and working speed. Differences in covering were related to spatial patterns of plant downward bending and soil surface level upheaval. These patterns are associated with soil failure patterns near tines and soil flow patterns, connected with different effects of plant height and plant flexibility. This study indicates that relationships between weed control and crop covering may not only depend on weed and crop characteristics but also on soil conditions and implement settings. As less than 10% of the covered plants were buried deeper than 15 mm, covering would mainly cause growth reduction and little killing. Limited burial depth may be an important cause for limited weed control effectiveness of harrowing.  相似文献   

13.
Different sowing methods and sowing rates were evaluated in organic seed production of timothy (two trials), meadow fescue (two trials) and red clover (one trial) in Southeast Norway, during 2010–2013. The plan included: (1) broadcast sowing of grass/clover, cover crop sown at 12 cm row distance; (2) sowing of cover and seed crop in crossed rows, both at 12 cm row distance; and (3) sowing of cover crop and seed crop in every other row. The three sowing rates were 5, 10 and 15 kg ha–1 in timothy and meadow fescue and 3, 6 and 9 kg ha–1 in red clover. On average for sowing rates and all trials with timothy, meadow fescue and red clover, first year’s seed yields were 5–6%, 20–25% and 19–25% higher on plots sown with cover crop and seed crop in every other row than on plots where seed crop had been broadcast or sown perpendicularly to the cover crop. The different sowing methods had no effect on weed coverage or weed contamination in the cleaned seed. Increasing sowing rate usually had a negative influence on seed yield, while weed coverage/contamination was not significantly affected. It is concluded that organic seed crops should be established with cover crop and seed crop in every other row at a low sowing rate. However, in an organic production system, even this favorable method will not always be sufficient to meet the requirement for seed crop purity.  相似文献   

14.
基于卷积神经网络提取多尺度分层特征识别玉米杂草   总被引:13,自引:10,他引:3  
为提高作物与杂草识别的准确率、稳定性和实时性,该文以幼苗期玉米及杂草为研究对象,提出了基于卷积神经网络提取多尺度分层特征的玉米杂草识别方法。首先建立卷积神经网络模型,以从图像的高斯金字塔中提取多尺度分层特征作为识别依据,再与多层感知器相连接实现图像中各像素的识别;为了避免目标交叠所带来的问题,对图像进行超像素分割,通过计算每个超像素内部的平均像素类别分布确定该超像素块的类别,再将相同类别的相邻超像素合并,最终实现图像中各目标的识别。试验结果表明:该方法的平均目标识别准确率达98.92%,标准差为0.55%,识别单幅图像的平均耗时为1.68 s,采用GPU硬件加速后识别单幅图像的平均耗时缩短为0.72 s。该方法实现了精确、稳定和高效的玉米与杂草识别,研究可为精确除草的发展提供参考。  相似文献   

15.
苗间除草部件入土深度PID自动控制系统设计与台架试验   总被引:6,自引:3,他引:3  
除草部件入土深度(松土深度)对苗间机械除草装置的作业性能有较大影响。为提高大豆苗间机械除草装置除草部件入土深度的稳定控制、降低伤苗率和埋苗率,该文提出了基于超声波测距的苗间机械除草部件入土深度控制方法。在梳齿式苗间机械除草装置研究基础上,设计了除草部件入土深度控制系统。建立了除草部件入土深度调节液压控制系统的数学模型,并对建立的传递函数在Matlab/Simulink中进行了仿真和PID校正。仿真结果表明:该系统采用PID控制算法对期望松土深度值进行跟踪调节,其稳态响应时间为0.48 s,静差为0.06~0.09 mm。在室内苗间除草台架上进行了超声测距动态试验与松土深度控制试验。超声测距试验表明:应用HC-SR04型超声波模块并结合设计的仿形台对地表进行动态测距不再受地表苗、草等影响,在0.278、0.556和0.833 m/s 3种行进速度下,针对各个样本点的位置与人工测量相比,二者平均对照误差分别为:4.95、5.36和5.90 mm,最大对照误差分别为:6.6、7.4和8.3 mm。除草部件入土深度控制台架试验表明:控制系统能够实现苗间机械除草作业松土深度的稳定控制,在土槽行进速度0.278 m/s时,松土深度可稳定控制在(30±8)mm范围内,满足苗间除草的深度控制要求。该研究为解决苗间除草部件松土深度稳定控制问题提供新思路和借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号