首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
基于土壤质地数据估算土壤保水性能Van Genuchten参数   总被引:5,自引:0,他引:5  
The van Genuchten (vG) function is often used to describe the soil water retention curve (SWRC) of unsaturated soils and fractured rock. The objective of this study was to develop a method to determine the vG model parameter m from the fractal dimension. We compared two approaches previously proposed by van Genuchten and Lenhard et al. for estimating m from the pore size distribution index of the Brooks and Corey (BC) model. In both approaches we used a relationship between the pore size distribution index of the BC model and the fractal dimension of the SWRC. A dataset containing 75 samples from the UNSODA unsaturated soil hydraulic database was used to evaluate the two approaches. The statistical parameters showed that the approach by Lenhard et al. provided better estimates of the parameter m. Another dataset containing 72 samples from the literature was used to validate Lenhard’s approach in which the SWRC fractal dimension was estimated from the clay content. The estimated SWRC of the second dataset was compared with those obtained with the Rosetta model using sand, silt, and clay contents. Root mean square error values of the proposed fractal approach and Rosetta were 0.081 and 0.136, respectively, indicating that the proposed fractal approach performed better than the Rosetta model.  相似文献   

2.
湿润速率和粘粒含量对红壤沟间侵蚀的影响   总被引:4,自引:0,他引:4  
An aggregate stability test and a simulated rainfall test were conducted on four representative Ultisols from southeastern China. The soils selected, with clay contents ranging between 117 and 580 g kg-1 , were derived from shale and Quaternary red clay. The stability of aggregates (2–5 mm in diameter) obtained from the soil samples were determined by the Le Bissonnais method. For determination of infiltration, runoff, and erosion, the soil samples were packed in 30 cm × 60 cm trays, wetted at rates of 2, 10, and 60 mm h-1 , and then exposed to simulated rainfall at 60 mm h-1 for 1 h. The results indicated that both aggregate stability and slaking caused by fast wetting increased with increasing clay content. The effect of wetting rate (WR) on infiltration and seal formation varied with clay contents. In the soil with low clay content (sandy loam), the infiltration rate was affected slightly by WR due to low aggregate stability and slaking. In the soils with medium clay content (silt clay loam and clay), WR affected infiltration significantly due to the high aggregate slaking force. In the soil with high clay content, the effect of WR on infiltration was significant, but not as evident as in the soils with medium clay content, which may be related to high aggregate stability by wetting partially compensating for slaking force. The effect of WR on soil loss was similar to that of runoff, but more pronounced. The findings from this study indicated that the relationship between wetting rate and clay content should be considered when predicting interrill erosion in Ultisols.  相似文献   

3.
土壤水分特征曲线的分形模拟   总被引:17,自引:0,他引:17  
Many empirical models have been developed to describe the soil water retention curve (SWRC). In this study, a fractal model for SWRC was derived with a specially constructed Menger sponge to describe the fractal scaling behavior of soil; relationships were established among the fractal dimension of SWRC, the fractal dimension of soil mass, and soil texture; and the model was used to estimate SWRC with the estimated results being compared to experimental data for verification. The derived fractal model was in a power-law form, similar to the Brooks-Corey and Campbell empirical functions. Experimental data of particle size distribution (PSD), texture, and soil water retention for 10 soils collected at different places in China were used to estimate the fractal dimension of SWRC and the mass fractal dimension. The fractal dimension of SWRC and the mass fractal dimension were linearly related. Also, both of the fractal dimensions were dependent on soil texture, i.e., clay and sand contents. Expressions were proposed to quantify the relationships. Based on the relationships, four methods were used to determine the fractal dimension of SWRC and the model was applied to estimate soil water content at a wide range of tension values. The estimated results compared well with the measured data having relative errors less than 10% for over 60% of the measurements. Thus, this model, estimating the fractal dimension using soil textural data, offered an alternative for predicting SWRC.  相似文献   

