首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Properties and mineralogy of fine fractions separated from agrochernozems forming a three-component noncontrasting soil combination in the Kamennaya Steppe have been characterized. The soil cover consists of zooturbated (Haplic Chernozems (Clayic, Aric, Pachic, Calcaric)), migrational-mycelial (Haplic Chernozems (Clayic, Aric, Pachic)), and clay-illuvial (Luvic Chernozems (Clayic, Aric, Pachic)) agrochernozems. All the soils are deeply quasi-gleyed because of periodical groundwater rise. The mineralogy of the fraction <1μm includes irregular mica–smectite interstratifications, di- and trioctahedral hydromicas, imperfect kaolinite, and magnesium–iron chlorite. The profile distribution of these minerals slightly varies depending on the subtype of spot-forming soils. A uniform distribution of clay minerals is observed in zooturbated agrochernozem; a poorly manifested eluvial–illuvial distribution of the smectite phase is observed in the clay-illuvial agrochernozem. The fractions of fine (1–5 μm) and medium (5–10 μm) silt consist of quartz, micas, potassium feldspars, plagioclases, kaolinite, and chlorite. There is no dominant mineral, because the share of each mineral is lower than 35–45%. The silt fractions differ in the quartz-to-mica ratio. The medium silt fraction contains more quartz, and the fine silt fraction contains more micas.  相似文献   

2.
The profile distributions of oxalate- and pyrophosphate-soluble Al compounds and oxalate-soluble Si compounds in the main horizons of pale-podzolic soils of the Central Forest Reserve and the fractions <1. 1–5, and >5 μm have been considered. In the clay-eluvial part of soil profile, the content of these compounds is differentiated by the eluvial–illuvial type with a clear accumulation in the EL horizon compared to the AEL horizon. This distribution is largely ensured by their differentiation in the clay and fine silt fractions, while an accumulative distribution of mobile Al compounds is observed in fractions >5 μm. The high correlation between the Al and Si contents in the Tamm extracts from the clay and fine silt fractions with the (Alox–Alpy)/Siox molar ratios, which are in the range of 1–3 in the EL horizon, confirms that mobile compounds are accumulated in these fractions in the form of amorphous aluminosilicates. In the AEL and EL horizons, an additional amount of Al can pass into the oxalate solution from the fine fractions due to the dissolution of Al hydroxide interlayers of soil chlorites. The eluvial–illuvial distribution of mobile Al and Si compounds typical for Al–Fe–humus podzols within the clay-illuvial part of profiles of the soils under study can be considered as an example of superimposed evolution.  相似文献   

3.
Periodical forest fires are typical natural events under the environmental and climatic conditions of central and southern Yakutia and Transbaikal region of Russia. Strong surface fires activate exogenous geomorphological processes. As a result, soils with polycyclic profiles are developed in the trans-accumulative landscape positions. These soils are specified by the presence of two–three buried humus horizons with abundant charcoal under the modern humus horizon. This indicates that these soils have been subjected to two–three cycles of zonal pedogenesis during their development. The buried pyrogenic humus horizons accumulate are enriched in humus; nitrogen; total and oxalate-extractable iron; exchangeable bases (Са+2 and Mg+2); and the fractions of coarse silt, physical clay (<0.01 mm), and clay (<0.001 mm) particles in comparison with the neighboring mineral horizons of the soil profile. The humus of buried pyrogenic horizons is characterized by the increased content of humic acids, particularly, those bound with mobile sesquioxides (HA-1) and calcium (HA-2) and by certain changes in the type of humus.  相似文献   

4.
The humus state of rainfed chernozems affected by local waterlogging was studied. The total humus content in the hydromorphic chernozems increases, as well as the content of fulvic acids, whereas the content of nonhydrolyzable residue (humin) decreases. A significant increase in the portions of the third fractions of humic and fulvic acids is observed. The role of the fine silt and clay fractions in the binding of humic substances increases in the lower horizons of locally hydromorphic soils. The increase in the content of fulvic acids (fulvatization) is mainly due to their predominance in the clay fraction. The latter is specified by the significant narrowing of the Cha-to-Cfa ratio, the lower content of the nonhydrolyzable residue, and the increased content of the clay-bound (3rd fraction) fulvic and humic acids. The composition of the humus in the fine silt fraction of the studied soils is characterized by an increased amount of humic acids of the second fraction with a decrease in the relative content of fulvic acids.  相似文献   

