首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Hysteresis of the soil water retention curve (SWRC), manifested as a difference between equilibrium curves of soil wetting and drying (hysteresis loop), is a phenomenon specific to soil hydrology, which is of practical importance for calculating irrigation norms. We have attempted to derive a model of the wetting curve from the drying curve. Modeling was based on parameters proposed by van Genuchten [6] and certain soil physical characteristics. SWRC hysteresis characteristics were obtained experimentally using capillarimetric measurements for wetting and drying curves at soil water pressures ranging from 0 to –800 cmH2O. Two models, М-1 and М-2, based on the hypothesis of dissimilarity of parameters α for wetting (αw) and drying (αd) and the constancy of other parameters of the van Genuchten SWRC approximation for both curves of the hysteresis loop, have been developed for wetting curve assessment based on the drying curve. The M-1 error (RMSE = 0.05 cm–1) was less than that of M-2 (RMSE = 0.06 cm–1), which used clay content and soil density as predictors, as well as that of the well-known model proposed by Kool and Parker [11]. This approach to derive the wetting curve from the drying curve for a presumed correlation between the values of one parameter and equal values of the other parameters, can be used to predict an estimate of the SWRC hysteresis for a specific soil.  相似文献   

2.
The use of plants for ecological remediation is an important method of controlling heavy metals in polluted land. Cotinus coggygria is a landscape plant that is used extensively in landscaping and afforestation. In this study, the cadmium tolerance level of C. coggygria was evaluated using electrical impedance spectroscopy (EIS) to lay a theoretical foundation for broad applications of this species in Cd-polluted areas and provide theoretical support to broaden the application range of the EIS technique. Two-year-old potted seedlings of C. coggygria were placed in a greenhouse to analyse the changes in the growth, water content and EIS parameters of the roots following treatment with different Cd concentrations (50, 100, 200, 500, 1000 and 1500 mg kg?1), and soil without added Cd was used as the control. The roots grew well following Cd treatments of 50 and 100 mg kg?1. The Cd contents increased with the increase in Cd concentration in the soil. However, the lowest root Cd content was found at 4 months of treatment. The extracellular resistance re and the intracellular resistance ri increased first overall and then decreased with the increasing Cd concentration, and both parameters increased with a longer treatment duration. The water content had a significant negative correlation with the Cd content (P?<?0.01) and the re (P?<?0.05). C. coggygria could tolerate a soil Cd concentration of 100 mg kg?1. There was a turning point in the growth, water content and EIS parameters of the C. coggygria roots when the soil Cd concentration reached 200 mg kg?1. The root water content and re could reflect the level of Cd tolerance in C. coggygria.  相似文献   

3.
黄土丘陵缓坡风沙区不同土地利用类型土壤水分变化特征   总被引:9,自引:4,他引:5  
张敏  刘爽  刘勇  张红 《水土保持学报》2019,33(3):115-120,128
为研究黄土丘陵缓坡风沙区不同土地利用类型下的土壤水分变化规律,采用时域反射仪TDR在山西省五寨县分别对玉米农地、柠条林地、苜蓿草地0-100 cm土层进行连续3年的土壤水分观测,掌握不同土地利用类型土壤含水量的季节变化规律和垂直分布特征。结果表明:(1)农林草地土壤水分随时间的变化曲线基本呈"M"形分布,三者季节变化规律相似,但土壤含水量差异达到极显著水平(P<0.01),表现为苜蓿草地>柠条林地>玉米农地;(2)玉米农地与柠条林地土壤含水量随土层深度的增加呈"S"形分布,苜蓿草地的变化趋势与两者完全相反,玉米农地仅土壤表层0-20 cm含水量与降水存在显著相关性,柠条林地和苜蓿草地0-60 cm土壤含水量均与降水显著相关;(3)土壤含水量具有明显的垂直分布特征,在0-100 cm土层层中,随着土层深度的增加,玉米农地CV先逐渐降低后保持稳定,柠条林地CV始终持续降低,苜蓿草地CV先呈现波动变化后明显降低,三者整体表现为表层土壤含水量变异系数大于深层;(4)0-100 cm范围内,玉米农地的土壤层自上而下依次可划分为速变层、活跃层2个层次,柠条林地和苜蓿草地的土壤层划分为速变层、活跃层和次活跃层3个层次。本研究结果表明林地和草地在涵养土壤水分方面优于农田,林地和草地为黄土丘陵缓坡风沙区适宜的土地利用方式,为该区域土壤水分管理及水土资源的合理开发利用提供理论依据。  相似文献   