4.
A laboratory salt-water dynamics experiment using unsaturated soils in packed silt loam and clay soil columns with different soil texture profiles and groundwater levels under crops were conducted to study the changes of salt-water dynamics induced by water uptake of crops and to propose the theoretical basis for the regulation and control of salt-water dynamics as well as to predict salinity levels. The HYDRUS 1D model was applied to simulate the one-dimensional movement of water and salt transport in the soil columns. The results showed that the salts mainly accumulated in the plow layer in the soil columns under crops. Soil water and salt both moved towards the plow layer due to soil water absorption by the crop root system. The salt contents in the column with lower groundwater were mostly greater than those with high groundwater. The water contents in the soil columns increased from top to the bottom due to plant root water uptake. The changes in groundwater level had little influence on water content of the root zone in the soil columns with crop planting. Comparison between the simulated and the determined values showed that model simulation results were ideal, so it is practicable to do numerical simulation of soil salt and water transport by the HYDRUS 1D model. Furthermore, if the actual movement of salt and water in fields is to be described in detail, much work needs to be done. The most important thing is to refine the parameters and select precise boundary conditions.  相似文献   

5.
The results from comparative study of the EUF-K values of four different soils and of their various particle fractions (< 2μm, 2-10μm and 10-50μm) showed that the EUF-K values were related to the composition of clay minerals and the soil particle size. The EUF-K values (0-35 min) were closely related to the amount of rapidly available K and part of non-exchangeable K of soils. Biological experiments proved that EUF technique was an effective method for evaluating soil K-supplying power.  相似文献   

6.
On the Loess Plateau of China, a dry soil layer may form due to excess transpiration, leading to degradation of black locust(Robinia pseudoacacia) stands. In order to better manage projects involving black locust, this study was intended to investigate the response of black locust transpiration rate to soil water availability as affected by meteorological factors using two representative soils(loamy clay and sandy loam) on the Loess Plateau. Four soil water contents were maintained for black locust seedlings grown in pots initially outdoors and then in a climate-controlled chamber, by either drying or irrigating the pots. In both environments, daily transpiration rates were related by a power function to air temperature and by a logistic function to reference evapotranspiration(ET0). Transpiration rates were more susceptible to changes in the meteorological conditions in the sandy loam than in the loamy clay soil. The transpiration rate in the well-watered treatment was greater for black locust grown in the sandy loam than in the loamy clay soil. Normalized transpiration rates were unaffected by ET0 until a critical value of soil water content(θc) was attained; the θc value decreased significantly for the loamy clay soil but increased significantly for the sandy loam soil when ET0 increased. These suggested that the effect of the meteorological condition on the transpiration characteristics of black locust was dependent on soil texture.  相似文献   

7.
Soil water-retention characteristics at measurement scales are generally different from those at application scales, and there is scale disparity between them and soil physical properties. The relationships between two water-retention parameters, the scaling parameter related to the inverse of the air-entry pressure (αvG, cm-1) and the curve shape factor related to soil pore-size distribution (n) of the van Genuchten water-retention equation, and soil texture (sand, silt, and clay contents) were examined at multiple scales. One hundred twenty-eight undisturbed soil samples were collected from a 640-m transect located in Fuxin, China. Soil water-retention curves were measured and the van Genuchten parameters were obtained by curve fitting. The relationships between the two parameters and soil texture at the observed scale and at multiple scales were evaluated using Pearson correlation and joint multifractal analyses, respectively. The results of Pearson correlation analysis showed that the parameter αvG was significantly correlated with sand, silt, and clay contents at the observed scale. Joint multifractal analyses, however, indicated that the parameter αvG was not correlated with silt and sand contents at multiple scales. The parameter n was positively correlated with clay content at multiple scales. Sand content was significantly correlated with the parameter n at the observed scale but not at multiple scales. Clay contents were strongly correlated to both water-retention parameters because clay content was relatively low in the soil studied, indicating that water retention was dominated by clay content in the field of this study at all scales. These suggested that multiple-scale analyses were necessary to fully grasp the spatial variability of soil water-retention characteristics.  相似文献   