5.
Data on the mineralogical composition of clay (<1 μm), fine silt (1–5 μm), medium silt (5–10 μm), and coarser (>10 μm) fractions of meadow solonchakous solonetzes (Calcic Gypsic Salic Stagnic Solonetz (Albic, Siltic, Columnic, Cutanic, Differentic)) developing from loesslike loam and clay in the North Crimean Lowland are presented. Fractions >5 μm constitute nearly 50% of the soil mass and are characterized by the same mineralogical composition in the entire profile; they consist of quartz, plagioclases, potassium feldspars, and micas (biotite and muscovite). The eluvial-illuvial redistribution of clay in the course of solonetzic process is accompanied by changes in the portion of mixed-layer minerals and hydromicas in the upper part of the profile; a larger part of the smectitic phase is transformed into the superdisperse state. In the eluvial SEL horizon and in the illuvial BSN horizon, the clay fraction is impoverished in smectitic phase and enriched in trioctahedral hydromicas. Upon calculation of the content of clay minerals per bulk soil mass, the distribution of mixed-layer minerals is either eluvial, or eluvial-illuvial, whereas the distribution of hydromicas has an illuvial pattern without distinct eluvial minimum in the SEL horizons. The eluvial-illuvial distribution pattern of clay minerals in solonetzes of the North Crimean Lowland is compared with the distribution pattern of clay minerals in solonetzes of the West Siberian Lowland. Coefficients characterizing differentiation of solonetzes by the contents of particular mineral components are suggested.  相似文献   

6.
A specific feature of the soil developing near the edge of a sinkhole in comparison with the soil at a distance of 10 m from the sinkhole is the presence of calcareous horizon from the depth of 116 cm. The soil near the edge of the sinkhole is also characterized by the increased contents of exchangeable calcium and oxalatesoluble iron in the litter layers and in the AE horizon. This may be explained by a more active biological uptake of these elements under conditions of a shallow occurrence of carbonates. With respect to pH values; the contents and distribution of humus and exchangeable potassium, sodium, hydrogen, and aluminum; the mineralogical composition of the clay and fine silt fractions; and the distribution of oxalatesoluble iron compounds in the soil profiles, palepodzolic soils of the Central Forest State Biospheric Nature Reserve developing in karst areas do not differ from similar soils beyond karst areas.  相似文献   

7.
Specific features of the transformation of humic substances in particle-size fractions of drained soddy-podzolic soils were studied on a field (12 ha) of the Experimental and Educational Center of Lomonosov Moscow State University in Moscow oblast. The field had a clearly pronounced microtopography. Surface-gleyed soddy-podzolic soils (Albic Stagnic Glossic Retisols (Loamic, Aric, Ochric)) of microdepressions with excessive surface moistening and nongleyed soddy-podzolic soils (Albic Glossic Retisols (Loamic, Aric, Ochric)) of elevated positions were examined. These soils were studied before the field drainage and during 25 years after drainage works in the periods differing in conditions of humification and with due account for not only drainage works but also other factors, such as topography and agrotechnology and their joint action. The specificity of transformation of humic substances in the soils and their particle-size fractions was analyzed in the basis of data on the organic carbon content, group and fractional composition of humus, the intensity of individual stages of humification (the neoformation of humic acids and the formation of humates), and the optical density of the fractions of humic acids. The results of the study of these properties in the fine soil fractions (<50 μm) made it possible to assess the response of the clay (<1 μm) and silt (1–5, 5–10, 10–50 μm) fractions to changes in the ecological situation and the role of separate particle-size fractions in the degradation of humus under adverse impacts. Overall, a clear tendency toward worsening of the humus quality was observed in both soils during the 25-year-long period, which is related to the long-term (20 years) agricultural use of the reclaimed field without application of agrochemicals. The features of humus degradation were mainly manifested in the finest (<10 μm) fractions with a general decrease in the humus content, slowing down of the formation of humic acids and humates, and considerable loss of humic acids, including their agronomically valuable fractions HA1 and HA2. The degradation of humus quality in the clay fraction was largely due to the impact of the reclamation (drainage) factor; the degradation of humus quality in the fine and medium silt fractions was mainly due to the negative changes in the agricultural background. Among negative consequences of the worsening humus quality, the lowering of soil fertility, ecological sustainability, and productivity of agrocenoses should be noted.  相似文献   

