首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 151 毫秒
1.
为了研究生物炭及秸秆还田对干旱区玉米农田温室气体通量的影响,以内蒙古科尔沁地区玉米农田为试验对象,采用静态箱-气相色谱法对分别施入生物炭0 t·hm-2(CK)、15 t·hm-2(C15)、30 t·hm-2(C30)、45 t·hm-2(C45)及秸秆还田(SNPK)的土壤进行温室气体(CO2、CH4和N2O)通量的原位观测,并估算生长季CH4和N2O的综合增温潜势(GWP)与排放强度(GHGI)。结果表明:添加生物炭能够显著减少土壤CO2和N2O的排放量,并促进土壤对CH4的吸收作用。其中处理C15对CO2的减排效果最好,与对照相比CO2排放量降低21.16%。随着施入生物炭量的增加,生物炭对N2O排放的抑制作用不断增强,处理C45对减排效果最好,与对照相比N2O排放量降低86.25%。处理C15对土壤吸收CH4的促进效果最好,CH4吸收量增加56.62%;处理C45对CH4的排放有促进作用,使生长季土壤吸收CH4减少81.36%。SNPK对温室气体的减排作用接近处理C15。添加生物炭和秸秆还田对提高玉米产量和降低农田GWP与GHGI均有显著效果,施用生物炭及秸秆还田均有效提高了科尔沁地区的玉米产量,且玉米产量随着施入生物炭含量的增大而提升。从GWP上来看,施用15 t·hm-2生物炭对温室气体减排的整体效果最好。从GHGI上来看,施用生物炭及秸秆还田均具有一定的经济效益和减排意义,其中施用15 t·hm-2生物炭的综合效益最高。因此综合经济效益与环境因素,建议科尔沁地区农田在种植玉米时添加15 t·hm-2生物炭,如不具备购买生物炭条件,可以考虑秸秆还田来实现玉米增产与温室气体减排。  相似文献   

2.
应用静态明箱-气相色谱法对4 个施氮肥水平N0 [0 kg(N)·hm-2]、N200 [200 kg(N)·hm-2]、N400 [400kg(N)·hm-2]、N600 [600 kg(N)·hm-2]的夏玉米-冬小麦季轮作体系2008~2010 年的土壤温室气体(CH4、CO2 和N2O)排放通量进行研究, 同时观测5 cm 土层土壤温度并记录降水量。结果表明: 太行山前平原冬小麦-夏玉米轮作农田生态系统为CH4 吸收汇, CO2 和N2O 排放源。随着氮肥施入量的增加土壤对CH4 的吸收速率降低, 而CO2 和N2O 的排放速率增加。冬小麦季施氮处理土壤对CH4 的吸收速率显著低于无氮肥的N0 处理, 而N600处理土壤CO2 和N2O 排放速率显著高于N0 处理(P<0.05)。施肥和灌溉会直接导致土壤CO2 和N2O 的排放通量增加, 同时土壤对CH4 的吸收峰值减小。土壤温度升高和降水量增加以及干湿交替加剧均会造成N2O 和CO2排放速率增加。同时在持续干燥和低温条件的冬季不施氮处理观测到土壤对N2O 的吸收现象。N0、N200、N400 和N600 处理土壤CH4 年排放总量(kg·hm-2·a-1)分别为-1.42、-0.75、-0.82、-0.92(2008~2009 年)和-2.60、-1.47、-1.35、-1.76(2009~2010 年), N0、N200、N400 和N600 处理土壤CO2 年排放总量(kg·hm-2·a-1)分别为15 597.6、19 345.6、21 455.9、29 012.5(2008~2009 年)和10 317.7、11 474.0、13 983.5、20 639.3(2009~2010年), N0、N200、N400 和N600 处理土壤N2O 年排放总量(kg·hm-2·a-1)分别为1.05、2.16、5.27、6.98(2008~2009年)和1.49、2.31、4.42、5.81(2009~2010 年)。  相似文献   