4.
The contamination of heavy loamy chernozem by iron, sodium, magnesium, calcium, and hydrogen chlorides (2% of soil mass) decreases soil moisture content (W, percent of soil mass) in the interval of the soil moisture pressure (Р) from 0.0 to–0.6 atm, which indicate soil degradation. In a range of P from–0.2 to–0.6 atm, there is a close correlation between the logarithm of Р module (log|P|) and W and, therefore, a regression relationship log|P W | = |P 0|–kW, where |P 0| and k are empirically determined parameters. This relationship is similar to the Landau–Deryagin law. The parameters |P 0| and k are also in a close correlation, which is described by the regression equation |P 0| = 29.3k–0.557. At chernozem contamination by chlorides, the |P 0| and k parameters become smaller, and so they may be used for the evaluation of degradation of chloride-contaminated soils.  相似文献   

5.
Heterotrophic soil respiration (R H) and autotrophic soil respiration (R A) by a trenching method were monitored in four vegetation types in subtropical China from November 2011 to October 2012. The four vegetation types included a shrubland, a mixed-conifer, a mixed-legume, and a mixed-native species. The average R H was significantly greater in soils under the mixed-legume and the mixed-native species than in the shrubland and the mixed-conifer soils, and it affected the pattern of soil total respiration (R S) of the four soils. The change in R H was closely related to the variations of soil organic C, total N and P content, and microbial biomass C. The R A and the percentage of R S respired as R A were only significantly increased by the mixed-native species after reforestation. Probably, this depended on the highest fine root biomass of mixed-native species than the other vegetation types. Soil respiration sources were differently influenced by the reforestation due to different changes in soil chemical and biological properties and root biomass.  相似文献   

6.
Studies on the assessment of soil respiration and ecosystem CO2 sink in the territory of Russia are reviewed over the period since the adoption of the United Nations Framework Convention on Climate Change (Rio de Janeiro, 1992). The first estimates of total soil respiration in the entire territory of Russia, made in 1995 to 1998, amount to 3.1 and 4.3 Gt C per growing season and per year, respectively. On average, soil CO2 efflux over the cold season (November–March) accounts for 20–30% of annual efflux. The contribution of heterotrophic respiration (R H ) to the total soil respiration (R S ) may reach 30–70%, depending on ecosystem type. Despite differences in methods used to measure R H , the results obtained by different authors vary within a relatively narrow range, from 2.9 to 3.5 Gt C/year at an uncertainty level of about 20%. The soil cover of Russia (11.7% of the global land area) accounts for 6.3% of global soil CO2 efflux. The data on ecosystem CO2 sink are widely scattered among publications. Estimates of carbon balance differ depending on approaches and methods used to determine its individual components and the level of uncertainty in the results. However, most of them confirm the main conclusion: the territory of Russia with its forests is an absolute CO2 sink with a potential of 200 Mt C/year. This conclusion has been corroborated in the absolute majority of studies performed by Russian and international research teams.  相似文献   