8.
Earlier studies showed considerable differences in the properties of automorphic loamy soils developing under middle-taiga vegetation in Western Siberia and on the Russian Plain. It was found that the soils without clear features of textural differentiation are common in Western Siberia. In particular, they are represented by cryometamorphic gleyzems. In this study, we analyze the properties of a cryometamorphic gleyzem in the Vakh area (the Khanty-Mansi Autonomous Okrug). The distribution pattern of clay minerals in the soil profile is analyzed in relation to the specific features of the soil hydrothermic regime. In the upper mineral horizons, the clay fraction is enriched in minerals of the group of soil chlorites and somewhat depleted of labile phyllosilicates. In the cryometamorphic horizon and in the underlying permafrost, the degree of crystallization of the clay minerals somewhat decreases. An even distribution pattern of aluminum oxide in the soil profile is explained by the increased content of Al in the clay fraction from the upper horizons combined with the loss of Al from the coarse fractions (as judged from data on the bulk elemental composition of clay-free samples). These features can be explained by the specificity of the hydrothermic regime of the cryometamorphic gleyzems with late thawing of the soil profile and frequent phase transitions of soil water in the upper humus and middle-profile cryometamorphic horizons.  相似文献   

9.
Changes in the humus status of acid brown forest soils used for tea growing have been studied in a long-term stationary experiment after 20 years of the application of mineral fertilizers in increasing doses. It is shown that long-term tea growing has resulted in a reliable increase in the humus content within the upper cultivated horizon (Ap, 0–40 cm) at the expense of the nonhydrolyzable fraction of humus (humin) and the first fractions of humic and fulvic acids. The fractional composition of humus has changed against the background of a stable fulvate type of humus (Cha/Cfa < 0.5). The portion of the first fraction of humic and fulvic acids in the total amount of humus has increased, as well as the portion of the first fraction of humic acids in the total amount of humic acids. These changes are due to the enhanced humification of plant residues with a parallel decrease in the contents of the second (Ca-bound) and third (bound with clay and stable sesquioxides) fractions of humic substances.  相似文献   

10.
Data on the mineralogical composition of clay in soils of solonetzic complexes of the Priobskoe Plateau and the Kulunda and Baraba lowlands have been generalized. The parent materials predominating in these regions have loamy and clayey textures and are characterized by the association of clay minerals represented by dioctahedral and trioctahedral mica–hydromica, chlorite, kaolinite, and a number of irregular interstratifications. They differ in the proportions between the major mineral phases and in the qualitative composition of the minerals. Mica–hydromica and chlorites with a small amount of smectitic phase predominate on the Priobskoe Plateau and in the Kulunda Lowland; in the Baraba Lowland, the portion of mica–smectite interstratifications is higher. An eluvial–illuvial distribution of clay fraction in solonetzes is accompanied by the acid–alkaline destruction and lessivage of clay minerals, including the smectitic phase in the superdispersed state. This results in the strong transformation of the mineralogical composition of the upper (suprasolonetzic) horizons and in the enrichment of the solonetzic horizons with the products of mineral destruction; superdispersed smectite; and undestroyed particles of hydromica, kaolinite, and chlorite from the suprasolonetzic horizons. A significant decrease in the content of smectitic phase in the surface solodic horizons of solonetzic complexes has different consequences in the studied regions. In the soils of the Priobskoe Plateau and Kulunda Lowland with a relatively low content (10–30%) of smectitic phase represented by chlorite–smectite interstratifications, this phase virtually disappears from the soils (there are only rare cases of its preservation). In the soils of the Baraba Lowland developed from the parent materials with the high content (30–50%) of smectitic phase represented by mica–smectite interstratifications, the similar decrease (by 10–20%) in the content of smectitic phase does not result in its complete disappearance. However, the smectitic phase acquires the superdispersed state and the capacity for migration.  相似文献   