3.
减量施氮与大豆间作对蔗田土壤温室气体排放的影响   总被引:3,自引:2,他引:1  
采用静态箱 气相色谱法对常规施氮(N2, 525 kg·hm-2)y和减量施氮(N1, 300 kg·hm-2)处理下甘蔗与大豆按行数比1∶1(SB1)和1∶2(SB2)间作、甘蔗单作(MS)、大豆单作(MB)种植模式下蔗田土壤CO2、N2O、CH4排放通量及土地当量比(LER)进行观测和对比分析, 以探讨不同间作模式及施氮水平下甘蔗//大豆间作农田土壤温室气体排放的动态变化规律及对作物产量的影响, 为制定农田温室气体减排措施提供合理的依据。研究结果表明, 减量施氮处理甘蔗//大豆(1∶2)间作模式(SB2-N1)农田土壤CO2排放总量较甘蔗单作(MS)显著降低35.58%, N2O累积排放总量较甘蔗单作降低56.36%, CH4累积排放总量较甘蔗单作升高7.02%; 不同种植模式和施氮处理蔗田土壤均表现为CO2和N2O的排放源, CH4吸收汇, 追施氮肥后土壤对CH4的吸收速率降低, 但CO2和N2O的排放速率增加。MS-N1、SB1-N1、SB2-N1、MS-N2、SB1-N2、SB2-N2和MB处理土壤CO2年累积排放总量(kg·hm-2·a-1)分别为5 096.89、6 422.69、3 283.20、4 103.29、4 475.84、4 775.31和4 780.35, 土壤N2O年累积排放总量(kg·hm-2·a-1)分别为4.61、5.11、2.15、3.13、3.72、5.60和3.11, 土壤CH4年累积排放总量(kg·hm-2·a-1)分别为 13.68、 21.78、 12.72、 5.53、 11.36、 4.77和 9.97。甘蔗//大豆间作系统2009-2012年土地当量比(LER)均大于1, 且减量施氮水平下, 甘蔗//大豆(1∶2)间作模式优势最明显。  相似文献   

4.
生物质炭在温室气体减排方面具有很大的发展前景,它不仅能实现固碳,对于在大气中停留时间长且增温潜势大的N2O也能发挥积极作用。本研究采用室内厌氧培养试验,按照生物质炭与土壤质量比(0、1%和5%)加入一定量生物质炭,土壤重量含水率控制在20%。利用Robotized Incubation平台实时检测N2O和N2浓度变化,通过测定土壤中反硝化功能基因丰度(nirKnirSnosZ)分析生物质炭对N2O消耗的影响及其微生物方面的影响机理。结果表明:经过20 h厌氧培养后,0生物质炭处理的反硝化功能基因丰度(基因拷贝数·g-1)分别为6.80×107nirK)、5.59×108nirS)和1.22×108nosZ)。与0生物质炭处理相比,1%生物质炭处理的nirS基因丰度由最初的2.65×108基因拷贝数·g-1升至7.43×108基因拷贝数·g-1,nosZ基因丰度则提高了一个数量级,由4.82×107基因拷贝数·g-1升至1.50×108基因拷贝数·g-1,然而nirK基因丰度并无明显变化;5%生物质炭处理的反硝化功能基因丰度并未发生显著变化。试验结束时,添加生物质炭处理的N2/(N2O+N2)比值也明显高于0生物质炭处理。相关性分析结果表明,nirS基因丰度和nosZ基因丰度均与N2O浓度在0.01水平上显著相关。试验末期nirS基因丰度和nosZ基因丰度均随着N2O浓度的降低而升高。因此在本试验中,添加1%生物质炭可显著提高nirSnosZ基因型反硝化细菌的丰度,增大N2/(N2O+N2)比值,促进N2O彻底还原成N2。生物质炭对于N2O主要影响机理是增大了可以还原氧化亚氮的细菌活性,促进完全反硝化。  相似文献   

5.
秸秆还田替代化肥对黄土旱塬小麦产量及水肥利用的影响   总被引:1,自引:0,他引:1  
为研究不同秸秆还田量替代部分化肥后对黄土高原冬小麦产量、水肥利用效率和硝态氮积累特征的影响。于2018—2021年在晋南黄土旱塬冬小麦种植区,设置秸秆不还田(S0)、秸秆半量还田(S1/2)、秸秆全量还田(S1)、秸秆2倍量还田(S2)4个还田量处理,研究不同秸秆还田量替代化肥对冬小麦产量形成、水肥利用效率及土壤硝态氮残留的影响。结果表明:在黄土旱塬麦区,秸秆还田替代8.3%~31.9% N和15.7%~63.2% P2O5的基础上,冬小麦产量总体随秸秆还田量增加而增加,且在降水丰沛年份,增加秸秆还田量可产生更大的产量效应。3年试验总体表明,S2处理冬小麦平均产量分别较S0、S1/2和S1处理分别高17.5%(P<0.05),10.4%(P<0.05),4.3%。连续3年秸秆还田均提高了冬小麦穗数,S2处理冬小麦平均单位面积穗数分别较S0、S1/2和[JP]S1处理高17.1%(P<0.05),12.3%(P<0.05),3.6%,不同处理间穗粒数和千粒重差异不显著。播前2 m土壤贮水量总体随着还田量的增加而增加,试验期间S2处理平均贮水量较S0提高8.3%(P<0.05)。冬小麦生育期耗水量也表现为随着还田量的增加而增加,S2处理平均耗水量较S0处理增加了10.0%(P<0.05)。不同处理间水分生产效率差异不显著,平均为14.9 kg/(hm2·mm)。在秸秆还田替代部分化肥基础上,旱塬冬小麦肥料利用效率随着秸秆还田量的增加而增加,其中,S2处理平均氮肥偏生产力(PFPN)、氮肥农学效率(AEN)、氮肥当季回收率(REN)和磷肥偏生产力(PFPP)较S0处理分别提高66.4%,155.8%,113.5%,105.2%。连续3年秸秆不还田使0—2 m土壤硝态氮残留量较2018年播前提高100.6%,并随水向下淋溶在深层土壤中累积,而秸秆还田处理2 m土层硝态氮累积量均低于2018年播前,S2处理2 m土壤硝态氮残留量最低,为244.8 kg/hm2。综合考虑,晋南黄土旱塬麦区,在秸秆还田替代8.3%~31.9% N和15.7%~63.2% P2O5基地上,可增加播前土壤底墒,降低肥料残留,并提高肥料利用效率,进而提高冬小麦产量,其中,以2倍秸秆还田量(平均为7 477 kg/hm2)产生的产量和水肥效应最佳。研究结果可为推进旱作麦区面源污染防控和冬小麦高产高效绿色生产提供理论依据。  相似文献   

