首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 259 毫秒
1.
生物油/柴油乳化燃料的燃烧特性   总被引:3,自引:2,他引:1  
为了研究生物油/柴油乳化燃料的燃烧特性,利用非离子表面活性剂复配,对热解生物油/柴油混合液进行了乳化,测量了乳化燃料的密度、热值、动力黏度及pH值。在SD1110型柴油机台架上进行4种不同配比的生物油/柴油乳化燃料的发动机台架试验,得出了柴油机燃用生物油/柴油乳化燃料和纯柴油的负荷特性和排放特性曲线,并且对乳化燃料和纯柴油的排放特性进行了对比。研究结果表明:生物油体积分数为20%的乳化燃料当量油耗率最低,乳化燃料CO的排放高于柴油的排放,且生物油含量越高CO排放越大,而乳化燃料的NO及碳烟的排放则优于纯柴油的排放。由于生物油/柴油乳化燃料的理化特性与柴油接近,可以作为普通柴油机的燃油使用。  相似文献   

2.
为了研究葡萄糖作为柴油替代燃料的稳定性和燃油经济性,该文基于稳定性试验数据建立响应面模型,并对葡萄糖水溶液乳化柴油(简称葡萄糖乳化柴油)进行配比优化和试验验证。根据亲油-亲水平衡(hydrophilic and lipophilic balance,HLB)理论和乳化原理,选择制备参数和确定取值范围,得出:HLB值范围5~6.5、复配乳化剂由Span80和Tween80组成、助溶剂为蓖麻油、葡萄糖水溶液体积分数10%~25%和溶液中葡萄糖质量分数10%~25%。根据稳定性试验数据建立响应面模型,并对葡萄糖乳化柴油的配方进行理论优化和试验验证,得到最优的葡萄糖乳化柴油配方(体积分数:复配乳化剂2.43%,蓖麻油1.08%,柴油81.49%,HLB值5.77,葡萄糖水溶液15%和溶液中葡萄糖质量分数16.83%),此时葡萄糖乳化柴油稳定时间为264.2 h,与最优配方参数取整后试验稳定时间误差为4.62%。最后分别用0#柴油、葡萄糖乳化柴油(最优配方)进行稳态试验(European stationary cycle,ESC),试验结果表明,燃用葡萄糖乳化柴油和0#柴油时,发动机油耗量的费用分别为1.786和1.598元/(k W·h)。研究成果可为生物燃料的产业化开发和应用提供参考。  相似文献   

3.
生物质热解燃油在柴油机上的应用效果   总被引:2,自引:1,他引:1  
生物质通过快速热解得到的生物质热解燃油主要成分为含氧有机混合物和水,不宜直接作为燃料使用,但与柴油乳化后可实现其在发动机上的应用。在确定生物质热解燃油/柴油乳化油乳化剂的最佳亲水亲油平衡(HLB)值后,利用超声波乳化装置制备了生物质热解燃油质量分数为10%的乳化油(用BPO10表示),然后在一台未作改动的直喷式柴油机上对燃用BPO10时的燃烧和排放进行了研究。结果表明,生物质热解燃油/柴油乳化油乳化剂的最佳HLB值约为5.8。与0号柴油相比,发动机燃用BPO10时燃烧始点推迟,预混燃烧放热峰值明显升高,扩散燃烧放热峰值略低,最高燃烧压力较低,燃烧持续期缩短;燃用BPO10时有效燃油消耗率较高,而有效热效率与0号柴油的相当;燃用BPO10时可同时大幅降低NOx和碳烟排放,但HC和CO排放升高。  相似文献   

4.
复配乳化剂乳化柴油的经济性和排放特性   总被引:4,自引:3,他引:1  
为了研究乳化柴油的经济性和排放特性,该文以亲水亲油平衡值HLB(hydrophilic and lipophilic balance)选择复配乳化剂,通过适当的乳化工艺配制乳化柴油,并在1135柴油机上对乳化柴油和纯柴油的经济性和排放特性进行了对比试验。研究结果表明,在柴油机结构参数和调整参数不作改变的情况下,柴油机燃用乳化柴油的碳烟和NOX排放显著降低且有一定的节油效果;添加了助燃剂二茂铁的乳化柴油在降低碳烟、NOX和HC排放方面优势更加明显;含水率的不同对乳化柴油的燃烧有一定影响,综合考虑节油及排放效果,确定了适用本机的较佳含水率体积百分数为13%。该研究结果对于改善发动机经济性和降低排放具有实际的应用价值。  相似文献   

