首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
The inhibitory effects of C-2 epimeric isomers of (-)-epigallocatechin-3-O-gallate (EGCG) and two O-methylated EGCG derivatives, (-)-epigallocatechin-3-O-(3-O-methyl)gallate (EGCG3'Me) and (-)-epigallocatechin-3-O-(4-O-methyl)gallate (EGCG4'Me), against oxazolone-induced type IV allergy in male mice were investigated. These compounds exhibited strong antiallergic effects by percutaneous administration at a dose of 0.13 mg/ear. The inhibition rates of (-)-gallocatechin-3-O-gallate (GCG), (-)-gallocatechin-3-O-(3-O-methyl)gallate (GCG3'Me), and (-)-gallocatechin-3-O-(4-O-methyl)gallate (GCG4'Me) on mouse type IV allergy were 52.1, 53.3, and 54.8%, respectively. However, the antiallergic effects were weaker than those of their corresponding original tea catechins (2R,3R type). The inhibition rates of those were 88.0, 73.2, and 77.6%, respectively. For all of the catechins tested, oral administration at a dose of 50 mg/kg body weight significantly suppressed the allergic symptoms. The inhibitory rates varied from 24.0 to 60.6%. No significant differences were observed between the effects of the epimers (2S,3R type) and their corresponding original catechins (2R,3R type). The antiallergic effects of tea catechins and their C-2 epimers observed in this study were dose-dependent. These results suggest that C-2 epimers of tea catechins, which are produced during heat processing at high temperatures, could be disadvantageous for the antiallergic effects on type IV allergy.  相似文献   

2.
The growth-inhibiting activity of Coptis japonica (Makino) root-derived materials toward eight human intestinal bacteria was examined using an impregnated paper disk method and compared to that of four commercially available isoquinoline alkaloids [berberine sulfate (BS), berberine iodide (BI), palmatine chloride (PC), and palmatine sulfate(PS)], as well as that of Thea sinensis leaf-derived epigallocatechin gallate (EGCG). The biologically active constituents of the Coptis extract were characterized as the isoquinoline alkaloids berberine chloride (BC), palmatine iodide (PI), and coptisine chloride (CC) by spectral analysis. The growth responses varied with both chemical and bacterial strain used. In a test using 500 microg/disk, BC and PI produced a clear inhibitory effect against Bifidobacterium longum, Bifidobacterium bifidum, Clostridium perfringens, and Clostridium paraputrificum, whereas weak or no inhibition was observed in Bifidobacterium adolescentis, Lactobacillus acidophilus, Lactobacillus casei, and Escherichia coli. At 1000 microg/ disk, CC revealed weak or no growth inhibition toward all test bacteria, whereas EGCG exhibited weak growth inhibition against only C. perfringens and C. paraputrificum. Among various isoquinoline alkaloids, BC exhibited more potent inhibitory activity toward C. perfringens than BI and BS, whereas the inhibitory effect was more pronounced in PI compared to PC and PS. The Coptis root-derived materials did not promote growth of B. longum and C. perfringens.  相似文献   

3.
The inhibitory effects of five tea polyphenols, namely theaflavin (TF1), theaflavin-3-gallate (TF2), theaflavin-3,3'-digallate (TF3), (-)-epigallocatechin-3-gallate (EGCG), and gallic acid, and propyl gallate (PG) on xanthine oxidase (XO) were investigated. These six antioxidant compounds reduce oxidative stress. Theaflavins and EGCG inhibit XO to produce uric acid and also act as scanvengers of superoxide. TF3 acts as a competitive inhibitor and is the most potent inhibitor of XO among these compounds. Tea polyphenols and PG all have potent inhibitory effects (>50%) on PMA-stimulated superoxide production at 20 approximately 50 microM in HL-60 cells. Gallic acid (GA) showed no inhibition under the same conditions. At 10 microM, only EGCG, TF3, and PG showed significant inhibition with potency of PG > EGCG > TF3. The superoxide scavenging abilities of these six compunds are as follows: EGCG > TF2 > TF1 > GA > TF3 > PG. PG was the most potent inhibitor of PMA-stimulated H(2)O(2) production in HL-60 cells. The order of H(2)O(2) scavenging ability was TF2 > TF3 > TF1 > EGCG > PG > GA. Therefore, the antioxidative activity of tea polyphenols and PG is due not only to their ability to scavenge superoxides but also to their ability to block XO and related oxidative signal transducers.  相似文献   