6.
华北平原小麦-玉米农田生态系统服务评价   总被引:8,自引:1,他引:7  
本研究于2006 年和2007 年在中国科学院栾城农业生态系统试验站田间试验基础上, 评价了华北平原小麦-玉米农田的初级产品生产、气体调节、土壤有机质累积、水调节和氮素转化等5 项生态系统服务。研究表明, 华北平原小麦-玉米农田初级产品量包括籽粒产量5.04~5.71 t·hm-2·a-1(小麦)和6.69~8.24t·hm-2·a-1(玉米), 秸秆量8.58~9.72 t·hm-2·a-1(小麦)和6.97~8.58 t·hm-2·a-1 (玉米); 农田气体调节包括释放O2 24.99~28.64 t·hm-2·a-1, 固定CO2 34.23~39.22 t·hm-2·a-1, 排放N2O 0.72~1.13 kg·hm-2·a-1, 吸收CH4 3.39~5.70 kg·hm-2·a-1; 农田耕层土壤有机质累积量为1.13~2.39 t·hm-2·a-1; 水资源消耗量为2 890~3 830 m3·hm-2·a-1; 农田土壤氮素几乎都处于亏缺状态, 变化范围为-107.73~5.33 kg(N)·hm-2·a-1, 不施氮肥农田亏缺较多。综合评价发现, 小麦-玉米农田提供生态服务的经济价值为5.48~6.25 万元·hm-2·a-1, 是粮食生产价值的3 倍左右。氮肥施用对农田生态系统服务及其产生福利的影响较为复杂, 这主要是由于施加氮肥明显增加了氮素转化功能导致的经济损失, 而同时可能会增加初级产品生产、气体调节中作物固定CO2 和释放O2 功能的经济价值。尽管目前有关生态系统服务评价研究主要关注生态系统产生的正效应, 但仍有必要对农田产生的负效应做出评价, 以便客观看待农田生态系统价值, 正确认识农田生态系统对人类福利的影响。  相似文献   

7.
基于2009-2011年田间试验, 研究了黄土旱塬区不同秸秆覆盖措施下冬小麦农田土壤呼吸和小麦产量变化, 计算了生产每千克籽粒产量下土壤CO2的释放量, 并以此比较了处理间的经济 环境效益值。试验包括4个处理: 无覆盖对照(CK)、全年9 000 kg·hm-2秸秆覆盖(M9000)、全年4 500 kg·hm-2秸秆覆盖(M4500)和夏闲期秸秆覆盖(SF)。结果表明: 冬小麦生育期内土壤CO2累积释放量在处理间无显著差异, 但第1年生育期为14.92~17.43 t(CO2)·hm-2, 显著高于第2年[12.95~13.69 t(CO2)·hm -2](P<0.05), 处理和年份的交互作用不显著。与CK(产量5.03 t·hm-2)相比, 秸秆覆盖降低了作物产量, 其中M9000 (4.71 t·hm-2)与CK差异显著。经济 环境效益值计算结果显示, 冬小麦生育期内生产每千克籽粒释放2.96~3.16 kg CO2, 处理间无显著差异。从各处理平均值看, 小麦产量以及经济 环境效益值均存在显著的年际差异, 降水偏少的第1年度作物产量(4.60~4.98 t·hm-2)显著低于降水相对丰富的第2年度(4.50~5.47 t·hm-2), 但经济 环境效益值(3.03~3.69 kg·kg 1、2.45~2.88 kg·kg-1)结果相反。处理和年份对作物产量和经济 环境效益值具有显著的交互影响, 在缺水年份秸秆覆盖能够提高作物产量, M9000处理具有最优的经济 环境效益; 而在丰水年份, 秸秆覆盖导致产量显著下降, CK具有更好的经济 环境效益。  相似文献   