11.
Dark chestnut soils of the Ershov Experimental Station in the Transvolga region are characterized by the even distribution and aggregation of clay minerals in the profile. Hydromica, chlorite, kaolinite, and smectitic minerals predominate in the clay (<1 μm) fraction. The smectitic phase consists of randomly ordered mixed-layered minerals of the following types: mica-smectite with a low (<50%) content of smectite layers, mica-smectite with a high (>50%) content of smectite layers, and chlorite-smectite. In some horizons, the smectitic phase occurs in the superdispersed state. The long-term irrigation of these soils with fresh water of the Volga River has led to certain changes in the composition and properties of the clay particles. The weakening of bonds between them has taken place. As a result, the content of water-peptizable clay has increased by two times, and the content of aggregated clay of the first category (AC1) has increased by 1.5 times at the expense of a decrease in the contents of tightly bound clay (TBC) and aggregated clay of the second category (AC2). Also, the redistribution of organic matter bound with clay particles has taken place: its content in the AC1 fraction has decreased, whereas its content in the AC2 and TBC fractions has increased. In the topsoil horizon, the amount of the smectitic phase has lowered, whereas the contents of hydromica, kaolinite, and fine-dispersed quartz in the clay fraction have increased. In general, some amorphization of the clay material has occurred. The periodic alkalization of the soil solutions upon irrigation has led to the conversion of the smectitic phase into the superdispersed state in the entire soil profile.  相似文献   

12.
Four soils with 6, 12, 23 and 46% clay were fractionated according to particle size after incubation for 5–6 years with 14C labelled straw, hemicellulose or glucose: 6–23% of the 14C was still present and the amount increased with increasing content of fine particles. clay fractions contained 66–84% of the 14C and the silt fractions accounted for 4–19%. <2% was found in the sand fractions and 4–9% was water soluble. The distribution of the native C was: clay, 46–68%; silt, 20–31%; sand, 2–7%. The clay fractions had higher relative proportions of 14C than of native C, the reverse being true for the silt fractions. This distribution pattern was not directly related to soil clay content or to kind of organic amendment. The C enrichment factor of clay and silt fractions (per cent C in fraction/per cent C in whole soil) increased with decreasing fraction size for both native and 14C. However, clay enrichment factors were higher for 14C than for native C, whereas silt enrichment factors were lower. A soil (9% clay) that had been incubated in the field for 18 years with 14C labelled straw was also analysed. Labelled C content at sampling was 9% of the initial value. In contrast to the other soils the distribution of labelled and native C was similar in the clay and silt fractions, which contained 55% and 33% of the whole soil C, respectively. The results indicate that clay-bound organic matter may be important in mediumterm organic matter turnover, whereas silt-bound organic matter may participate in longer-term organic matter cycling.  相似文献   

13.
The mineralogy of clay fractions separated from deep low-humus deep-gleyic loamy typical agrochernozems on loess-like loams of the Upper Bug and Dniester uplands in the Central Russian loess province of Ukraine consists of complex disordered interstratifications with the segregation of mica- and smectite-type layers (hereafter, smectite phase), tri- and dioctahedral hydromicas, kaolinite, and chlorite. The distribution of the clay fraction is uniform. The proportions of the layered silicates vary significantly within the profile: a decrease in the content of the smectite phase and a relative increase in the content of hydromicas up the soil profile are recorded. In the upper horizons, the contents of kaolinite and chlorite increase, and some amounts of fine quartz, potassium feldspars, and plagioclases are observed. This tendency is observed in agrochernozems developed on the both Upper Bug and Dniester uplands. The differences include the larger amounts of quartz, potassium feldspars, and plagioclases in the clay material of the Upper Bug Upland, while the contents of the smectite phase in the soil profiles of the areas considered are similar. An analogous mineral association is noted in podzolized agrochernozems on loess-like deposits in the Cis-Carpathian region of the Southern Russian loess province developed on the Prut–Dniester and Syan–Dniester uplands. The distribution of particle-size fractions and the mineralogy of the clay fraction indicate the lithogenic heterogeneity of the soil-forming substrate. When the drifts change, the mineral association of the soils developed within the loess-like deposits gives place to minerals dominated by individual smectite with some mica–smectite inter stratifications, hydromicas, and chlorite.  相似文献   