7.
Vitellaria paradoxa C. F. Gaertn., commonly known as shea tree or Vitellaria, is ranked the most important tree species of the savannah regions in the most African countries due to its ecological and economic importance for livelihoods and national economies. However, the savannah regions are the most vulnerable areas to the global climate change. Moreover, the Vitellaria populations on farmlands are threatened by the dominance of old trees with low or lack of regeneration. In this study both morphological and genetic diversity were assessed using several phenotypic traits and 10 microsatellite markers, respectively, to assess the impact of land use and agro-ecozone types on Vitellaria in Ghana. The land use types were forests and farmlands, and the agro-ecozone types included the Transitional, Guinea, and Sudan savannah zones. The mean values of morphological traits, such as diameter at breast height (DBH) and canopy diameter (CD), were statistically different between forest (DBH = 22.20, CD = 5.37) and farmland (DBH = 39.85 CD = 7.49) populations (P < 0.00001). The Sudan savannah zone with mean petiole length of 4.96 cm showed significant difference from the other zones, likely as a result of adaptation to drier climate conditions. Genetic data analysis was based on 10 microsatellite markers and revealed high genetic diversity of Vitellaria in Ghana: mean expected heterozygosity, H e was 0.667, and allelic richness, measured as number of effective alleles A e , was 4.066. Both farmlands and forests were very diverse indicating lack of negative influence of farmer’s selection on genetic diversity. Fixation index was positive for all populations (mean F IS = 0.136) with farmlands recording relatively higher values than forests in all ecological zone types studied, probably indicating less gene flow in the farmlands. Moderate differentiation (F′ ST = 0.113) was comparable to other similar tree species. Both land use and ecological zone types influenced genetic differentiation of Vitellaria at varying levels. The species was spatially structured across three ecozones and following climatic gradient. The forest reserves are used in situ conservation for Vitellaria in Ghana. High diversity observed in the most arid zones provides opportunity to find and use appropriate plant materials for breeding climate change resilient trees.  相似文献   

8.
Because soil hydraulic properties are indispensable for determining soil water retention and soil solute movement, their input for simulation models is essential. Many of these parameters cannot be estimated directly at the scale of interest, but can only be derived through inverse modeling. During this process, the parameters are generally adjusted using least-squares approach with Levenberg–Marquardt (LM) algorithms in which numerically simulated models are fitted to measured data. In this study we used a new inverse method to estimate the unsaturated soil hydro-dispersive properties from in-situ experiments. The method employs complex-variable-differentiation method (CVDM) to accurately predict of the hydraulic properties of the van Genuchten–Mualem models (θr, θs, α, ks, n). To the knowledge of the authors, it is first study use CVDM in soil physics. The optimization procedure was performed by using a continuous data set of daily in situ soil water content and bromide concentration measurements. Estimated parameters during the inversion showed high correlation (R2 = 0.88, RMSE = 0.013 and the model efficiency CE = 0.77) by using the CVDM-methods with the actual field measurements, compared with the traditional LM-algorithm (R2 = 0.81, RMSE = 0.021 and CE = 0.626). The results show that the new inverse analysis in the present work has the high accuracy, validity, uniqueness, and higher inversion efficiency. Meanwhile, the convergence and stability of the modified LM-algorithm are improved. Overall, it was concluded that the CVDM is promising method to estimate hydro-dispersive parameters in soil physics.  相似文献   

9.
The objective of this study was to asses the rainfall-runoff-sedimentation relationship from directly measured data since 1972, to find out the effect of the present land use and soil cultivation techniques on the sediment yield, and to offer practical solutions to the problems in the Ergene River Basins located in the European Part of Turkey. The suspended sediment yield was calculated by multiplying the daily average discharged water by the average sediment concentration, while the eroded coarse sediment yield was computed using a regression equation developed by the Japanese Ministry of Construction. The relationship between the runoff and suspended sediment rates was explained exponentially as S = 1.99 Q A 1.62 (P > 0.01 and R 2 = 0.846) (S is the suspended sediment rate in t d?1, and Q A is the average daily runoff rate in m3 s?1). The suspended sediment rates of the Ergene Basin can then be predicted from the flow rate at any time of the year using this produced regression equation. According to the results, 70% of the basin’s soil (9534 km2 and occupying 81.76% of the total area of the region) is under erosion hazard varying in intensity, namely, 25.3% light, 34.6% moderate, 8.6% strong, and 1.5% very strong. 47.09% of the average 604 mm precipitation falls in the critical period of October–January in terms of the sedimentation. The coarse and suspended sediment yield was 74.040 t km?2 per year, which was well below the average for Turkey. However, it was 2 and 2.5 times larger than the average for Europe and Africa, respectively. Because 76.93% of the eroded land is in the 1rst, 2nd, and 3rd class, the severity of the sedimentation situation is proved. The causes of the high sediment yield were identified, and a series of precautions were suggested to minimize them.  相似文献   

