首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Here we studied the effects of gut transit through the earthworm Eudrilus eugeniae, on the physicochemical, biochemical, and microbial characteristics of pig slurry, by analyzing fresh casts. The reduction in the dissolved organic C contents in casts we recorded suggests that during digestion, earthworms assimilated labile organic C preferentially, which is a limiting growth factor for them. Furthermore, both microbial biomass and activity in pig slurry were significantly decreased by earthworm gut transit. It appears that E. eugeniae is able to digest microorganisms, although the addition of glucose to the food increased respiration, indicating that growth of microorganisms in casts could be limited by depletion of labile C. Despite reduced microbial biomass and activity, the metabolic diversity of microbial communities was greater in casts than in original pig slurry. Community level physiological profiles obtained from Biolog Ecoplate data revealed that, after earthworm gut transit, the microbial communities in casts and pig slurry were clearly differentiated by their physiological profiles. The results indicate that first stage in vermicomposting of pig slurry by E. eugeniae, i.e., casting, produced changes that will influence the dynamics of the organic matter degradation by reducing forms of N and C available to microorganisms, hence restricting their growth and multiplication. Nevertheless, the reduced microflora of casts was characterized by an increased catabolic potential that might lead to thorough degradation of pig slurry.  相似文献   

2.
Summary The effects of the endogeic earthworm, Aporrectodea caliginosa tuberculata (Eisen) on decomposition processes in moist coniferous forest soil were studied in the laboratory. The pH preference of this species and its effects on microbial activity, N and P mineralization, and the growth of birch seedlings were determined in separate pot experiments. Homogenized humus from a spruce stand was shown to be too acid for A. c. tuberculata. After liming, the earthworms thrived in the humus and their biomass increased (at pH above 4.8). In later experiments in which the humus was limed, the earthworms positively influenced the biological activity in humus and also increased the rate of N mineralization. A. c. tuberculata increased the growth of birch seedlings, with increases observed in stems, leaves, and roots. Neither NH 4 + -N fertilizer nor mechanical mixing with artificial worms affected seedling growth. No plant-growth-affecting compounds (e.g., hormone-like compounds) due to the earthworms were present in the humus. The shoot: root ratio in the birch seedlings was not affected by either the earthworms or the fertilizer. The experiments revealed the impact of earthworm activity on soil processes and plant growth.  相似文献   

3.
Microbial activity and nutrient dynamics in earthworm casts (Lumbricidae)   总被引:10,自引:0,他引:10  
Summary Microbial respiration, microbial biomass and nutrient requirements of the microflora (C, N, P) were studied in the food substrate (soil taken from the upper 3 cm of the mineral soil of a beech wood on limestone), the burrow walls and the casts of the earthworm Aporrectodea caliginosa (Savigny). The passage of the soil through the gut caused an increase in soil microbial respiration of about 90% over a 4-week period. Microbial biomass was increased only in freshly deposited casts and decreased in aging faeces to a level about 10% lower than in soil. Microbial respiration of the burrow walls was only increased over a shorter period (about 2 weeks). The microflora of the soil and the burrow walls was limited by P, whereas in earthworm casts, microbial growth was limited by the amount of available C. In aging faeces the P requirement of the microflora increased and approached that of the soil. Immobilization of phosphate in earthworm casts is probably caused by mainly abiotic processes. C mineralization by soil microflora fertilized with glucose and P was limited by N, except in freshly deposited casts. Ammonium, not nitrate, was responsible for this process. N dynamics in earthworm casts are discussed.  相似文献   

4.
Summary Total populations of bacteria and fungi, dehydrogenase activity (as a measure of total potential microbial activity), and urease and phosphatase activities were determined in earthworm casts and surrounding laterite soils planted to pineapple. The casts contained higher microbial populations and enzyme activities than the soil. Except for fungal populations, statistically significant (P = 0.05) increases were found in all other parameters. Microbial populations and enzyme activities showed similar temporal trends with higher values in spring and summer and lower values in winter. The earthworm casts contained higher amounts of N, P, K and organic C than the soil (P = 0.05). Selective feeding by earthworms on organically rich substrates, which break down during passage through the gut, is likely to be responsible for the higher microbial populations and greater enzyme activity in the casts.  相似文献   