8.
Computer simulation was used for predictive analysis of the effects of weather and soil type on crop yield in the U.S.crop insurance program.The Environmental Policy Integrated Climate (EPIC) model was modified to include hail weather events,which completed the modifications necessary to simulate the four most frequent causes of crop yield loss (hail,excessive wet,excessive cold,and excessive dry) associated with soil type in Kansas,USA.At the region level,per hectare yields were simulated for corn,wheat,soybean,and sorghum.We concluded that it was possible to predict crop yields through computer simulation with greater than 93% accuracy.The hail damage model test indicated EPIC could predict hail-soil-induced yield losses reasonably well (R2 > 0.6).The investigation of soil type influence on dryland sorghum and wheat production indicated that Wymore silty clay loam soil and Kenoma silt loam produced the highest sorghum yields statistically;Kuma silt loam,Roxbury silt loam,Crete silty clay loam,and Woodson silt soils produced the second highest sorghum yields statistically;and Richfiled silt loam,Wells loam,and Canadian sandy loam produced the lowest sorghum yields.By contrast,wheat production showed less sensitivity to soil type variation.The less sensitive response of wheat yields to the soil type could be largely due to the unconsidered small-scale variability of soil features.  相似文献   

9.
There is a need for determinations of soil organic carbon (SOC) and inorganic carbon (SIC) due to increasing interest in soil carbon sequestration. Two sets of soil samples were collected separately from the Yanqi Basin of northwest China to evaluate loss-on-ignition (LOI) method for estimating SOC and SIC in arid soils through determining SOC using an element analyzer, a modified Walkley-Black method and a LOI method with combustion at 375℃ for 17 h and determining SIC using a pressure calcimeter method and a LOI procedure estimated by a weight loss between 375 to 800℃. Our results indicated that the Walkley-Black method provided 99%recovery of SOC for the arid soils tested. There were strong linear relationships(r > 0.93, P < 0.001) for both SOC and SIC between the traditional method and the LOI technique. One set of soil samples was used to develop relationships between LOI and SOC(by the Walkley-Black method), and between LOI and SIC(by the pressure calcimeter method), and the other set of soil samples was used to evaluate the derived equations by comparing predicted SOC and SIC with measured values. The mean absolute errors were small for both SOC (1.7 g C kg-1) and SIC(1.22 g C kg-1), demonstrating that the LOI method was reliable and could provide accurate estimates of SOC and SIC for arid soils.  相似文献   

10.
The characteristics of the reflectance spectra of clay minerals and their influences on the reflectance spectra of soils are dealt with in the paper.The results showed that dominant clay minerals in soils could be distinguished in light of the spectral -form parameters of the reflectance spectra of soils,thus making it possible to develop a quick method to determine clay minerals by means of reflectance spectra of soils in the lab.and providing a theoretic basis for remote sensing of clay minerals in soils with a high resolution imaging spectrometer.  相似文献   