8.
基于野外长期控制试验,研究了氮沉降7 a后人工杉木林下植物多样性的响应。试验处理分为N0[(Control),0 kg/(hm2·a)];N1[60 kg/(hm2·a)];N2[120 kg/(hm2·a)];N3[240 kg/(hm2·a)]。林下植物中共发现51种植物,隶属34科,45属。随着氮沉降的增加,呈现出植物α多样性指数减少,而βws多样性指数增加的趋势,群落相似性指数明显降低。去趋势对应分析排序(detrended correspondence analysis, DCA)结果表明,氮沉降改变了植物群落结构。其中,菝葜和沿海紫金牛在4个处理中均有发现,为广适种。毛冬青、粗叶榕、毛花连蕊茶、毛枝连蕊茶、香附子这几种植物在N0-N2处理中有发现,属于较耐受种。茅莓、羊乳、羊角藤、琴叶榕、紫麻、杜虹花、乌蔹莓、海金莎均为一般耐受种,在N0和N1处理中有发现。另外,黄瑞木、黄樟等16种植物可能为敏感种,仅可在N0处理中发现。总之,亚热带森林植物多样性受到了氮沉降增加的不利影响,应针对某些濒危植物种类实施合理的保育措施。  相似文献   

9.
通过设置在甘肃省定西市李家堡镇的不同耕作措施试验, 利用CO2分析仪、静态箱-气相色谱法对双序列轮作次序下春小麦地、豌豆地生育期内CO2、CH4和N2O通量进行了测定。试验结果表明: 4种耕作措施下春小麦地和豌豆地在生育期内均表现为CO2源、N2O源和CH4汇的功能。传统耕作不覆盖、免耕不覆盖、免耕秸秆覆盖和传统耕作结合秸秆还田下, 春小麦生育期内平均土壤CO2通量(μmol·m-2·s-1)分别为0.203 6、0.221 2、0.241 8、0.224 9, CH4通量(mg·m-2·h-1)分别为-0.041 6、-0.078 0、-0.081 8、-0.053 7, N2O通量(mg·m-2·h-1)分别为0.089 1、0.069 2、0.046 1、0.065 6; 豌豆生育期内平均土壤CO2通量(μmol·m-2·s-1)分别为0.273 6、0.261 6、0.218 1、0.236 0, CH4通量(mg·m-2·h-1)分别为-0.055 0、-0.073 7、-0.066 2、-0.054 5, N2O通量(mg·m-2·h-1)分别为0.123 4、0.084 7、0.080 6、0.035 0。少免耕及小麦秸秆覆盖有利于减少土壤CO2排放通量, 免耕不覆盖、免耕秸秆覆盖及传统耕作结合秸秆还田均能不同程度地增加CH4吸收通量、减少N2O排放通量。综合来看, 免耕不覆盖、免耕秸秆覆盖和传统耕作结合秸秆还田3种保护性耕作措施有助于减少土壤温室气体的排放量。春小麦地CO2通量随着土壤温度、土壤含水量的逐渐升高而增大; CH4吸收通量随着土壤含水量的逐渐升高而增大, 而随着土壤温度的逐渐升高而减小。豌豆地CO2通量的变化与土壤含水量存在极显著正相关关系; 而春小麦地N2O通量则与平均土壤温度呈显著正相关, 豌豆地则为极显著正相关。  相似文献   

