首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
基于高光谱的夏玉米冠层SPAD值监测研究   总被引:1,自引:0,他引:1       下载免费PDF全文
开展夏玉米冠层SPAD值监测技术研究,建立叶绿素含量与敏感波段、光谱指数间的定量关系模型,以促进高光谱技术在玉米快速、无损长势监测及水肥精准管理的应用。以小型蒸渗仪夏玉米光谱反射率与植株冠层SPAD值的监测为基础,研究了夏玉米植株冠层光谱信息与SPAD值的响应关系,并优选出监测夏玉米冠层SPAD值的敏感波段与最优光谱指数。结果表明:夏玉米冠层光谱反射率在可见光波段随玉米冠层SPAD值增加而下降,在近红外波段却与之相反;采用原始光谱反射率、一阶微分光谱监测夏玉米冠层SPAD值的最敏感波段分别为700,690nm,与SPAD值的相关性分别为-0.498(p0.05)和-0.538(p0.01);而根据多元逐步回归分析获得的最优波段组合由405,408,700nm波段构成;从已报道的73个光谱指数中筛选出与夏玉米冠层SPAD值相关性较高的(SDr-SDb)/(SDr+SDb)、MCARI∥OSAVI、TCARI/OSAVI、SDr/SDb和MTCI等5个光谱指数,光谱指数(SDr-SDb)/(SDr+SDb)与SPAD值的相关性在各生育期均达极显著正相关,且在全生育期相关系数高达0.697(p0.01),进一步优选出监测夏玉米冠层SPAD值最适宜的光谱指数为(SDr-SDb)/(SDr+SDb);在基于敏感波段、光谱指数和最优波段组合建立的夏玉米SPAD值的回归模型中,按照模拟效果由高到低排序依次为最优波段组合、光谱指数、原始光谱反射率、一阶微分光谱,其决定系数分别为0.777,0.539,0.351,0.282;推荐以(SDr-SDb)/(SDr+SDb)指数构建的二次多项式模型与基于405,408,700nm波段组合建立的线性回归监测模型作为夏玉米植株冠层SPAD值光谱监测适宜模型,且R2大于0.539,RMSE及MAE分别小于6.194和4.702。  相似文献   

2.
基于分数阶微分光谱指数的小麦条锈病遥感监测模型构建   总被引:1,自引:1,他引:0  
为提高小麦条锈病的遥感监测精度,该研究利用分数阶微分能够突出光谱的细微信息以及描述光谱数据间微小差异的优势,在对条锈病胁迫下小麦冠层光谱数据进行分数阶微分处理的基础上,构建了两波段和三波段分数阶微分光谱指数,并将其应用于小麦条锈病的遥感探测。研究结果表明,1.2阶次微分光谱与小麦条锈病冠层病情严重度的相关性最高,较原始反射率光谱、一阶微分光谱和二阶微分光谱分别提高了20.9%、3.9%和20.5%;基于分数阶微分光谱指数的最优分数阶次及其对应波长构建的三波段分数阶微分光谱指数对小麦条锈病的探测能力优于两波段分数阶微分光谱指数,其中分数阶微分光化学指数与冠层病情严重度的相关系数达到0.875;以分数阶微分光谱指数为自变量构建的高斯过程回归(Gaussian Process Regression,GPR)模型对小麦条锈病冠层病情严重度的预测精度优于反射率光谱指数,其训练数据集及验证数据集病情指数(Disease Index,DI)预测值和实测值间的决定系数较反射率光谱指数分别提高了3.8%和19.1%,该研究结果对进一步实现作物健康状况大面积高精度遥感监测具有重要意义。  相似文献   