4.
Insecticidal activity of Angelica acutiloba extract and its constituents was investigated and compared with that of rotenone. Bioassay-guided isolation of the chloroform extract of A. acutiloba against larvae of Drosophila melanogaster afforded two phthalides, (Z)-butylidenephthalide (1) and (Z)-ligustilide (2), and two furanocoumarins, xanthotoxin (3) and isopimpinellin (4). The structures of these compounds were established by spectroscopic analysis. The isolated compounds 1, 2, 3, and 4 exhibited LC(50) values of 0.94, 2.54, 3.35, and 0.82 micromol/mL of diet concentration against larvae of D. melanogaster, respectively. Against both sexes (males/females, 1:1) of adults (5-7 days old), compound 1 showed the most potent activity with a LD(50) value of 0.84 microg/adult. Compound 1 is a more active insecticide than rotenone (LD(50) = 3.68 microg/adult) and has potential as a novel insect control agent. However, compound 2 was inactive against adults. The structure-activity relationship of phthalides isolated indicated that the aromaticity appeared to play an important role in the activity of both larvae and adults. To determine the insecticide mode of action for acute adulticidal activity, acetylcholinesterase (AChE) inhibitory activity was also investigated in vitro, and the result indicated that the acute adulticidal activity of compounds 3 and 4 was due to the inhibition of AChE.  相似文献   

5.
(-)-Epigallocatechin gallate (EGCG), a polyphenolic compound found in green tea, is a promising chemopreventive agent against cancer due to its strong antiproliferative effects on cancer cells; however, its possible toxicity and carcinogenicity must be investigated before EGCG can be used as a dietary supplement for chemoprevention. The inhibition of gap junctional intercellular communication (GJIC) is strongly associated with carcinogenesis, particularly the tumor promotion process; thus, we investigated the effects of EGCG on GJIC in WB-F344 normal rat liver epithelial (RLE) cells. EGCG, but not (-)-epicatechin (EC), another polyphenol found in green tea, inhibited GJIC in a dose-dependent and reversible manner in RLE cells. EGCG also induced the phosphorylation of connexin 43 (Cx43), a major regulator of GJIC. The phosphorylation of extracellular signal-regulated protein kinase 1/2 (ERK1/2) was also observed in EGCG-treated RLE cells. The inhibition of GJIC and phosphorylation of Cx43 and ERK1/2 by EGCG were completely blocked by U0126, a pharmacological inhibitor of mitogen-activated protein kinase/ERK kinase. EGCG generated a larger amount of hydrogen peroxide than EC in a dose-dependent manner. Furthermore, catalase partially inhibited the EGCG-induced inhibition of GJIC and the phosphorylation of Cx43 and ERK1/2. These results indicated that EGCG inhibited GJIC mainly due to its prooxidant activity.  相似文献   

6.
Pollenosis is a disease that affects 1 in 10 of the Japanese population. During the season of cedar pollen dispersal, many patients suffer from symptoms such as sniffling, sternutation, and itching of the eyes. Japanese butterbur is a popular vegetable and is one of the few domestic vegetables in Japan. The anti type I allergic effects of an aqueous ethanol extract from aerial parts of Japanese butterbur (JBE) were evaluated in rats and RBL-2H3 mast cells. In the passive cutaneous anaphylaxis reaction in rats, a single oral treatment of JBE (1000 mg/kg) was found to suppress the reaction. In IgE-sensitized RBL-2H3 cells, JBE (10-100 microg/mL) inhibited beta-hexosaminidase release, leukotriene C(4)/D(4)/E(4) synthesis, and TNF-alpha production. Moreover, a high concentration of JBE (1000 microg/mL) suppressed smooth muscle constriction induced by histamine (10 microM) and leukotriene D(4) (10 nM) in a guinea pig trachea strip. The search for components in JBE with an inhibitory activity on mast cell degranulation was guided by inhibition of beta-hexsosaminidase release. Two eremophilane-type sesquiterpenes, six polyphenolic compounds, and two triterpene glycosides were isolated. Of these compounds, fukinolic acid, a principal polyphenol constituent, showed potent inhibitory activity (IC(50) value = 2.1 microg/mL). Consequently, On the basis of its inhibition of mast cell activation and direct smooth muscle reaction induced by released mediators, JBE was found to suppress the type I allergic reaction.  相似文献   