5.
蓖麻油生物柴油组成及其燃烧性能   总被引:1,自引:0,他引:1  
本文通过气相色谱-质谱联用技术分析了蓖麻油生物柴油的组成及其理化性能,并通过对比试验分析了蓖麻油生物柴油/柴油混合燃料在单缸柴油机上使用的燃烧排放性能.结果表明:蓖麻油生物柴油的主要成分是蓖麻油酸甲酯,酯交换率高达96%以上,其理化性能与矿物柴油基本相当:按一定比例配制的混合燃料较矿物柴油的动力性能略有降低,不影响其燃烧;排放尾气中HC、CO含量有所降低,NOx含量有所升高,烟度降低明显,可完全替代矿物柴油.  相似文献   

6.
乳化剂及助乳化剂提高生物油/柴油乳化性能   总被引:4,自引:4,他引:0  
为了研究乳化剂和助乳化剂对生物油/柴油乳化性能的影响,利用非离子复配表面活性剂,宏观上以乳化油的稳定性和吸光度比值K为观测对象,微观上以乳化油滴的平均粒径和粒径分布为观测对象,着重研究了乳化剂种类、亲水亲油平衡值HLB值、乳化剂用量、助乳化剂种类、助乳化剂含量等对生物油/柴油乳化油稳定性的影响。试验结果表明:用失水山梨醇单油酸酯和聚氧乙烯失水山梨醇单油酸酯作为混合乳化剂试验效果最好,乳化油的稳定时间最长,达到17 d,吸光度比值K最小,为1.11,稳定性最好。HLB值的最佳范围为5.0~5.8。乳化油生产中,较合适的乳化剂加入量为5%。使用正辛醇和甲醇做助乳化剂可提高乳化油的稳定性,考虑到助乳化剂成本因素,使用甲醇做助乳化剂更适宜。助乳化剂甲醇含量为20%时乳化油稳定性最佳。随着时间推移,乳化油会经历分层、絮凝、聚结与破乳过程。该文可为生物燃油的产业化开发和应用提供参考。  相似文献   

7.
生物质快速热裂解反应温度对生物油产率及特性的影响   总被引:15,自引:3,他引:15  
以木屑为原料,在自制的小型流化床上,研究了生物质快速热裂解反应温度对生物油的产率、含水率、密度、黏度及成分的影响。结果表明,在475℃,500℃和550℃三种热裂解温度中,以500℃的平均生物油产率最高,为58.74%(w/w)。三种热裂解温度下,生物油的含水率分别为42.5%、46.0%和40.7%,生物油的密度分别为1140、1148和1151 kg/m3,运动黏度分为4.51 cSt、3.87 cSt和4.73 cSt。热裂解温度增高时,生物油的密度略有增加,含水率和运动黏度未见有规律变化,并且,运动黏度随含水率的增加而减小。热裂解温度对生物油的主要化合物成分相对含量有一定影响,但影响不明显,生物油中化合物几乎都是含氧的不饱和烃类衍生物,碳原子数在2~10之间,温度升高有利于糠醛、大多数苯酚类化合物生成,不利于乙酸的生成。该研究为生物油的生产与应用提供了参考。  相似文献   

8.
海藻热解生物油的成分分析   总被引:2,自引:2,他引:0  
为了明确海藻热解生物油的主要成分及热解工况对成分的影响,对海藻生物质(条浒苔、马尾藻)不同工况下热解制得的生物油进行气相色谱质谱联用分析。海藻类生物油成分除了含氮化合物外,主要是一些烃类、酮类、醛类、醇类和酚类化合物,以及较大分子量的羧酸及其衍生物,并包含了少量呋喃、吡喃、吡啶等衍生物的杂环化合物。条浒苔油中羧酸及其衍生物(37.85%)和烃类物质(16.61%)较多,而马尾藻生物油中甾族(30.16%)和醇类化合物(24.81%)较多,也检测出油酸、棕榈酸酯和花生酸。不同工况下产生的生物油在组成成分上非常相似,只是相对含量有所不同。热解温度对海藻油组分分布起了重要作用,而载气流量对热解海藻油组分分布的影响不明显。试验结果还表明海藻油中含氮化合物的形成主要与蛋白质的分解有关。海藻生物油相对于陆上植物热解生物油优点为高含烃量,低含氧量。海藻热解制油工艺中温度应控制在500~600℃之间,能达到较佳产油率和油品。  相似文献   