11.
Background, Aims, and Scope  During the last decades, different methods have been developed to determine soil hydraulic properties in the field and laboratory. These methodologies are frequently time-consuming and/or expensive. An indirect method, named Pedotransfer Functions (PTFs), was developed to predict soil hydraulic properties using other easily measurable soil (physical and chemical) parameters. This work evaluates the use of the PTFs included in the Rosetta model (Schaap et al. 2001) and compares them with PTFs obtained specifically for soils under two different vegetation covers. Methods  Rosetta software includes two basic types of pedotransfer functions (Class PTF and Continuous PTF), allowing the estimation of van Genuchten water retention parameters using limited (textural classes only) or more extensive (texture, bulk density and one or two water retention measurements) input data. We obtained water retention curves from undisturbed samples using the ‘sand box’ method for potentials between saturation and 20 kPa, and the pressure membrane method for potentials between 100 and 1500 kPa. Physical properties of sampled soils were used as input variables for the Rosetta model and to determine site-specific PTFs. Results  The Rosetta model accurately predicts water content at field capacity, but clearly underestimates it at saturation. Poor agreement between observed and estimated values in terms of root mean square error were obtained for the Rosetta model in comparison with specific PTFs. Discrepancies between both methods are comparable to results obtained by other authors. Conclusions  Site-specific PTFs predicted the van Genuchten parameters better than Rosetta model. Pedotransfers functions have been a useful tool to solve the water retention capacity for soils located in the southern Pyrenees, where the fine particle size and organic matter content are higher. The Rosetta model showed good predictions for the curve parameters, even though the uncertainty of the data predicted was higher than for the site-specific PTFs. Recommendations and Perspectives  The Rosetta model accurately predicts the retention curve parameters when the use is related with wide soil types; nevertheless, if we want to obtain good predictors using a homogenous soil database, specific PTFs are required. ESS-Submission Editor: Prof. Zhihong Xu, PhD (zhihong.xu@griffith.edu.au)  相似文献   

12.
Naser DAVATGAR 《土壤圈》2018,28(1):157-164
An accurate mathematical representation of soil particle-size distribution (PSD) is required to estimate soil hydraulic properties or to compare texture measurements using different classification systems. However, many databases do not contain full PSD data, but instead contain only the clay, silt, and sand mass fractions. The objective of this study was to evaluate the abilities of four PSD models (the Skaggs model, the Fooladmand model, the modified Gray model GM (1,1), and the Fredlund model) to predict detailed PSD using limited soil textural data and to determine the effects of soil texture on the performance of the individual PSD model. The mean absolute error (MAE) and root mean square error (RMSE) were used to measure the goodness-of-fit of the models, and the Akaike''s information criterion (AIC) was used to compare the quality of model fits. The performance of all PSD models except the GM (1,1) improved with increasing clay content in soils. This result showed that the GM (1,1) was less dependent on soil texture. The Fredlund model was the best for describing the PSDs of all soil textures except in the sand textural class. However, the GM (1,1) showed better performance as the sand content increased. These results indicated that the Fredlund model showed the best performance and the least values of all evaluation criteria, and can be used using limited soil textural data for detailed PSD.  相似文献   

13.
紫花苜蓿不同根系分布模式的土壤水分模拟和验证   总被引:5,自引:2,他引:3  
根系分布影响着土壤水分养分吸收,实测根系分布费时费力,经验根系分布函数参数简单,应用方便。该研究在田间采用苜蓿栽培土柱试验,测定根系分布,并将其和不同经验根系分布函数分别应用于Hydrus-1D对土壤水分进行动态模拟,通过土壤水分实测值和模拟值比较,验证分析了经验根系分布函数的适用性以及对土壤水分动态变化的影响。结果表明:拟合的根系分布、Prasad分布、Hoffman和van Genuchten分布3种根系分布函数的根长密度模拟值与36 cm以下的根长密度实测值较为吻合,Raats根系分布模拟值与实测值及其他分布函数则差别较大。不同根系分布下土壤水分模拟差别不大,平均相对均方根误差在3.5%以下。非胁迫生长条件下,Prasad根系分布、Hoffman和van Genuchten根系分布都可描述紫花苜蓿实际根系分布状况。  相似文献   