14.
Monitoring of soil dispersivity and humus state has been performed in the stationary profile of ordinary chernozem in the Botanic Garden of the Southern Federal University in 2009–2014. The contents of physical clay and sand are almost stable in time, which indicates a quasi-static (climax) equilibrium in the soil. Another (reversible dynamic) process occurs simultaneously: seasonal and annual variation in the mass fractions of clay and silt in physical clay. Variations of humus content in the whole soil and in its physical clay are also observed on the background of seasonal changes in precipitation and temperature. A procedure has been developed for the analysis of the polydisperse soil system with consideration for the quasi-static and dynamic equilibriums. A two-vector coordinate system has been introduced, which consists of scales for changes in the contents of physical clay and physical sand in 100 g of soil and changes in the fractions of clay and silt in 100 g of physical clay. Co-measurements of two dispersivity series of soil samples—actual dynamic and calculated under quasi-static equilibrium (ideal)—have been performed. Dynamic equilibrium coefficients, which cumulatively reflect the varying proportions of physical clay and physical sand in the soil and the mass fractions of clay and silt in physical clay, have been calculated.  相似文献   

15.
F. L. WANG  P. M. HUANG 《土壤圈》1997,7(4):289-296
Limited information is available concerning the mineralogy of paddy soils in the southeastern China. Using chemical methods in conjunction with X-ray diffractometry, we studied the mineral composition of three paddy soils: Jinghua (paddy soil on Quaternary red clay), Fuyang (Hapl-percogenic loamy paddy soil), and Shaoxing (gleyic clayey paddy soil). All the soils contained quartz, mica, vermiculite, chlorite and kaolinite, and the distribution of these minerals varied with soil particle size fractions. The clay fraction of the Fuyang and Shaoxing soils also contained smectite. Although X-ray data did not show the presence of smectite in the Jinghua soil, this mineral was identified by the chemical method, suggesting a transitional property of the mineral in the soil. Hydroxy-Al interlayered minerals were also present in the clay fraction. The amount of smectite in the soils was 31.6 (Shaoxing), 16.5 (Fuyang), and 21.4 (Jinghua) g kg-1; for vermiculite it was 33.3 (Shaoxing), 16.5 (Fuyang), and 8.5 (Jinghua) g kg-1. Smectite was only found in the clay fraction. In contrast, amounts of vermiculite in soil particle size fractions were 3.0~11.4 (sand), 2.1~6.0 (coarse silt), 4.6~18.9 (medium silt), 0.9~40.0 (fine silt), and 17.0~108 (clay) g kg-1. The amount of noncrystalline aluminosilicates in the soils in g kg-1 decreased in the order: Shaoxing (2.4) > Jinghua (1.9) > Fuyang (1.7). This study has provided useful mineralogical information that is fundamental in future development of management strategies of the soils.  相似文献   

16.
The mineralogical composition of agrogray, dark gray, and agro-dark gray soils (Luvic Greyzemic Retic Phaeozems); agro-dark gray residual-calcareous soils (Calcaric Cambic Phaeozems); clay-illuvial agrochernozems (Luvic Chernic Phaeozems); and agrochernozems with migrational–mycelial carbonates (Haplic Chernozems) developed in the forest-steppe of Central Siberia within the Irkutsk Depression has been studied. The clay (<1 μm) fraction separated from these soils consists of mixed-layer minerals with alternating layers of hydromica, smectite, vermiculite, and chlorite; the proportions between them change within the soil profiles. The clay fraction also contains hydromicas, kaolinite, chlorite, and some admixture of the fine-dispersed quartz. Each type of the soils is characterized by its own distribution pattern of clay material with specific alternation of layers in the mixed-layer formations. Mixed-layer minerals of the chlorite–vermiculite type predominate in the upper horizons of texture-differentiated soils. Down the soil profile, the content of mixed-layer mica–smectitic minerals increases. In the clay fraction of arable dark gray-humus soils with residual carbonates, the distribution of the clay fraction and major mineral phases in the soil profile is relatively even. An increased content of well-crystallized kaolinite is typical of these soils. The parent material of agrochernozems has a layered character: the upper horizons are generally depleted of clay, and the middle-profile and lower horizons are characterized by the considerable kaolinite content. In general, the clay material of soils of the Tulun–Irkutsk forest-steppe differs considerably from the clay material of foreststeppe soils developed from loesslike and mantle loams in the European part of Russia. In particular, this difference is seen in the proportions between major mineral phases and between biotitic and muscovitic components, as well as in the degree of crystallinity and behavior of kaolinite and chlorite.  相似文献   