3.
Sentinel-2影像和BP神经网络结合的小麦条锈病监测方法   总被引:7,自引:6,他引:1  
选用包含红边等多种不同波段信息的多光谱卫星数据,为区域尺度上展开作物病害监测研究提供更加丰富有效的信息,相比于常规的宽波段卫星遥感影像,搭载红边波段的Sentinel-2影像对作物病害胁迫更加敏感,能显著提高模型精度。该文以陕西省宁强县小麦条锈病为研究对象,基于Sentinel-2影像共提取了26个初选特征因子:3个可见光波段反射率(红、绿、蓝)、1个近红外波段反射率、3个红边波段反射率、14个对病害敏感的宽波段植被指数和5个红边植被指数。结合K-Means和ReliefF算法筛选病害敏感特征,最终筛选出3个宽波段植被指数,包括:增强型植被指数(enhanced vegetation index,EVI)、结构加强色素指数(structure intensive pigment index,SIPI)、简单比值植被指数(simple ratio index,SR),2个红边波段植被指数:归一化红边2植被指数(normalized red-edge2 index,NREDI2)、归一化红边3植被指数(normalized red-edge3 index,NREDI3)。利用BP神经网络方法(back propagation neural network,BPNN),分别以宽波段植被指数和宽波段植被指数结合红边波段指数作为输入变量构建小麦条锈病严重度监测模型,对比2种模型的监测精度。结果显示,基于宽波段植被指数结合红边波段植被指数的监测模型的总体精度达到83.3%,Kappa系数0.73,优于仅基于宽波段植被指数特征所建监测模型的精度73.3%,Kappa系数0.58。说明红边波段能够为病害监测提供有效信息,采用宽波段植被指数和红边波段植被指数相结合的方法能够有效提高作物病虫害监测模型精度。  相似文献   

4.
白粉病胁迫下小麦冠层叶绿素密度的高光谱估测   总被引:5,自引:2,他引:3  
为了明确病害胁迫下作物生长特征及其危害程度,基于大田小区和盆栽小麦白粉病接种试验,在病害胁迫下不同生育时期测定群体光谱及叶绿素密度。综合分析群体光谱反射率、一阶微分及传统光谱特征参数与冠层叶绿素密度间关系,建立病害叶绿素密度估算模型并检验。结果表明,随病情指数增加,叶绿素含量下降,不同感性品种均如此,对白粉病易感品种的危害较重。病害冠层叶绿素密度与红光600~630nm和红边690~718nm的反射率及红边长波段(718~756nm)的一阶微分间相关性最显著。在传统植被指数中,以SDr/SDb和VOG3为变量的估测模型拟合精度较高,决定系数R2分别为0.752和0.723,模型检验相对误差(RE)最小,RE分别为18.0%和18.6%。利用红边区域(680~760nm)波段差异特性,选取680、718和756nm波段新建红边角度指数(REAI),较传统植被指数的模型拟合精度更高,归一化角度指数NDAI(α,β)和比值角度指数RAI(α,β)的R2分别为0.783和0.776,模型检验误差更小,RE分别为16.8%和17.5%。因此,NDAI(α,β)是估测病害小麦冠层叶绿素密度的可靠指标,对利用该模型监测小麦光合潜力和病害影响评价具有积极意义。  相似文献   

5.
对模拟中分辨率成像光谱仪(MODIS)两个植被指数归一化植被指数(NDVI)、增强植被指数(EVI)以及红边位置(REP)与水稻叶面积指数(LAI)进行了相关研究。利用光谱分辨率为3 nm 的ASD FieldSpec UV/VNIR 光谱仪获得了2002年两个不同水稻品种——杂交稻和常规稻整个生长期的高光谱数据,同时对水稻LAI进行了测定。利用一阶微分计算红边位移。模拟了MODIS 3个波段,波段1(620-670 nm,红波段),波段2(841~876 nm,近红外)和波段3(459~479 nm,蓝波段),并用这些波段计算了MODIS-NDVI和EVI。结果表明:对于常规稻,MODIS-NDVI、EVI和REP与水稻LAI呈现出良好的相关性;而对于杂交稻,与水稻LAI相关性来说,MODIS-EVI和REP要比MODIS-NDVI更敏感。分析原因,主要是因为杂交稻同常规稻相比在生长的中后期LAI比较大,MODIS-NDVI容易饱和;而MODIS-EVI和REP由于可以消除背景影响,增强对LAI的敏感性。因此MODIS-EVI和REP可以更有效地监测水稻叶面积指数。  相似文献   