5.
The present investigation was aimed to analyze influence of earthworm culture on nutritive status, microbial population, and enzymatic activities of composts prepared by utilizing different plant wastes. Vermicomposts were prepared from different types of leaves litter of horticulture and forest plant species by modified vermicomposting process at a farm unit. Initial thermophilic decomposition of waste load using cow‐dung slurry was done in the separate beds. The culture of Eisenia fetida was used for vermicomposting in specially designed vermibeds at the farm unit. The physico‐chemical characteristics, enzyme activities (oxido‐reductases and hydrolases), and microbial population (bacteria, fungi, free‐living nitrogen‐fixing bacteria, actinomycetes, Bacillus, Pseudomonas, phosphate‐solubilizing bacteria and fungi) of vermicomposts were found significantly higher (p < 0.05) than those of control (without earthworm inoculum). The study quantified significant contributions of earthworm culture to physico‐chemical, enzymatic, and microbiological properties of vermicompost and confirmed superior fertilization potential of vermicompost for organic farming. The agronomic utility of vermicompost was assessed on yellow mustard plant in a pot experiment. Pot soil was amended with different ratios (5%, 10%, 20%) of vermicompost and normal compost (without earthworm inoculum). Effects of these amendments on the growth of Brassica comprestis L. were studied. The significant differences (p < 0.05) in the growth of plant were observed among vermicompost‐, compost‐amended soil, and control. Vermicompost increased the root and shoot lengths, numbers of branches and leaves per plant, fresh and dry weights per plant, numbers of pods and flowers, and biochemical properties of plant leaf significantly, especially in 20% amendment. These results proved better fertilization potential of vermicompost over non‐earthworm‐inoculated compost.  相似文献   

6.

Purpose

Endogeic earthworms play a significant role in biogeochemical cycles due to the large amount of soil they ingest, and because after transit through their guts, casts usually show differences in nutrient contents and microbial populations with bulk soil. Here, we studied how three endogeic earthworm species, Postandrilus majorcanus, Postandrilus sapkarevi and Postandrilus palmensis, inhabiting soils in Majorca island (Balearic Islands, W Mediterranean), modify nutrient pools and microbial communities of soil.

Materials and methods

To do this, we analysed C, N and P pools, microbial biomass (phospholipid fatty acids, PLFA) and microbial activity (fluorescein diacetate hydrolysis, FDA) in paired samples of bulk soil and fresh casts.

Results and discussion

The mineral and organic N contents were generally enhanced in casts produced by all three earthworm species. However, inorganic P and organic C contents were only higher in P. sapkarevi (32 %, only P) and P. majorcanus casts (100 % for both soil nutrient pools) than in bulk soil. Bacterial and fungal biomass were only higher than in bulk soil in P. majorcanus casts (65 and 100 %, respectively), but without effects on microbial activity, that was lower in P. palmensis casts (26 %). Earthworm gut transit strongly influenced the soil microbial community structure, resulting in differences between casts and soils.

Conclusions

The increased nutrient mineralization (6-, 1.3- and 1.4-fold for N, C and P, respectively) in casts produced by these earthworm species is of particular importance because of the amount of casts released and the seasonal variations in earthworm activity, which may favour plant growth.  相似文献   

7.
Earthworms (Annelida: Oligochaeta) deposit several tons per hectare of casts enriched in nutrients and/or arbuscular mycorrhizal fungi (AMF) and create a spatial and temporal soil heterogeneity that can play a role in structuring plant communities. However, while we begin to understand the role of surface casts, it is still unclear to what extent plants utilize subsurface casts. We conducted a greenhouse experiment using large mesocosms (volume 45 l) to test whether (1) soil microsites consisting of earthworm casts with or without AMF (four Glomus taxa) affect the biomass production of 11 grassland plant species comprising the three functional groups grasses, forbs, and legumes, (2) different ecological groups of earthworms (soil dwellers—Aporrectodea caliginosa vs. vertical burrowers—Lumbricus terrestris) alter potential influences of soil microsites (i.e., four earthworms × two subsurface microsites × two AMF treatments). Soil microsites were artificially inserted in a 25-cm depth, and afterwards, plant species were sown in a regular pattern; the experiment ran for 6 months. Our results show that minute amounts of subsurface casts (0.89 g kg?1 soil) decreased the shoot and root production of forbs and legumes, but not that of grasses. The presence of earthworms reduced root biomass of grasses only. Our data also suggest that subsurface casts provide microsites from which root AMF colonization can start. Ecological groups of earthworms did not differ in their effects on plant production or AMF distribution. Taken together, these findings suggest that subsurface earthworm casts might play a role in structuring plant communities by specifically affecting the growth of certain functional groups of plants.  相似文献   