9.
生物油/柴油均相体系的制备及其腐蚀特性   总被引:1,自引:1,他引:0  
中温快速热解得到的生物油具有酸值大、含氧量高、热值低等缺点,必须进行改性后才能作为燃油使用。根据亲水亲油平衡(HLB)原理,利用表面活性剂把生物油和0#柴油进行乳化,制备出乳化生物油,以降低酸值,改善其性能。分别考察了在25℃及50℃下乳化生物油对紫铜、不锈钢、铝合金和铅等4种常见金属的腐蚀特性,借助扫描电镜(SEM)和X射线能谱仪(EDS)等手段对其腐蚀表面与产物进行了测试表征。结果表明:乳化生物油对金属的腐蚀程度依次为:铝合金>铅>紫铜>不锈钢;并且随着温度的升高,乳化生物油对金属的腐蚀性增强,腐蚀的机理主要是在金属表面生成氧化物。  相似文献   

10.
鉴于生物油的高含氧量,将其轻质组分在温和条件下转化为以饱和醇为主要成分的含氧燃料可能成为生物油利用的新思路。该文以自制Raney-Ni为催化剂,研究在高压反应釜中反应温度(100~180℃)、氢气冷压(4~8 MPa)、催化剂用量(0.5~2 g)对生物油轻质组分催化加氢改质的影响;对Raney-Ni催化剂进行N2吸附脱附、X射线衍射(X-ray diffraction)、扫描电镜(scanning electron microscope)表征,分析催化剂失活机理,研究催化剂的重复使用性能。试验结果表明:反应温度和反应初压对生物油加氢产物分布的影响较大,在反应温度为140℃、氢气初压为6.0 MPa 时,产物中饱和醇的相对含量(以GC峰面积百分比计算)最高可达53.51%;当催化剂用量从0.5 g增加到1 g时,产物中饱和醇的含量显著提升,由25.42%提高到51.89%,进一步提高催化剂用量对饱和醇含量的提高影响不大;一次与二次催化剂催化生物油加氢反应产物中饱和醇含量由53.51%降为29.20%,活性显著降低可能与催化剂孔道内部及表面的活性中心被覆盖进而降低反应效率有关。加氢过程中,除有酮醛酚类化合物的加氢反应和酸与醇的酯化反应外,存在醇脱水成醚的反应发生。与烃类液体燃料相比,含氧燃料以其优异的燃烧性能逐渐被人们所青睐。将生物油的轻质组分加氢制备含氧燃料有望成为生物油的应用提供新思路。  相似文献   

11.
In this study, cornstalk was pretreated by an acid-chlorite delignification procedure to enhance the conversion of cornstalk to bio-oil in hot-compressed water liquefaction. The effects of the pretreatment conditions on the compositional and structural changes of the cornstalk and bio-oil yield were investigated. It was found that acid-chlorite pretreatment changed the main components and physical structures of cornstalk and effectively enhanced the bio-oil yield. Shorter residence time favored production of the total bio-oil products, whereas longer time led to cracking of the products. A high water loading was found to be favorable for high yields of total bio-oil and water-soluble oil. GC-MS analysis showed that the water-soluble oil and heavy oil were the complicated products of C(5-10) and C(8-11) organic compounds.  相似文献   

12.
ZSM-5催化生物质三组分和松木热解生物油组分分析   总被引:1,自引:1,他引:0  
为了更清晰地研究三大组分(纤维素、木聚糖、木质素)在介孔ZSM-5参与下的催化热解过程,该研究首先对生物质的三大基本组分和云南松木粉进行热解,然后在介孔ZSM-5催化剂存在的条件下对微晶纤维素、木聚糖、碱性木质素三大组分和云南松进行催化热解。采用气质联用仪对生物油的化学组分进行分析。通过对比ZSM-5参与前后的生物油的主要化学组分的变化,对催化剂的催化机理进行探究。研究结果表明,催化热解过程中,介孔ZSM-5将纤维素直接热解得到的β-D阿洛糖、糠醛、3-丙基戊二酸和2,4-戊二烯酸转化为1-甲基萘、2,6-二甲基萘,纤维素催化热解得到的生物油中的芳烃含量为63.89%。半纤维素催化热解过程中,催化剂将生物油中的糠醛从67.78%降低为2.66%,有效提高芳烃化合物,包括萘、2-甲基萘的含量,催化热解后得到的生物油中总芳烃含量达到36.81%。木质素催化热解过程中,介孔ZSM-5有效降低生物油中2,6-二叔丁基对甲酚的量(从82.33%降至77.97%),并大幅地提高1,8-二甲基萘和1,7-二甲基萘的量,生物油中总芳烃相对含量达到14.14%。云南松催化热解过程中,催化剂有效降低云南松直接热解得到生物油中2-甲氧基-4-甲基苯酚和(Z)-异丁子香酚的含量,并将芳烃化合物总量提高到53.99%(主要是1-甲基萘、1-亚甲基-1氢-茚和2,6-二甲基萘)。随着催化剂使用次数的增加,生物油中含氧化合物相对含量增加,烃类化合物的相对含量明显降低,从53.99%降至43.32%,元素分析结果表明生物油中的碳含量逐渐减少,氧含量逐渐增加。但是,催化剂经过焙烧再生后,催化活性基本完全恢复。  相似文献   