6.
关中地区夏玉米抽穗期叶绿素含量的高光谱估算   总被引:2,自引:0,他引:2       下载免费PDF全文
[目的]利用高光谱数据进行叶绿素估算,为快速获取作物的生长信息、生长诊断及精确管理提供依据。[方法]基于陕西省关中地区抽穗期夏玉米冠层光谱特征及叶绿素含量的测定,运用线性及非线性分析方法建立了基于原始光谱敏感波段和一阶微分光谱敏感波段叶绿素估算模型。[结果]夏玉米抽穗期反射光谱在可见光及中远红外区域,叶绿素含量越高,光谱曲线越向下偏移;在红边区域,叶绿素含量对光谱曲线影响不显著;在近红外波段,叶绿素含量越高,光谱曲线越向上偏移。基于一阶微分光谱敏感波段的夏玉米叶绿素含量估算模型拟合精度要优于基于原始光谱敏感波段估算模型,决定系数R2分别为0.81和0.60,均方根误差(RMSE)分别为2.39,4.41。[结论]基于一阶微分光谱敏感波段建模分析是估测抽穗期夏玉米冠层叶绿素含量的重要方法,对指导西北地区夏玉米种植与生产具有积极的借鉴意义。  相似文献   

7.
基于棉花红边参数的叶绿素密度及叶面积指数的估算   总被引:4,自引:2,他引:2  
利用野外非成像高光谱仪,测试棉花两个品种4种配置种植方式两年关键生育时期的冠层反射光谱数据,应用光谱微分技术,获取棉花微分光谱680~750 nm波段的红边参数:红边面积(SDr)、红边斜率(Dr)以及红边位置(λr)变量;将棉花红边面积、红边斜率分别与其冠层叶绿素密度(CH.D)、叶面积指数(LAI)进行相关分析,它们的相关性均达到1%极显著水平,其中红边面积与叶绿素密度的相关性最好(RCH.D=0.8787**,n=137);并且红边面积较红边斜率对叶绿素密度、叶面积指数的预测精度更高。以棉花新陆早13号和19号为建模样本,通过红边面积与叶绿素密度的线性相关模型,分别反演新陆早13号、19号冠层叶片的叶绿素密度,结果表明对这两个棉花品种的叶绿素密度估算精度分别达87.4%和83.3%,说明高光谱红边参数是估算棉花叶绿素密度和叶面积指数的一种简单、快捷、非破坏性的有效方法。  相似文献   

8.
玉米氮营养指数的高光谱计算模型   总被引:8,自引:3,他引:5  
快速、准确、动态地诊断大面积玉米氮营养状态对于评价玉米长势、预测产量和指导农业生产均具有重要的意义。该研究利用北京昌平、长春市西北市郊的四间房村2个试验区的玉米冠层高光谱数据演变得到的多种光谱参数,采用逐步回归分析方法,建立了玉米氮营养指数与高光谱参数的定量关系,提出了玉米氮营养指数的敏感光谱参数及预测方程。研究结果显示,红边/绿边比值参数、红边/近红外比值参数、红边敏感点参数与玉米氮营养指数高度相关,是诊断玉米氮营养指数的敏感光谱参数。通径分析得到红边/绿边比值参数、红边/近红外比值参数与玉米氮营养指数的通径系数分别为-0.14942和-0.35218,表明玉米氮营养指数对红边/绿边比值参数、红边/近红外比值参数有间接影响,红边敏感点参数与玉米氮营养指数的通径系数为1.41549,表明红边敏感点参数对玉米的氮营养指数高度敏感。基于敏感光谱参数的玉米氮营养指数多元回归预测模型的相关系数R为0.95507,观测值与拟合值的拟合误差小于0.1,均方根误差为0.06016,F值达到了167.727,显著水平P为0.0045。由此可以得出利用敏感光谱参数定量分析玉米氮营养指数是可行的。  相似文献   