17.
东北典型黑土耕层颗粒组成与腐殖质层厚度的关系   总被引:1,自引:0,他引:1       下载免费PDF全文
土壤颗粒组成是影响土壤肥力的主要物理性质之一.为了了解东北黑土腐殖质层厚度与土壤颗粒组成的关系,通过在东北典型黑土区选择典型坡面,调查不同地貌部位土壤腐殖质层厚度,测定耕层土壤的颗粒组成,分析腐殖质层厚度和耕层土壤颗粒组成随地貌部位的变化趋势,以及土壤颗粒组成与腐殖质层厚度的关系.结果表明:土壤腐殖质层厚度由上坡至坡脚...  相似文献   

18.
15NO3? was immobilized in a calcareous clay and a calcareous sandy soil during incubation of each soil with glucose and wheat straw. Changes in the distribution of immobilized 15N amongst soil extracts and soil fractions of different particle size and density were determined during periods of net N immobilization.The nature of the organic-C amendment, but not soil type, significantly influenced both the distribution of the immobilized 15N and the pattern of changes of the organic-15N of soil fractions with time. In straw-amended soils, approx. 20% of the organic-15N became associated with a light fraction, sp. gr. < 1.59, the remainder becoming distributed mainly amongst the silt and clay fractions. In glucoseamended soils, very little (< 1.2%) of the 15N was immobilized in the light fraction, sp. gr. < 1.59, most being rapidly distributed amongst the silt and clay fractions. During a period of complete immobilization, organic-15N was transferred from the fine clay to the silt and coarse clay fractions.Silt, coarse clay and fine clay components from glucose-amended soils sampled at the end of the net immobilization phase were further fractionated densimetrically into light (sp. gr. < 2.06) and heavy (sp. gr. > 2.06) subfractions. The organic-15N of respective light subfractions accounted for 43–64% of the total organic-15N of the silt, 1–9% of that of the coarse clay and 19–21% of that of the fine clay fractions.  相似文献   

19.
Per Nørnberg 《Geoderma》1980,24(1):25-43
This paper deals with possible mineralogical changes from one particle size fraction to another and from one horizon to another in a Typic Haplorthod. X-ray diffraction and chemical analysis were the main methods used. The investigation indicates that a large part of the fine material in the soil is developed during weathering in situ. Less resistant minerals seem to be protected by being parts of rock fragments in coarser fractions, but once freed from that protection they quickly undergo fragmentation into finer particles. Most of the sand and silt fractions are quartz. The K-feldspar content ranges between about 10 and 20%, the Na-feldspar content from about 15 to 30% and the Ca-feldspar content is very small. The clay minerals are mostly kaolinite and mica and in the A2 horizon, expandable 2:1 minerals containing both smectite and vermiculite layers. The B horizon contains 14 A minerals that resemble interstratified vermiculite—chlorite. In the C horizon both vermiculite—chlorite and clorite occur.  相似文献   

20.
We studied the physical properties of chernozems subjected to local waterlogging because of different reasons. The secondary soil hydromorphism resulted in insignificant changes in the soil’s texture related to some redistribution of the elementary soil particles by the particle-size fractions. The physical clay content somewhat increased in the lower part of the soil profiles (in the B2 and BC horizons) at the expense of the clay particles. The bulk density of the waterlogged soils somewhat increased, particularly in the B2 horizon. The regular soil waterlogging worsened the soil’s structural status with a decrease in the content of the silt-size aggregates and an increase in the content of the coarse blocky aggregates. The changes in the soil’s structure can be considered a diagnostic feature of the locally waterlogged chernozems. The water stability of the aggregates increased due to the higher contents of the major cementing agents, including the soil humus and carbonates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号