8.
Mechanisms of stabilization of earthworm casts and artificial casts   总被引:4,自引:0,他引:4  
Summary Fresh casts were collected from the earthworm species Aporrectodea caliginosa, and artificial casts were also made. The casts were subjected to ageing, drying-rewetting, and sterilization by hexanol vapour. Clay dispersion was determined, as a measure of the lack of stability of the casts. Two soils were used, the topsoil of a recently reclaimed polder soil in the Netherlands and the topsoil from a South Australian duplex soil. For both soils the fresh worm casts had higher dispersible clay than the artificial casts. During ageing, both types of casts became more stable. There are strong indications that this was mainly due to changes on the surface of the casts. Fungi developed on the surface of 6-day-old worm casts made of Australian soil. This gave a higher stability to the casts compared to artificial casts of the same age without fungal growth. With both types of casts, hexanol inhibited fungal growth on the surface of the casts, reducing the stabilizing effect of ageing. The fungus did not develop on Dutch soil casts until after 42 days, and the development of a higher stability with age was also less marked than in the Australian soil. When the casts were subjected to a drying and rewetting cycle before analysis, they became much more stable than the casts that were analyzed wet. The drying-rewetting cycle removed most of the differences between the worm casts and the artificial casts, and also removed any effects of ageing.Dedicated to the late Prof. Dr. W. Kühnelt  相似文献   

9.
Effects of earthworm casts on soil nutrient dynamics and their responses to changing moisture availability in subtropical ecosystems remain poorly understood. This study aimed to examine short-term carbon(C) and nitrogen(N) dynamics and their interactions with wetting-drying cycles in three different structural forms(i.e., granular, globular, and heap-like) of Amynthas earthworm casts. The rates of C and N mineralization in the earthworm casts were examined under two different wetting-drying cycles(i.e., 2-d and 4-d wetting intervals) using a rainfall simulation experiment. After three simulated rainfall events, subsamples of the earthworm casts were further incubated for 4 d for the determination of CO_2 and N_2O fluxes. The results of this study indicated that the impacts of wetting-drying cycles on the short-term C and N dynamics were highly variable among the three cast forms, but wetting-drying cycles significantly reduced the cumulative CO_2 and N_2O fluxes by 62%–83% and 57%–85%, respectively, when compared to the control without being subjected to any rainfall events. The C mineralization rates in different cast forms were affected by the amount of organic substrates and N content in casts, which were associated with the food preference and selection of earthworms. Meanwhile, the cumulative N_2O fluxes did not differ among the three cast forms. Repeated wetting and drying of casts not only enhanced aggregate stability by promoting bonds between the cast particles, but also inhibited microbial survival and growth during the prolonged drying period, which together hindered decomposition and denitrification. Our findings demonstrated that the interactions between the structural forms, aggregate dynamics, and C and N cycling in the earthworm casts were highly complex.  相似文献   

10.
The ability of earthworm Lumbricus terrestris L. to suppress the multiplication of Beet necrotic yellow vein virus (BNYVV) transmitted by Polymyxa betae and its effects on soil microbial activity were investigated under controlled conditions. BNYVV-infested and a combination of earthworm with BNYVV-infested soil were compared to non-infested soils for their effects on plant and root weights and virus content of two different sugar beet cultivars by using partially resistant (cv. Leila) and susceptible (cv. Arosa) cultivars to the rhizomania disease. Soil testing with sugar beet baiting plants followed by enzyme-linked immunosorbent assay (ELISA) was used to diagnose virus. The results of the statistical analyses showed that total fresh plant and root weights were negatively correlated with BNYVV infection. Addition of L. terrestris significantly enhanced plant and root weights. The earthworm-added soils had higher microbial activity such as basal soil respiration and dehydrogenase activity. The presence of earthworms in the soil did not statistically suppress BNYVV infection (< 0.05). Sugar beet production may be enhanced by using resistant cultivars with adding L. terrestris into soil where rhizomania is present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号