9.
无人机高光谱遥感估算冬小麦叶面积指数   总被引:6,自引:6,他引:0  
为探讨利用低空无人机平台和高光谱影像对冬小麦叶面积指数进行遥感估算,该研究以拔节期冬小麦小区试验为基础,对原始冠层光谱进行一阶导数和连续统去除光谱变换,并在此基础上提取任意两波段组合的差值光谱指数(Difference Spectral Index,DSI)、比值光谱指数(Ratio Spectral Index,RSI)和归一化光谱指数(Normalized Spectral Index,NDSI),以最优窄波段光谱指数进行叶面积指数估算模型的构建。结果表明,最优窄波段指数的构成波段主要位于红边区域,最优窄波段指数与叶面积指数均呈现非线性关系;光谱变换显著提升了光谱变量与叶面积指数的相关性,其中连续统去除光谱所获取的NDSI(738,822)光谱指数与叶面积指数的相关性最佳;窄波段光谱指数和随机森林回归算法的叶面积指数估算模型精度最高,其相对预测偏差为2.01,验证集的决定系数和均方根误差分别为0.77和0.27。基于随机森林回归算法的无人机高光谱叶面积指数估算模型能够准确地实现小区域的叶面积指数遥感填图,为后期作物长势、变量施肥等提供理论依据。  相似文献   

10.
为利用高光谱遥感诊断条锈病胁迫下作物的营养状况,测量感染条锈病的冬小麦冠层反射率以及相应叶片全氮(LTN)含量,利用线性和非线性回归方法,建立了微分光谱与小麦LTN含量之间的回归模型.研究表明随病情加重,小麦LTN含量逐渐降低,并与一阶微分光谱在430~518、534~608、660~762 nm以及783~893 nm区域具有极显著相关性.经检验,以红边内一阶微分总和与蓝边内一阶微分总和比值(SDr/SDb)为变量的模型是估测LTN含量的最佳模型,其RMSE为0.3567,相对误差为8.33%.因此,利用高光谱遥感估测条锈病胁迫下作物LTN含量是可行的,且具有较高的反演精度.研究成果可为小麦氮素营养监测、精准施肥以及条锈病情诊断等提供理论依据和指导.  相似文献   

11.
粮豆轮作遥感监测对卫星时空及谱段指标的需求分析   总被引:2,自引:1,他引:1  
该文面向粮豆轮作遥感监测卫星数据需求,针对最小监测地块、作物类型、时效性的要求,分别对不同空间分辨率影像识别能力、不同波段组合识别能力、最高云覆盖区域晴空获取能力3个方面进行分析,提出了光学遥感卫星理想的空间分辨率要优于0.3 m,光谱设置可以采取基本波段(蓝、绿、红、近红)+红边或者基本波段(蓝、绿、红、近红)+短波谱段2种方式,重访周期要达到3 d以内。在上述指标满足条件下,能够对中国普遍存在的0.3 m宽度田埂进行有效识别,从而达到地块识别的目标;能够利用作物红边、短波谱段特征的差异,对生长中期玉米、大豆进行有效识别,达到粮豆轮作主要作物类型识别的目的;以3 d的重访周期,可以最大限度获取覆盖中国全国区域的晴空有效影像,在数据源获取上保证粮豆轮作业务化作业能力。该研究可为满足中国粮豆轮作等农情遥感监测需求的农业监测卫星研制及相应指标规定提供参考。  相似文献   

12.
农业干旱遥感监测指标及其适应性评价方法研究进展   总被引:12,自引:6,他引:6  
在利用遥感数据进行长时间、大范围农业干旱遥感监测过程中,如何针对不同区域、不同作物生长阶段选取最合适的监测指标,对于及时、准确地评估干旱对作物生长的影响,实现合理水资源调度和有效抗旱减灾决策都具有重要意义。该文以遥感监测农业干旱的适应性为论述主线,对常用的农业干旱遥感监测指标及其适应性评价方法,从4个方面进行了系统归纳总结:1)国内外农业干旱监测适用的遥感卫星数据源;2)监测农业干旱适用的光谱敏感波段;3)农业干旱遥感监测指标自身的适用性与局限性;4)农业干旱遥感监测指标适应性的评价方法。在此基础上,指出今后在农业干旱遥感监测指标及其区域适应性研究中,需综合考虑作物与其生长环境之间的关系;增加光谱信息,降低遥感数据获取过程中的信噪比;选择农业干旱遥感监测指标适宜的时空尺度;重点解决部分植被覆盖时,如何选择合适的监测指标;加强高光谱技术在精细农业干旱遥感监测指标反演中的研究;进一步在机理上发掘监测指标自身的敏感性和适应性等6个方面的问题及发展趋势。  相似文献   