10.
由于人类大量开采使用石油、煤炭、天然气等化石燃料,使大气CO2浓度升高,这不但加速全球变暖,还将影响地球上动植物的生存和分布,从而对整个生态系统产生深远影响。为探明CO2浓度升高与豌豆蚜(Acyrthosiphon pisum)虫口密度对紫花苜蓿(Medicago sativa)叶片内化学物质的影响,明确CO2浓度升高和蚜虫密度在紫花苜蓿生理生化中的作用,试验在CO2光照培养箱内设置380 μL·L-1(对照)、550 μL·L-1和750 μL·L-1 3个CO2浓度培育苜蓿幼苗并接入10日龄成蚜10头·株-1、20头·株-1、30头·株-1,并以0头·株-1作为空白对照,1周后测定植物体内营养物质和次生代谢物质含量。结果表明,随CO2浓度升高,蚜虫密度为30头·株-1时紫花苜蓿可溶性蛋白、可溶性糖以及淀粉含量均上升,在750 μL·L-1 CO2浓度下分别比CK上升11.62倍、0.49倍和0.24倍;黄酮、总酚和简单酚含量也显著上升。随蚜虫危害程度加重,同一CO2浓度下紫花苜蓿淀粉、简单酚含量先上升后下降,高CO2浓度蚜虫密度为30头·株-1时比0头·株-1时可溶性糖、总酚以及单宁含量上升1.66倍、1.49 mg·g-1和1.09 mg·g-1,差异均显著(P<0.05)。说明具有固氮作用的豆科植物更易于适应CO2浓度升高的变化,从而在受到刺吸胁迫后增强自身诱导抗虫性以抵御害虫为害。  相似文献   

11.
耕作方式转变对冬小麦季农田温室气体排放和产量的影响   总被引:5,自引:0,他引:5  
合理耕作方式对农业可持续生产和减缓全球气候变化有重要意义。为评价耕作方式转变对农田温室气体排放的影响,本研究针对连续16年的长期旋耕小麦/玉米农田进行不同的轮耕处理,采用原位静态箱-气相色谱法分析了小麦季农田土壤3种温室气体CH_4、CO_2、N_2O排放规律。试验共设3个处理:在前期旋耕基础上分别进行翻耕处理(XF)和深松处理(XS),另外保持旋耕(X)作为对照。试验结果表明:CO_2排放通量在耕作后1周有明显排放峰,XF处理显著低于X和XS处理;N_2O排放通量在耕作和灌溉施肥后有明显排放峰,XS处理显著高于XF和X处理;两种气体排放通量在越冬期出现最低值。CH_4从耕作后到越冬期有持续明显的吸收过程,其中XS处理的吸收通量显著高于XF和X处理。农田土壤在冬小麦生长季表现为CO_2的源,累积排放量为XS(5 241 kg·hm~(-2))X(5 160 kg·hm~(-2))XF(4 840 kg·hm~(-2)),XS与X处理间差异不显著,均显著高于XF;N_2O的源,累积排放量表现为XS(4.38 kg·hm~(-2))XF(2.39 kg·hm~(-2))X(2.26 kg·hm~(-2)),XS与XF处理间差异不显著,均显著高于X处理;CH_4的汇,累积吸收量为XS(6.14 kg·hm~(-2))XF(5.64 kg·hm~(-2))X(3.70 kg·hm~(-2))。将累积温室气体换算为CO_2当量,对增温效应的贡献表现为XF(5.32 t·hm~(-2))X(5.66 t·hm~(-2))XS(6.23 t·hm~(-2)),三者之间差异达显著水平。经翻耕处理后,0~10 cm土壤有机质含量明显低于X处理,而10~20 cm土壤有机质升高,表层有机质降低可能是翻耕处理CO_2的排放减少的主要原因。不同耕作处理后小麦产量差异明显,X处理冬小麦产量最高,且显著高于XS处理,XF处理与X和XS处理差异均不显著。综合考虑耕作方式对温室气体排放和冬小麦产量的影响,短期内旋耕-翻耕可能是较适宜的轮耕模式,旋耕深松模式不利于控制温室气体排放,但未来需要加强对不同轮耕模式长期效应研究。  相似文献   

12.
研究不同农业管理措施下小麦农田N2O、CO2、CH4等温室气体的综合增温潜势,有助于科学评价农业管理措施在减少温室气体排放和减缓全球变暖方面的作用,为制定温室气体减排措施提供依据。本研究采用静态明箱气相色谱法对华北平原高产农区4种农业管理措施下冬小麦农田土壤温室气体(CO2、CH4和N2O)季节排放通量进行了监测,估算了不同农业管理措施下小麦季的综合温室效应。结果表明,华北太行山前平原冬小麦农田土壤是CO2、N2O的排放源,CH4的吸收汇。不同农业管理措施对不同温室气体的排放源和吸收汇强度的影响不同,增施氮肥、充分灌溉促进了土壤CO2、N2O的生成,强化了土壤CO2和N2O排放源的特征;但却抑制了土壤对CH4的氧化,弱化了土壤作为大气CH4吸收汇的特征。2009—2010年和2010—2011年冬小麦生长季T1(传统模式)、T2(高产高效模式)、T3(再高产模式)和T4(再高产高效和土壤生产力提高模式)处理土壤排放的温室气体碳当量分别依次为8 880 kg(CO2).hm 2、8 372 kg(CO2).hm 2、9 600 kg(CO2).hm 2、9 318kg(CO2).hm 2和13 395 kg(CO2).hm 2、12 904 kg(CO2).hm 2、13 933 kg(CO2).hm 2、13 189 kg(CO2).hm 2。各处理间温室气体排放差异主要是由于施肥和灌溉措施的不同引起的,秸秆还田与否是造成年度间温室气体排放存在差异的主要原因。T2处理综合增温潜势相对较低,产量和产投比相对较高,为本区域冬小麦优化管理模式。  相似文献   