14.
Sodicity and salinity can adversely affect soil structure and are common constraints to plant growth in arid regions. Current remote sensing techniques cannot distinguish between the various classes of salt-affected soils. Field and laboratory measurements of salt-affected soils are time-consuming and expensive. Mapping of the salt-affected soils can be used in soil conservation planning to identify regions with different degrees of limitations. There is a need to use existing field and laboratory measurements to create maps of classes of salt-affected soils. The objectives of this study are to classify salt-affected soils, use existing field data to interpolate and validate geospatial predictions of the classes of salt-affected soils using Geographic Information Systems (GIS), and create maps showing the different classes and distribution of salt-affected soils. The classification framework for salt-affected soils is based on electrical conductivity (ECe), soil pH and the sodium adsorption ratio (SAR), and provides four degrees of limitations to salt-affected soils: slight (normal soils), moderate (saline soils), severe (sodic soils), and extreme (saline-sodic soils). Spatial interpolation of the field data from northwestern Libya was verified by cross-validation, and maps of the salt-affected soils in the region were created. The majority of soils in this region of Libya are normal (slight degree of limitation). Twenty percent of the topsoil is saline-sodic (extreme degree of limitation). Land use recommendations and rehabilitation strategies can be developed from such maps of salt-affected soil classes. The methodology followed in this study can be applied to other arid regions around the world, particularly in developing countries where budgetary constraints limit detailed field and laboratory measurements of sodicity and salinity.  相似文献   

15.
16.
重庆缙云山典型植被原状土与重塑土抗剪强度研究   总被引:4,自引:0,他引:4  
为了从土壤力学方面探索防治水土流失的途径与措施,该文采用直剪仪对重庆缙云山5种典型植被的原状土和重塑土抗剪强度进行试验测定。通过比较相同植被同干密度、同含水率的原状土与重塑土在同一垂直荷载下的剪切差异,分析了根(极细根)在土壤-根系复合体(原状土)中的作用。研究结果表明:原状土剪切位移小于重塑土;在相同垂直荷载作用下,同一植被原状土的抗剪强度大于与其同干密度、同含水率的重塑土。原状土的剪切破坏近似于塑性破坏,而重塑土则属于弹性破坏;原状土的抗剪强度与含根量呈正相关,并以此建立关于原状土的抗剪强度回归模型。  相似文献   

17.
Forest soils differ significantly from the arable land in their distribution of the soil bulk density and humus content, but the water retention parameters are primarily derived from the data of agricultural soils. Thus, there is a need to relate physical parameters of forest soils with their water retention characteristics and compare them with those of agricultural soils. Using 1850 water retention curves from forest soils, we related the following soil physical parameters to soil texture, bulk density, and C content: air capacity (AC), available water capacity (AWC), and the permanent wilting point (PWP). The ACs of forest soils were significantly higher than those of agricultural soils which were related to the low bulk densities of the forest soils, whereas differences in AWCs were small. Therefore, for a proper evaluation of the water retention curves (WRCs) and the parameters derived from them, further subdivisions of the lowest (< 1.45 g cm‐3) of the three bulk density classes was undertaken to the wide range of low soil densities in forest soils (giving a total of 5 bulk density classes). In Germany, 31 soil texture classes are used for the estimation of soil physical parameters. Such a detailed classification is not required because of insignificant differences in WRCs for a large number of these classes. Based on cluster analysis of AC, AWC, and PWP parameters, 10 texture collectives were obtained. Using 5 classes of bulk densities, we further calculated the ACs, AWCs, and the PWPs for these 10 classes. Furthermore, “van Genuchten parameters” (θ r, θ s, α, and n) were derived which described the average WRC for each designated class. In a second approach using multiple regression analysis, regression functions for AC, AWC, and PWP and for the van Genuchten parameter were calculated.  相似文献   

18.
求van Genuchten模型参数的AM-MCMC方法   总被引:2,自引:0,他引:2  
石晓蕾  徐绍辉  廖凯华 《土壤》2012,44(2):345-350
采用基于自适应采样算法的马尔科夫链蒙特卡罗方法(简称AM-MCMC)来估算描述土壤水分特征曲线的van Genuchten模型的参数,并推求出模型参数的后验分布,从而为模型参数的不确定性分析提供依据。结果表明,对于van Genuchten模型而言,采用AM-MCMC算法能得到模型参数后验均值和方差的分布,并且能推求出模型参数的置信区间,所以用这种算法来求解van Genuchten方程的参数是行之有效的,为求解van Genuchten模型参数提供了一种新的思路。  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号