10.
晋西黄土区典型林地土壤水分变化特征   总被引:7,自引:6,他引:1  
选择晋西黄土区蔡家川流域5种典型林地(山杨×辽东栎天然次生林、人工油松×刺槐混交林、人工油松林、人工刺槐林、人工侧柏林)作为研究对象,在每块样地中心布设1个土壤水分观测点,采用TRIME-TDR土壤水分测定仪定位观测2016—2018年1—12月的土壤体积含水量,测定深度为200 cm,每20 cm为1个测层,每月分上、中、下旬进行土壤水分含量观测,分析不同林地类型土壤水分年内变化规律和土壤水分垂直变化规律。结果表明:(1)研究区不同林地土壤水分年内变化可以划分为稳定期(1—3月)、波动期(4—6月)、增长期(7—9月)和消耗期(10—12月)4个时期,5种林分类型的年平均土壤储水量按照从大到小的排序为天然次生林地(338.68 mm)>人工油松林地(319.74 mm)>人工侧柏林地(314.15 mm)>人工油松×刺槐混交林地(303.37 mm)>人工刺槐林地(292.03 mm),刺槐林地耗水量最大。(2)在雨季末,研究区5种林分类型林地土壤水分均得到了正向补充,且土壤水分的恢复能力大小排序为次生林地>针叶林地>混交林地>刺槐纯林。(3)研究区土壤水分垂直变化可划分为土壤水分含量速变层和土壤水分含量相对稳定层2个层次;随着土层深度增加,不同林地类型剖面平均含水量总体上先增大后减小。不同林地类型表层土壤水分含量为侧柏林地>次生林地>油松林地>油松×刺槐混交林地>刺槐林地;土壤水分的补充深度为天然林地>针叶林地>油松×刺槐混交林地>刺槐纯林。  相似文献   

11.

Purpose

This study compared the effects of four invasive plants, namely Impatiens glandulifera, Reynoutria japonica, Rudbeckia laciniata, and Solidago gigantea, as well as two native species—Artemisia vulgaris, Phalaris arundinacea, and their mixture on soil physicochemical properties in a pot experiment.

Materials and methods

Plants were planted in pots in two loamy sand soils. The soils were collected from fallows located outside (fallow soil) and within river valley (valley soil) under native plant communities. Aboveground plant biomass, cover, and soil physicochemical properties such as nutrient concentrations, pH, and water holding capacity (WHC) were measured after two growing seasons. Discriminant analysis (DA) was used to identify soil variables responsible for the discrimination between plant treatments. Identified variables were further compared between treatments using one-way ANOVA followed by Tukey’s HSD test.

Results and discussion

Plant biomass, cover, and soil parameters depended on species and soil type. DA effectively separated soils under different plant species. DA on fallow soil data separated R. laciniata from all other treatments, especially I. glandulifera, native species and bare soil, along axis 1 (related mainly to exchangeable K, N-NH4, total P, N-NO3, and WHC). Large differences were found between R. laciniata and S. gigantea as indicated by axis 2 (S-SO4, exchangeable Mg, total P, exchangeable Ca, and total Mg). DA on valley soil data separated R. japonica from all other treatments, particularly S. gigantea, R. laciniata, and native mixture, along axis 1 (N-NO3, total N, S-SO4, total P, pH). Along axis 2 (N-NO3, N-NH4, Olsen P, exchangeable K, WHC), large differences were observed between I. glandulifera and all other invaders.

Conclusions

Plant influence on soil differed both among invasive species and between invasive and native species. Impatiens glandulifera had a relatively weak effect and its soil was similar to both native and bare soils. Multidirectional effects of different invaders resulted in a considerable divergence in soil characteristics. Invasion-driven changes in the soil environment may trigger feedbacks that stabilize or accelerate invasion and hinder re-colonization by native vegetation, which has implications for the restoration of invaded habitats.
  相似文献   