13.
探讨秸秆还田与施氮对高纬度黑土区春玉米产量与温室气体排放特性的影响,对促进粮食增产和降低环境代价具有重要意义。本研究通过位于黑土区的大田定位试验,利用静态箱-气相色谱计数方法,在秸秆还田与不还田和3个氮素用量(纯N:120 kg·hm~(-2),240 kg·hm~(-2)和300 kg·hm~(-2))条件下,研究了春玉米不同生育时期农田土壤CO2、N2O和CH4综合温室效应与排放强度,以及土壤过氧化氢酶和脲酶活性的变化。结果表明:无秸秆还田时,高氮用量处理春玉米产量最高;秸秆还田后,中等氮用量处理(240 kg·hm~(-2))春玉米产量最高,且与无秸秆还田的高氮处理间无显著差异。无秸秆还田时,随施氮量增加,CO2、N2O和CH4排放量均显著提高,综合温室效应和土壤温室气体排放量与强度显著增加(P0.05);增施氮肥配合秸秆还田,增加了CO2和N2O的排放量,而土壤CH4的碳汇功能增强,温室气体排放量与强度未显著提高(P0.05)。无秸秆还田,增施氮肥降低了土壤过氧化氢酶活性但提高了土壤脲酶活性;而秸秆还田使得增施氮肥引起的土壤过氧化氢酶活性降低的幅度加大但土壤脲酶活性提高的幅度变小。因此,秸秆还田后配合中等用量氮处理(240 kg·hm~(-2))玉米产量最高,且能够抑制单纯增施氮肥对综合温室效应和土壤温室气体排放强度的促进作用,推荐在生产中参考使用。  相似文献   

14.
稻虾共作对秸秆还田后稻田温室气体排放的影响   总被引:12,自引:3,他引:9  
稻虾共作模式是稻田种养复合模式的重要组成部分,其主要特点是稻草全量还田、非稻季持续淹水和周年养殖克氏原螯虾。目前对稻虾共作模式稻田温室气体排放的影响尚不清楚。本研究以江汉平原冬泡无稻草还田为对照,设置冬泡+稻草还田和冬泡+稻草还田+养虾处理,探讨稻草还田及稻虾共作对稻田系统CH_4、N_2O和CO_2排放的影响,为准确评估稻田温室气体排放提供数据支撑和理论支持。结果表明,在大田监测期间,冬泡+稻草还田处理CH_4累积排放量比冬泡无稻草还田处理显著增加(P0.05),2015年和2016年增幅分别为27.23%和60.08%;冬泡+稻草还田+养虾处理CH_4累积排放量比冬泡+稻草还田显著降低(P0.05),2015年和2016年降幅分别为29.02%和41.19%。冬泡+稻草还田处理CO_2累积排放比冬泡无稻草还田处理显著提高;与冬泡无稻草还田处理相比较,冬泡+稻草还田处理和冬泡+稻草还田+养虾处理对N_2O累积排放无显著影响。从温室效应角度看,冬泡+稻草还田处理温室效应比冬泡无稻草还田处理大幅度增加,而冬泡+稻草还田基础上进行养虾则可大幅度降低CH_4排放,从而降低因秸秆还田带来的温室效应增强。所有处理水稻产量无显著差异,与冬泡+稻草还田处理相比,冬泡+稻草还田+养虾可显著降低温室气体排放强度。和冬泡无稻草还田处理相比,冬泡+稻草还田和冬泡+稻草还田+养虾对土壤可溶性有机碳(DOC)、乙酸和NH_4~+-N并无显著影响。冬泡+稻草还田+养虾可极显著提高单位面积收益。  相似文献   