13.
小麦受到条锈病菌侵染后,作物的光合能力及色素含量等均会发生变化,日光诱导叶绿素荧光(solar-induced chlorophyll fluorescence,SIF)对作物光合生理的变化比较敏感,而反射率光谱则受作物生化参数的影响较大,为了提高小麦条锈病的遥感探测精度,该文利用随机森林(random forest,RF)等机器学习算法开展了协同冠层SIF和反射率微分光谱指数的小麦条锈病病情严重度的遥感探测研究。首先利用3FLD(three bands fraunhofer line discrimination)算法提取了冠层SIF数据,然后结合对小麦条锈病病情严重度敏感的11种反射率微分光谱指数分别基于RF和后向传播(back propagation,BP)神经网络算法构建了反射率微分光谱指数与冠层SIF协同的小麦条锈病病情严重度预测模型。研究结果表明:RF算法构建的小麦条锈病病情严重度预测模型优于BP神经网络算法,3个样本组中RF模型病情指数(disease index,DI)估测值与实测值间的决定系数R2平均为0.92,比BP神经网络模型(R2的平均值为0.83)提高了11%,均方根误差(root mean square error,RMSE)平均为0.08,比同组BP神经网络模型(RMSE的平均值为0.12)减少了33%,RF算法更适合于小麦条锈病病情严重度的遥感探测。在反射率微分光谱指数中加入冠层SIF数据后,RF模型和BP神经网络模型精度均有所改善,其中RF模型估测值与实测值间的平均R2提高了4%,平均RMSE减少了22%,BP神经网络模型估测值与实测值间的平均R2提高了14%,平均RMSE减少了28%,综合利用冠层SIF和反射率微分光谱指数能够改善小麦条锈病病情严重度的遥感探测精度。研究结果可为进一步实现作物健康状况大面积高精度遥感监测提供新的思路。  相似文献   

14.
基于作物生长模型和遥感数据同化的区域玉米产量估算   总被引:11,自引:7,他引:4  
为了将遥感观测到的玉米生长期间作物冠层方向反射波谱的时间序列变化信息用于区域玉米产量估算,该文将时间序列中分辨率成像光谱仪(moderate resolution imaging spectroradiometer,MODIS)数据和高空间分辨率LandsatTM遥感观测数据相结合,以叶面积指数(LAI)作为耦合作物生长模型(crop environment resource synthesis-Maize,CERES-Maize)和植被冠层反射率模型(scattering by arbitrarily inclined leaves,SAIL)的关键参数,提出了将耦合模型与时间序列遥感观测数据同化进行区域玉米产量估算的方案。该文选择吉林省榆树市为研究区,采用MODIS和LandsatTM2种尺度数据集,利用SCE-UA(shuffled complex evolution method developed at the University of Arizona)算法分别进行玉米产量同化估产研究,得到玉米单产空间分布的估计结果,结合遥感估算的种植面积求算榆树市玉米总产量。结果表明,与玉米统计总产量相比,2007、2008和2009年遥感数据同化估算的总产量误差分别为9.15%、14.99%和8.97%;与仅利用CERES-Maize模型模拟得到的产量误差相比,3a间遥感估算总产量的误差分别减小了7.49%、1.21%和5.23%,且采用MODIS和TM遥感数据估算的玉米产量表现了其空间差异性。利用榆树市3a间玉米产量的明显差异,分析了时序遥感数据对作物长势和产量变化信息的表达能力,同年份内时序归一化差值植被指数越大,对应的玉米产量越高;年际间遥感观测反射率的差异通过数据同化方法能够反映年际间玉米产量差的变化。该文提出的玉米估产方案为将来进一步结合多源遥感数据、植被冠层反射率模型与作物生长模型进行区域玉米估产研究提供了参考。  相似文献   