13.
生物油酯化-加氢提质制备醇酯类燃料   总被引:1,自引:1,他引:0  
作为清洁可再生的化石燃料取代燃料,生物油的酸性及不稳定性是阻碍其规模化应用的主要障碍之一。该文基于生物油高酮、醛及酸类含量,研究了生物油轻质组分分步酯化加氢(SHE,separated esterification and hydrogenation)、一步酯化加氢(OEH,one step esterification-hydrogenation)及一步酯化加氢后二次加氢(OEH plus,one step esterification-hydrogenation plus second hydrogenation process)的提质过程,考察了钼改性雷尼镍催化剂(Mo-RN,Mo-Raney Ni)及Ru/C催化剂催化生物油制备醇类燃料的重复使用性能,并研究了酯化-加氢反应过程及反应路径。结果表明,生物油经不同酯化-加氢方法处理后,饱和醇酯含量均显著提高,生物油品质得到改善。其中以OEH plus提质处理后的生物油产物中,饱和醇、酯含量最高,分别达74.21%和9.96%。此外,提质后的生物油p H值及酸量下降最为显著,生物油的p H值由反应前的3.67提高到5.88,酸量由111.52 mg/g降至11.75 mg/g。Mo-RN及Ru/C催化剂在酯化-加氢路径下的重复使用性能良好,催化活性均无明显降低。试验证明利用酯化-加氢提质生物油为生物油精制制备含氧燃料提供有效途径。  相似文献   

14.
玉米秸秆在等离子体加热流化床上的快速热解液化研究   总被引:15,自引:5,他引:15  
为了进一步研究生物质热解液化技术,寻找较为理想的生物油产率所对应的试验条件,设计制作了以等离子体为主热源的流化床热解液化装置,反应器的内径为52 mm,高1150 mm。以玉米秸秆粉为原料在不同温度、不同喂料速率下进行一系列的热解液化试验。试验结果表明:喂料速率在0.6~0.7 kg/h时,生物油产率较高;反应温度升高,生物油产率增高,但是当反应温度超过750 K时,产率反而随温度的上升而下降。使用色质联用仪(GC-MS)对生物油进行了成分分析,4种试验条件下制取生物油的主要成分均为乙酸、羟基丙酮、水、乙醛、呋喃等,试验条件不同各主要成分的相对含量有所不同。高含水量和含氧量降低了生物油的热值和稳定性,容易发生聚合反应,必须经过改性后才能应用。所采用的试验装置及试验方法亦可用于以其它原料获取生物油的研究。  相似文献   

15.
玉米秸秆的催化微波裂解及生物油成分   总被引:16,自引:5,他引:11  
近年来,生物质热化学裂解已引起了越来越广泛的兴趣。但常规的生物质热裂解技术(如流化床等)要求细小的生物质原材料,因此粉碎能耗大。而且裂解所得的生物油和合成气产物易受生物质粉末污染。微波裂解虽然能帮助解决这些问题,但目前的微波裂解所得的生物油成分和其他热裂解技术一样,仍然过于复杂,因此尽管生物质热解获取生物油的成本低于生物质发酵所获得的燃料,生物质热解技术也仍未在工业上得到推广应用。该研究旨在帮助解决这一难题。利用玉米秸秆颗粒为原料,采用了4%的硫酸或磷酸的预处理,或者采用氯化物等催化剂直接混入原料,然后利用微波进行催化裂解,并获得气态、固态和液态生物油3种产物。利用气质联用设备(GC-MS),对所得到的液态产物(生物油,Bio-oil)进行成分分析。在大量的试验基础上,该文筛选出的酸预处理,MgCl2、ZnCl2、及AlCl3直接催化是可以使所得的生物油成分简化的实用技术。  相似文献   