15.
施肥方式对冬小麦季紫色土N2O排放特征的影响   总被引:8,自引:2,他引:6  
利用紫色土养分循环长期定位施肥试验平台,通过静态箱-气相色谱法,于2012年11月至2013年5月,研究了单施氮肥(N)、猪厩肥(OM)、常规氮磷钾肥(NPK)、猪厩肥配施氮磷钾肥(OMNPK)、秸秆还田配施氮磷钾肥(CRNPK)及对照不施肥(NF)6种施肥方式下,紫色土冬小麦季土壤N2O的排放特征。结果表明,在相同施氮水平[130 kg(N)·hm-2]下,施肥方式对N2O排放量有显著影响(P0.05)。N、OM、NPK、OMNPK和CRNPK处理下,土壤N2O排放量[kg(N)·hm-2]分别为0.38、0.36、0.29、0.33和0.19,N2O排放系数分别为0.25%、0.23%、0.18%、0.21%和0.10%。NF的土壤N2O排放量为0.06 kg(N)·hm-2。土壤无机氮含量(NO3--N和NH4+-N)是N2O排放的主要影响因子,降雨能有效激发N2O排放。基于小麦产量评价不同施肥方式下的N2O排放,结果表明,N、OM、NPK、OMNPK和CRNPK单位小麦产量N2O的GWP值[yield-scaled GWP,kg(CO2 eq)·t-1]分别为132.57、45.70、49.07、48.92和26.41。CRNPK的小麦产量与6种施肥方式中获得最大产量的OM间没有显著差异,但显著高于其他处理。而且,CRNPK的yield-scaled GWP比紫色土地区冬小麦种植中常规施肥方式(NPK)显著减少46%,并显著低于其他4种施肥方式。可见,秸秆还田配施氮磷钾肥在保证小麦产量的同时,能有效减少因施肥引发的N2O排放,可作为紫色土地区推荐的最佳施肥措施。  相似文献   

16.
不同施肥方法对双季稻区水稻产量及氮素流失的影响   总被引:10,自引:2,他引:8  
为保障粮食安全,减少稻田生态系统氮肥投入,提高氮肥利用率和减少氮素流失成为重要的农业和环境措施。本研究在位于湖南岳阳的农业部岳阳农业环境科学观测实验站开展为期1年的早稻、晚稻田间试验,比较了不施肥(T_1)、尿素常规施肥(T_2,施N 280 kg·hm~(-2)、P_2O_5 165 kg·hm~(-2)、K_2O 120 kg·hm~(-2))、控释肥常规施用(T_3,施N 230 kg·hm~(-2)、P_2O_5 165 kg·hm~(-2)、K_2O 120 kg·hm~(-2))、高量控释肥侧条施用(T_4,施N 230 kg·hm~(-2)、P_2O_5 138 kg·hm~(-2)、K_2O 120 kg·hm~(-2))、中量控释肥侧条施用(T5,施N 180 kg·hm~(-2)、P_2O_5 123 kg·hm~(-2)、K_2O 120kg·hm~(-2))及低量控释肥侧条施用(T6,施N 140 kg·hm~(-2)、P_2O_5 123 kg·hm~(-2)、K_2O 120 kg·hm~(-2))下氮肥的养分利用率、作物产量及氮素流失情况,以期为稻田氮素合理利用提供理论依据。研究结果表明,控释肥侧条施用可有效提高水稻的产量和氮肥利用率,减少面源流失。1)在减少稻田秧苗数量和氮肥施用量的条件下,T_4处理的水稻早晚稻产量分别比T_2处理增加13.17%和4.72%,与T_3处理相比亦分别增加7.27%和1.74%;2)侧条施肥处理有效降低了稻田氮素流失量,年氮流失量为0.466~0.673 kg×hm~(-2),比常规施肥处理降低地表径流氮流失量3.54%~29.36%;3)侧条施肥有效提高了氮肥利用率,T_4处理的氮肥利用率分别是T_2、T_3处理的1.70倍和1.22倍。因此,采用合适的施肥方式、配施适量控释氮肥可获得较高的产值和收益。高量控释肥侧条施用(T_4)是本研究区域最佳的施肥模式,对实现现代化农业生产的高产高效、资源节约和生态环境保护具有重要意义。  相似文献   

17.
不同秸秆还田年限对稻麦轮作系统温室气体排放的影响   总被引:4,自引:0,他引:4  
为揭示稻麦轮作系统不同秸秆还田年限下温室气体排放特征及减排调控机制,本研究采用大田小区试验,考察了稻麦轮作不同秸秆还田年限[空白对照(CK)、常规处理秸秆不还田(NT)、1年秸秆还田(SR1)和5年秸秆还田(SR5)]对CH4、CO2和N2O 3种温室气体排放规律的影响,同时测定了土壤固碳量,估算了秸秆焚烧产生的温室气体排放量,综合计算了4种处理对全球变暖的贡献。试验结果表明,SR1和SR5均显著提升CH4和CO2的排放通量,分别高出NT、CK处理73.52%、309.49%和13.29%、13.06%;同时显著降低N2O排放通量,较NT降低29.68%和42.55%;但SR1和SR5之间温室气体排放通量差异不显著;与NT相比,SR1和SR5可以显著提高土壤固碳量517.9%和709.03%,SR5土壤固碳量高出SR1达30.93%;NT秸秆焚烧产生的全球气温变暖贡献为9 698.49 kg(CO2-eqv)·hm?2,比CK高126.98%。综合分析温室气体排放、土壤固碳以及秸秆焚烧3个因素,SR1全球升温贡献最低,显著低于NT 4.72%。短期全量秸秆还田有助于降低总体温室气体排放,长期进行秸秆还田后降低幅度会逐步减小。  相似文献   