7.
The inhibitory effects of tea catechins, the O-methylated derivatives of (-)-epigallocatechin-3-O-gallate (EGCG), and the polyphenol extracts from tea leaves (Camellia sinensis L.) on oxazolone-induced type IV allergy in male ICR mice were investigated. Four major tea catechins and two O-methylated derivatives, (-)-epigallocatechin-3-O-(3-O-methyl)gallate (EGCG3' 'Me) and (-)-epigallocatechin-3-O-(4-O-methyl)gallate (EGCG4' 'Me), showed significant inhibitory effects on mouse type IV allergy after a percutaneous administration at a dose of 0.13 mg/ear. Among tea catechins, the compounds including galloyl moieties, such as EGCG and (-)-epicatechin-3-O-gallate (ECG), showed the strongest inhibitory activities on mouse type IV allergy. The inhibitory activities of EGCG3' 'Me and EGCG4' 'Me were higher than that of EGCG at a dose of 0.05 mg/ear. Polyphenol extract from tea leaves of Benihomare cultivar, which includes EGCG3' 'Me, strongly inhibited mouse type IV allergy after percutaneous administration in comparison with that from Yabukita cultivar, which does not include EGCG3' 'Me, at doses of 0.05 and 0.13 mg/ear. EGCG3' 'Me is thought to contribute, at least in part, to the inhibitory ability of Benihomare tea leaves on mouse type IV allergy. EGCG and the polyphenol extracts from Benihomare and Yabukita tea leaves also inhibited mouse type IV allergy by oral administration at 1 h before the sensitization and at 1 h before the challenge with oxazolone. Therefore, daily intake of tea drinks could have potential to prevent type IV allergy.  相似文献   

8.
(-)-Epigallocatechin-3-gallate (EGCG) exhibited strong antimicrobial activity. However, the easy oxidation of EGCG has limited its application. To increase the antimicrobial activity and stability of EGCG, the EGCG-Cu(II) complex was formed by chelating copper ions and then electronspun into polyvinyl alcohol (PVA) nanofibers. Electronspun nanofibrous membranes were investigated by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM), which showed that the average fiber diameter was 210 nm. Minimal inhibitory concentrations (MICs) of EGCG-Cu(II)/PVA membranes were tested against the tested strains. The bactericidal activity of EGCG-Cu(II) was suppressed by ethylenediaminetetraacetic acid (EDTA). Cell killing was accompanied by the leakage of intracellular proteins, indicating that the cytoplasmic membrane was badly damaged after exposure to the EGCG-Cu(II)/PVA membrane. We observed the process of cell damage by SEM. On the basis of experimental evidence and theoretical analyses, the mechanism proposed that copper ions played a cooperative role in the bactericidal process of EGCG. To evaluate the antimicrobial activity of the EGCG-Cu(II)/PVA membrane, we developed a rapid detection method by labeling cells with water-soluble CdTe quantum dots.  相似文献   

9.
Histidine decarboxylase (HDC) catalyzes histamine formation from histidine. Histamine is a bioactive amine acting as a neurotransmitter as well as a chemical mediator. Phenolic food components have been tested for their ability to inhibit recombinant human HDC. Epicatechin gallate (ECG) was found to be a potent inhibitor as it inhibited HDC activity in a competitive manner with Ki = 10 muM against l-histidine. Epigallocatechin gallate (EGCG) showed time-dependent inhibition which disappeared under anaerobic conditions. It is probable that time-dependent inhibition could be due to the result of autoxidation of EGCG. The initial burst observed for EGCG suggests that EGCG itself is involved in HDC inhibition as observed for ECG. Our present results have shown that the tested food components can inhibit HDC activity. This inhibition likely affects histamine biosynthesis and possibly leads to controlling the biological action induced by histamine. Therefore, those food components exhibiting HDC inhibitory activity might be potentially useful in controlling histamine-induced biological actions.  相似文献   

10.
We have investigated the inhibitory effects of polyphenols from natural products, such as green tea, bilberry, grape, ginkgo, and apple, on rainbow trout gelatinase activities. Gelatinases from the skin, muscle, and blood of rainbow trout contained serine proteinase, metalloproteinase, and other proteinase activities as measured by gelatin zymography. The polyphenols of green tea caused the strong inhibition of some gelatinase activities when compared with those of the other products. This inhibition was quite similar to that of metalloproteinase by ethylenediaminetetraacetic acid, suggesting that the effects of green tea polyphenols on proteinase activities are specific for metalloproteinases. The major catechins of green tea polyphenols were then separated and identified by reverse-phase chromatography to be (-)-epigallocatechin gallate (EGCG), (-)-epigallocatechin, (-)-epicatechin gallate, and (-)-epicatechin. The effects of these catechins on gelatinase activities were examined; the most potent inhibitor of metalloproteinase activities was found to be EGCG. These results have indicated that green tea polyphenols including EGCG are useful for regulating metalloproteinase activities of fish meat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号