16.
生物油加氢精制工艺研究进展   总被引:6,自引:4,他引:2  
该文针对近年来生物油加氢精制方面的研究进行了探讨,介绍了加氢精制原理,总结了国内外生物油加氢精制工艺研究取得的进展,包括催化剂性能,反应机理和工艺路线的创新与研究。详细说明了分段加氢、加氢酯化、原位加氢等工艺流程的创新和缺点;传统加氢催化剂:如NiMo、CoMo催化剂,以及Ru、Pt、Pd、Rh等贵金属催化剂,在加氢工艺中的特点,前者价格便宜但效果较差,失活现象更严重;后者具有更强的反应活性,但价格昂贵且须在反应后回收。同时,该文对模型化合物、生物油部分相以及生物油真实体系的加氢试验分别进行了详述。最后,针对目前研究中遇到的无法长时间连续运行,成本过高工艺复杂以及缺乏合适催化剂等问题,预测了该技术未来加强催化剂抗结焦能力和低温活性,简化工艺流程并降低成本的研究方向。  相似文献   

17.
落叶松木材生物油组分分析和表征   总被引:2,自引:1,他引:1  
为了更加合理、高效的利用落叶松木材快速热解生物油与酚醛树脂制备新型胶黏剂,必须对快速热解生物油的主要组分进行全面、透彻的分析。本文采用气质联用仪(GC-MS)对生物油组分进行定性分析;采用气相色谱(GC)重点对生物油中的酚类物质进行定量分析;采用傅立叶变换红外光谱(FT-IR)对生物油旋转蒸发后得到的物质(重质油)进行结构表征。通过分析得到生物油组分主要包括羧酸类、醚类、酚类、醇类、醛类、烷烃类等有机化合物。结果表明,不同工况条件下生物质油中酚类物质质量分数为4%~15%,最大值为14.15%。  相似文献   

18.
为研究不同分子筛催化剂对生物油催化裂解特性的影响,该文采用稀土元素La、非金属元素P以及活泼金属元素Ni对ZSM-5分子筛催化剂进行改性,在连续式固定床反应器中对乙酸乙酯、二丙酮醇、糠醛和愈创木酚等生物油模型化合物进行催化裂解试验,进而对比HY、HZSM-5、ZSM-5催化剂以及改性后ZSM-5催化剂对模型化合物的催化裂解反应特性以及脱氧效果。试验结果表明:在反应温度为400℃、反应质量空速为4/h条件下,经La/P/Ni改性ZSM-5分子筛催化剂,模型化合物有机相收率提高,结焦率下降;HY分子筛所得有机相收率最低,结焦率最高。模型化合物各组分裂解难易程度由易到难为二丙酮醇乙酸乙酯糠醛愈创木酚;改性后ZSM-5分子筛使组分单一转化率和总转化率均出现下降;HZSM-5分子筛作用下,反应转化率达到最高。模型化合物催化裂解脱氧产物以芳香烃为主,经La改性ZSM-5分子筛作用后,其芳香烃选择性较ZSM-5略微上升;P和Ni改性后,芳烃选择性下降;HZSM-5对于芳香烃选择性最高,达7.36%;HY对于芳香烃选择性最低,仅为3.15%。通过液体产物组分分析进一步探讨模型化合物反应路径,从而为生物油的催化裂解提供一定的理论基础和科学依据。  相似文献   

19.
生物质燃油摩擦磨损特性试验分析   总被引:7,自引:4,他引:3  
采用四球摩擦磨损试验等方法,研究了热解液化方法制备的生物质燃油的摩擦学特性.借助SEM,XPS,GC-MS,TGA等分析测试技术考察了摩擦磨损实验后的摩擦副磨痕表面形貌,磨痕表面元素的化学结合状态,摩擦磨损实验前后生物质燃油的主要化学成分的变化及其热化学物理特性.结果表明:生物质燃油的最大无卡咬负荷(PB值)为392 N,在196N和294N压力,生物质燃油的平均摩擦系数为0.083和0.097,磨痕表面呈带状犁沟:磨痕表面出现了含-OH、-COOH基闭的有机物和FeS、FeSO4的能谱吸收峰;摩擦磨损实验后生物质燃油的醛酸类物质含量明显变化.生物质燃油的摩擦磨损机理归因于在摩擦表面形成了含FeS、FeSO4等的化学反应膜以及含有-OH、-COOH等极性基团的有机物的吸附油膜的存在,使钢球摩擦副之间保持了良好的边界润滑.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号