18.
华北平原缺水区保护性耕作技术   总被引:3,自引:1,他引:2  
针对华北平原缺水地区农田生产效益偏低和地下水严重超采导致的生态环境问题,以建立节水、高产、固碳的华北平原缺水区保护性耕作集成技术为目标,在国家科技支撑计划长期支持下,建立了华北平原历时最长的保护性耕作长期定位试验平台(2001年—),开展了小麦/玉米两熟制保护性耕作理论和关键技术研究,集成了农机农艺结合的高产节水型保护性耕作技术体系,并在河北省进行广泛示范推广。主要结果:1)华北平原冬小麦/夏玉米一年两熟区保护性耕作具有固碳、减排、节水、提高土壤质量等生态效应。长期保护性耕作具有土壤养分分层表聚现象:0~5 cm土层的土壤C、N、P、K、有机质含量高于5~10 cm土层,旋耕(RT)和免耕(NT1:秸秆直立免耕;NT2:秸秆粉碎免耕;NT3:整秸秆覆盖免耕)处理土壤有机碳(SOC)的层化比率为1.74~2.04,显著高于翻耕处理(CK和CT)的1.37~1.45。保护性耕作的固碳效应与机制:保护性耕作实施9年后不同耕作方式年固碳量(0~30 cm)NT2处理为840 kg·hm~(-2)·a~(-1)、RT处理为780 kg·hm~(-2)·a~(-1)、CT处理为600kg·hm~(-2)·a~(-1),14年后土壤有机碳(0~30 cm)发生了变化,NT2处理为540 kg·hm~(-2)·a~(-1)、RT处理为720 kg·hm~(-2)·a~(-1)、CT处理为710 kg·hm~(-2)·a~(-1);长期免耕减少了土壤的扰动而降低了土壤碳的矿化率,土壤碳的累积主要固定在土壤大团聚体的颗粒有机碳中,固定态碳首先进入活性易分解有机碳库,然后缓慢转入稳定碳库。保护性耕作的减排效应:不同耕作系统全球增温潜力的计算结果表明,免耕是大气增温的碳汇,而其他耕作系统为碳源。NT处理每年农田生态系统净截留碳947~1 070 kg(C)·hm-2;CK、CT和RT每年向大气分别排放等当量碳3 364kg(C)·hm-2、989 kg(C)·hm-2和343 kg(C)·hm-2。保护性耕作的土壤微生物多样性机制:保护性耕作显著提高了土壤中真菌、细菌、氨氧化古菌和亚硝酸还原酶(nir K)基因的反硝化微生物的多样性,但对氨氧化细菌与含nir S基因的反硝化微生物的多样性影响不大。保护性耕作节水保墒的土壤结构与水力学机制:常规耕作对土壤有压实的作用,而保护性耕作改善了土壤结构,有效提高了储水孔隙、导水率、田间持水量和有效水含量,秸秆覆盖又能有效减少土壤蒸发,具有开源与节流双重节水机制。2)建立了趋零蒸发的麦田玉米整秸覆盖全免耕种植模式。在小麦/玉米一年两熟种植区,首次提出了玉米整秸秆覆盖小麦全免耕播种的种植模式,实现了小麦玉米全程全量秸秆机械化覆盖,形成土壤无效蒸发趋于零的保护性耕作体系与方法;研制了实现趋零蒸发的4JS-2型梳压机和2BMF-6型小麦全免耕播种机组,比目前推广的2BMFS-6/12小麦免耕播种机减少作业动力45.2%,降低作业费用33.3%。3)建立了3年一深松(翻)的少免耕-深松轮耕模式,集成了节水高产保护性耕作技术体系。制定了华北平原冬小麦/夏玉米一年两熟区保护性耕作技术体系等河北省地方标准,与农业、农机部门联合示范,推动了河北省保护性耕作技术的推广和应用。成果在河北平原冬小麦/夏玉米一年两熟区进行了示范推广,社会效益和生态效益显著,2013年获河北省科技进步一等奖。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号