12.
The development of simple predictors of sulfur (S) mineralization and its correlation with field-derived data may help improving corn S availability diagnosis. The objectives of this study were (1) to compare methods to estimate soil S mineralization, (2) to develop a model to predict soil S mineralization from S mineralization indexes and edaphic variables, and (3) to predict field-grown corn S uptake (Suptake) and apparent S mineralization (Smin-app) from different S mineralization indexes and edaphic-climatic variables. We evaluated 26 experimental sites where we measured edaphic variables as soil organic C (SOC), organic C in the particulate fraction (C-PF), S mineralization potential (Smin-10wk), S mineralized during a short-term (7 days) aerobic incubation + initial inorganic S (Smin-7d?+?Sinorg), and N mineralized during a short-term (7 days) anaerobic incubation (Nan). Additionally, 18 field experiments were carried out to quantify Suptake and Smin-app. The C-PF, Smin-7d?+?Sinorg, Nan, and SOC were variables significantly correlated with Smin-10wk (r?=?0.89, 0.89, 0.88, and 0.85, respectively). We developed a simple model to predict Smin-10wk from selected edaphic variables (Smin-10wk?=?0.038*Nan?+?0.106*SOC?+?0.74; Ra2 =?0.87). The Smin-10wk, C-PF, and Smin-7d?+?Sinorg showed a liner-plateau association with Suptake (R2?=?0.73, 0.53, and 0.48, respectively). We modified the method to estimate Smin-app to account for S losses (Smin-app (modified)) and developed a model to predict Smin-app (modified) from C-PF (Smin-app (modified)?=?4.65*C-PF?+?9.86; R2?=?0.62) or Smin-10wk (Smin-app (modified)?=?3.0*Smin-10wk?+?7.4; R2?=?0.54). Our results demonstrate that S mineralization indexes can be used to predict corn S availability under field conditions.  相似文献   

13.
不同土地利用变化情景下的洪汝河流域水文响应   总被引:1,自引:0,他引:1  
[目的]研究洪汝河流域土地利用变化对水文过程的影响,为当地水资源的合理规划和利用提供依据和参考。[方法]本研究以土壤水体评价模型(soil and water assessment tool,SWAT)为基础,通过设计多种土地利用情景模式模拟洪汝河流域水文情景,首先利用数字高程模型(digital elevation model,DEM),土地利用数据、土壤数据以及日气象数据建立模型;其次选用2006—2008年的水文观测数据进行模型率定,并进行敏感性和不确定性分析;最后,设置4种土地利用情景模式进行水文模拟。[结果]退耕还林情景下径流减少4.23%;而在耕地增加,城镇用地增加和以城镇用地、林地草地增加为主的复杂土地利用变化这3种情景下,径流分别增加3.01%,4.91%和1.50%。[结论]退耕还林增加了可涵养水源的森林,使得径流减少,而增加耕地开垦或城市建设用地则会增加地表径流。  相似文献   

14.

Purpose

Soil microbes contribute significantly to soil respiration (SR) in boreal forests; however, there is limited knowledge on microbial contributions from long field investigations. The objective of this study was to estimate soil microbial respiration, as well as its primary controlling factors, for a period of three consecutive years.

Materials and methods

A trenching method was used to distinguish soil microbial respiration (R Mic) in a 55-year-old mature Japanese larch (Larix kaempferi) plantation in Northern Japan; the soil in which developed originally from volcanic soils containing pumice. We used a portable CO2 detection system to measure the soil respiration rate during the growing season. Environmental factors, soil physiochemical characteristics, and soil microbial biomass carbon and nitrogen (MBC and MBN) were analyzed to explain the seasonal variations of SR and R Mic.

Results and discussion

The results showed that the estimated contribution of soil microbes to SR was 78, 62, and 55% during the three successive years, respectively. Respiration attributable to decomposition of aboveground litter contributed approximately 19% to SR. The major environmental factor that affected R Mic was soil temperature at 5 cm depth, which accounted for more than 70% of the seasonal variation in R Mic observed. There were close relations among MBC, MBN, and soil water content, but the soil water content showed no significant relation with R Mic.

Conclusions

The R Mic to SR varied from 78 to 55% following 3 years of trenching treatments. Our results demonstrated the important role of soil microbes on soil respiration in this larch forest. Soil temperature was the major positive factor that influenced R Mic, while soil water content had no significant effect. Global warming will increase the loss of C into the atmosphere by increasing the R Mic, and could accelerate climate change.
  相似文献   