15.
夏玉米叶片全氮含量高光谱遥感估算模型研究   总被引:2,自引:1,他引:1  
在5种不同施氮量和2种夏玉米品种处理下,分别在玉米拔节期、大喇叭口期、抽雄期、吐丝期、乳熟期测定了玉米冠层高光谱反射率及其对应叶片的全氮含量。选取了470、550、620和720 nm 4个代表性光谱波段,分品种对叶片全氮含量与原始光谱反射率、光谱反射率一阶微分以及部分高光谱特征参数(基于光谱位置、面积、植被指数的特征参量)分别进行线性回归和非线性回归拟合。在每个生育时期,选择决定系数和F值最高的模型3个,并分别用第二年测定的光谱和全氮含量数据分别对两个品种进行均方根差和相对误差的验证,选择均方根差和相对误差较小的拟合模型。结果表明:在拔节期、大喇叭口期、抽雄期、吐丝期和乳熟期,玉米叶片全氮含量最佳拟合光谱参量分别为R720、DR720、SDb、DR550和DR550,玉米叶片全氮含量最佳高光谱遥感估算模型依次为:Y=5.129e-2.317x、Y=3.421-10.010x-477802.331x3、Y=4.070-2.304x-52.177x2、Y=-0.468-0.528lnx和Y=-2.390-0.793lnx。  相似文献   

16.
基于GF-1卫星数据的冬小麦叶片氮含量遥感估算   总被引:5,自引:4,他引:1  
以陕西关中地区大田和小区试验下的冬小麦为研究对象,探讨基于国产高分辨率卫星GF-1号多光谱数据的冬小麦叶片氮含量估算方法和空间分布格局。基于GF-1号光谱响应函数对地面实测冬小麦冠层高光谱进行重采样,获取GF-1号卫星可见光-近红外波段的模拟反射率,并构建光谱指数,利用与叶片氮含量在0.01水平下显著相关的8类光谱指数,分别建立叶片氮含量的一元线性、一元二次多项式和指数回归模型。通过光谱指数与叶片氮含量的敏感性分析,以及所建模型的综合对比分析,获取适合冬小麦叶片氮含量估算的最佳模型。结果表明:模拟卫星宽波段光谱反射率和卫星实测光谱反射率间的相关系数高于0.95,具有一致性;改进型的敏感性指数综合考虑了模型的稳定性、敏感性和变量的动态范围,敏感性分析表明比值植被指数对叶片氮含量的变化响应能力最强;综合模拟方程决定系数、模型敏感性分析、精度检验和遥感制图的结果,认为基于比值植被指数建立的叶片氮含量估算模型适用性最强,模拟结果与实际空间分布格局最为接近,为基于GF-1卫星数据的区域性小麦氮素营养监测提供了理论依据和技术支持。  相似文献   

17.
基于机器学习的棉花叶面积指数监测   总被引:2,自引:1,他引:1  
为实现基于机器学习和无人机高光谱影像进行棉花全生育期叶面积指数(Leaf Area Index, LAI)监测,该研究基于大田种植滴灌棉花,在不同品种及不同施氮处理的小区试验基础上,对无人机获取的高光谱数据分别采用一阶导(First Derivative, FDR)、二阶导(Second Derivative, SDR)、SG(Savitzky-Golay)平滑和多元散射校正(Multiplicative Scatter Correction, MSC)进行预处理,并结合Pearson相关系数法、连续投影(Successive Projections Algorithm, SPA)、随机蛙跳(Shuffled Frog Leaping Algorithm, SFLA)和竞争性自适应重加权(Competitive Adaptive Reweighting, CARS)筛选敏感波段,将筛选出的波段,使用偏最小二乘回归(Partial Least Squares Regression, PLSR)、支持向量回归(Support Vector Regression, SVR)和随机森林回归(Random Forest Regression, RFR)3种机器学习算法构建棉花LAI监测模型。结果表明:棉花冠层LAI敏感响应波段集中在可见光(400~780 nm)和近红外(900 nm之后)波段;对比3种机器学习算法,各预处理下RFR建立的LAI监测模型精度最高,稳定性最好,其中以FDR-SFLA-RFR模型最佳,在建模集的决定系数为0.74,均方根误差为1.648 3,相对均方根误差为26.39%;验证集的决定系数、均方根误差分别为0.67和1.622 0,相对均方根误差为25.97%。该研究基于无人机获取的棉花冠层光谱反射率,从不同光谱预处理、波段筛选及建模方法建立的模型中筛选出最佳估算模型用于棉花全生育期LAI监测,研究结果可为棉花大田精准管理及变量施肥提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号