15.
The production of nitrous oxide (N2O) by facultative anaerobic fungi from the Fusarium, Trichoderma, and Paecylomyces genera was detected. Representatives of the genus Mucorales did not produce N2O. The formation of N2O in sterile soddy-podzolic soil inoculated by Fusarium oxysporum and F. solani increased significantly with the rise of the soil water content from 16–20% (50–60% of the field water capacity) to 30% (the field water capacity) with maximum values reached at the water content of 50% (the total soil water capacity). The production of N2O by fungi at the soil water content of 50% was often higher under microaerobic conditions than under anaerobic conditions created via substitution of argon for atmospheric air in the flasks. The activity of N2O production by fungi in the soil increased by several times upon nitrite or nitrate amendments. The specific activity of N2 O formation in the soil was 0.38 ± 0.15 nmol N2O/(h per mg) of dry mycelium. It was significantly lower than the rate of N2O formation by Fusarium oxysporum 11dn1 in the nitrite-containing media and close to the rate of N2O formation by this fungus in the nitrate-containing media. A comparison of the rate of N2O release by active strain Fusarium oxysporum 11dn1 inoculated into the sterile soil with the rate of denitrification processes in the nonsterile soil showed that the contribution of soil fungi to the total emission of gaseous nitrogen compounds from the soil may reach 8% under optimum conditions.  相似文献   

16.
Population growth, urban expansion and intensive agriculture and thus increased use of fertilizers aimed at increasing the production capacity cause extensive loss of nutrients such as nitrogen and phosphorus and lead to reduced quality of soil and water. Therefore, identification of nutrients in the soil and their potential are essential. The aim of this study was to evaluate the capability of the SWAT model in simulating runoff, sediment, and nitrogen and phosphorus losses in Tamer catchment. Runoff and sediment measured at Tamar gauging station were used to calibrate and validate the model. Simulated values were generally consistent with the data observed during calibration and validation period (0.6 < R2 and 0.5 < NS). In the case of nitrogen loss, the model performed an almost good simulation (0.6 < R2 and 0.47 < NS), but phosphorus simulation yielded better results (0.76 < R2 and 0.66 < NS). The results showed that cultivated lands had higher loss of nitrogen and phosphorus than other types of land use. Among the various forms of nitrogen and phosphorus, the loss of organic nitrogen and nitrate and soluble phosphorus and mineral phosphorus attached to the sediments showed the greatest sensitivity to the type of land use. Results also showed that the average nutrient loss caused by erosion in this catchment, was 6.99 kg/ha for nitrogen, 0.35 kg/ha for nitrate, 1.3 kg/ha for organic phosphorus, 0.015 kg/ha for soluble phosphorus, and 0.45 kg/ha for mineral phosphorus.  相似文献   

17.
为了探讨不同生长年限的人工刺槐(Robinnia pseudoacacia)林对土壤中氮素组成与微生物活性的影响及机理,本文采用"时空互代"法进行野外选点调查和采样,对典型黄土丘陵区陕西省安塞纸坊沟小流域不同林龄(10 a、15 a、30 a、38 a)人工刺槐林和撂荒地3个土层(0~10 cm、10~30 cm和30~60 cm)中的全氮、铵态氮、硝态氮、有机氮、微生物生物量碳和磷、基础呼吸及基本理化性质进行了研究。结果表明:人工刺槐林地土壤微生物生物量碳、磷含量和微生物熵都显著高于撂荒地(P<0.05)。随着人工刺槐林生长年限的增加,各层土壤铵态氮、硝态氮和有机氮含量均逐渐增加,其中有机氮的增加最显著;土壤微生物生物量碳、磷含量显著增加;微生物熵显著增大而呼吸熵显著减小;土壤有机碳、速效磷含量总体上显著增加(P<0.05);容重和碳氮比则呈下降趋势。随着土层深度的增加,氮素、有机碳、速效磷和微生物生物量碳、磷含量显著减小(P<0.05);容重和pH显著增加。土壤微生物生物量碳、磷和呼吸熵均与有机氮、全氮、硝态氮显著正相关(P<0.05)。分析发现,刺槐的生长促使土壤中微生物可利用碳增加,提高了碳的利用率,使土壤微生物量碳、磷含量增加;微生物活性的提高反过来促进了土壤氮素含量的提高,土壤中有机氮含量显著增加。与10 a生刺槐林相比,30 a生林地土壤表层的全氮含量明显增加,氮素肥力由7级(0.40 g.kg 1)上升为5级(0.87 g.kg 1)水平。  相似文献   

18.

Purpose

The extract of Stevia residue is an ideal substitute for cultivation of the purple nonsulfur bacterium, like Rhodopseudomonas palustris (R. palustris). But the influence of R. palustris grown under residue extract on its downstream application is still not well-characterized. The objective of this study was to assess the effect of foliar spray of R. palustris grown under Stevia residue extract on the plant growth and soil microbial properties.

Materials and methods

A pot experiment was carried out under the greenhouse condition, consisting of four treatments varying in the sprayed substances: sterilized water (control), R. palustris grown under the chemical medium supplemented with L-tryptophan (SyT), R. palustris grown under Stevia residue extract supplemented with L-tryptophan (ExT), and R. palustris grown under Stevia residue extract supplemented with NH4Cl (ExT). The net photosynthesis rate of the uppermost leaves was measured with a portable photosynthesis system. Soil microbial activity was analyzed by microcalorimetry. Soil bacterial community components were determined by real-time quantitative PCR (qPCR) and high-throughput sequencing techniques.

Results and discussion

Compared with SyT, the R. palustris grown under Stevia residue extract not only improved the plant biomass and the net photosynthetic rate to a large extent, but also increased soil microbial metabolic activity and altered community compositions as well. The treatments receiving R. palustris, especially ExT and ExN, increased the relative abundances of some functional guilds involved in C turnover and nutrient cycling in soil, including Acidobacteria, Actinobacteria, Proteobacteria, Gemmatimonadaetes, Nitrospirae, and Planctomycetes.

Conclusions

R. palustris grown under the Stevia residue extract showed advantages over that under the chemical medium on both plant growth and soil microbial properties. One of the possible reasons could result from the increases in microbial activity and several bacterial keystone guilds involved into C and nutrient cycling, both of which potentially contribute to the improved plant growth. The results would be conducive to the downstream application of R. palustris in an economical way.
  相似文献   

19.

Purpose

There is a paucity of data regarding the multiple timescale variations of heterotrophic respiration (R H) and autotrophic respiration (R A) as well as the primary controlling factors. The objective of this study is to find the temporal variations of total soil respiration (R S) and its components, revealing the driving factors at different timescales.

Materials and methods

A trenching method was used to distinguish R S, R H, and R A in a spruce-fir valley forest in northeastern China. We used the closed dynamic chamber method to measure the soil respiration rate. Analyses of R S, R H, and R A in relation to biotic and abiotic factors were conducted to realize the temporal variations at different timescales.

Results and discussion

Only R S and R H showed a distinct diurnal variation and soil temperature (T S) can explain 68 and 59 % of the daily variation, respectively. R S, R H, and R A showed a pronounced, single peak curve seasonally, and T S can explain 11–95 % of the seasonal variation. Soil moisture (W S) maintained at a relatively high level and was not related to R S, R H, or R A on a seasonal scale, and there was no significant relationship between the seasonal R S, R A, and root biomass. However, for 5 years, only the mean R A of the growing season was significantly related to the mean W S, which can explain 39 % of the inter-annual variation of R A. The annual variations of litterfall and the relative growth rate of stems were not related to R S, R H, or R A. The contribution of R H to R S was larger, and the temperature sensitivity was 2.01–3.71 for R S, 1.90–3.08 for R H, and 2.20–5.65 for R A.

Conclusions

R S, R H, and R A show different temporal variations at multiple timescales. When W S is not restricted, T S is the primary driving factor of daily and seasonal variation of R S and R H. In this site, R H accounts for a large proportion of R S and plays a crucial role in determining the magnitude and temporal variation of R S.
  相似文献   

20.
Data on the input of plant falloff and organic matter decomposition on the surface of the peaty podzolic-gleyic humus-illuvial (Gleyic Podzol) soil under a mature blueberry pine forest in the middle taiga are presented. The fractional composition of the falloff was determined, and constants of decomposition for its components were calculated. The carbon flux to the atmosphere due to the mineralization of plant residues is estimated at 251 g/m2. A close positive correlation (r = 0.71; P < 0.05) was found between the carbon dioxide emission measured using a gas analyzer and the soil temperature at the depth of 10 cm. The CO2 emission for a growing period calculated from the data on its dependence on soil temperature in different years varied from 243 to 313 g C/m2 and was related to weather conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号