首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
农业环境信息无线传感器网络监测技术研究进展   总被引:9,自引:6,他引:3  
无线传感器网络是实现农业环境变量信息多方位、网络化远程监测的主要技术手段。无线地上传感器网络应用研究集中在作物不同生长期内节点布设距离和高度以及作物高度等对无线电信号传输损失的影响,从而合理选择节点布设参数。无线地下传感器网络应用研究集中在气象环境、土壤类型、土壤含水率、土壤结构与成分、节点埋藏深度、节点距离、频率与功率范围、网络拓扑结构、路由算法、组网方式等对电磁波多路径传输的路径损失、误码率、最大传输距离、含水量测试误差等方面的影响。研究指出,300~500 MHz的频率更适合土壤无线地下传感器网络,其最大传输距离为5 m,传输距离将是系统大面积推广应用的主要限制因素。今后重点应研究433 MHz电磁波在不同土壤和空气多层介质中的传输特性、信道模型及路径损失,优化节点和网络技术参数,确定不同农业应用环境条件下传感器网络节点合理位置和最优的网络拓扑结构方案。  相似文献   

2.
兰花大棚内无线传感器网络433MHz信道传播特性试验   总被引:5,自引:3,他引:2  
不同的应用环境对无线传感器网络的性能有一定的影响。该文针对兰花大棚环境中无线传感器网络节点部署的要求及其应用环境的特性,以433 MHz为载波频率,研究了无线射频信号的传播特性和无线信号与影响因素之间的关系,影响因素包括发射功率、数据包长度、距离、发射端位置等参数,获得了接收信号强度、丢包率等数据,并进行了统计分析。试验结果表明,该无线传感器网络信号的衰减符合对数模型,其决定系数R2最大为0.9246,最小为0.8753;发射功率为0和-5 dBm时,信号较强、通信成功率较高;发射功率处在0和-20 dBm时接收信号强度波动较大;在数据传输速率为1.2 kbps、和调制扩频为高斯频移键控方式等参数确定的情况下数据包的长度对丢包率的影响很小。在上述试验研究的基础上,建立了发射功率和接收信号强度之间的关系模型,模型参数与发射功率之间、传播环境因子n与发射功率之间成二次多项式关系,相关系数分别达到0.9967和0.8686;验证试验结果表明:该模型可以较好地预测不同发射功率不同通信距离的接收信号强度,为兰花大棚无线传感器网络的组建提供支持。此外,设计了接收信号强度三维曲面图和等高曲线图,可直观反映兰花大棚环境下无线信号的传播特性,为今后无线节点布置与组网提供依据。  相似文献   

3.
基于遗传BP算法的温室无线传感器网络定位方法   总被引:4,自引:3,他引:1  
王俊  刘刚 《农业工程学报》2012,28(21):156-163
针对温室移动节点定位的需求,提出了一种基于遗传BP算法的温室无线传感器网络定位方法。该方法主要包括路径损耗指数确定、定位模型训练、未知节点定位3个阶段。首先,锚节点间相互通信,通过高斯校正模型增强定位信息的准确性后,利用最小均方误差估计法确定路径损耗参数;然后,应用遗传BP算法建立未知节点坐标和未知节点至锚节点的距离向量之间的映射关系模型;最后将未知节点接收各锚节点的RSSI值转换为距离向量,输入定位模型中,估算未知节点的位置。试验表明,该方法充分考虑环境对信号传输模型的影响,定位误差≤2m的比例达24%,定位误差≤3.5m的比例达86%,相对定位误差低于4.8%,具有较高的稳定性和定位精度,能够满足实际温室环境的定位需求。  相似文献   

4.
基于780MHz频段的温室无线传感器网络的设计及试验   总被引:1,自引:1,他引:0  
针对以往农用无线传感器网络(wireless sensor network,WSN)能耗与成本较高、传输性能不理想等问题,该文选用无线射频芯片AT86RF212、单片机C8051F920等,设计了一种工作在780 MHz中国专用频段且与IEEE802.15.4c标准兼容的无线传感器网络。该文简述了无线传感器网络节点结构,重点介绍了780 MHz无线传感器网络的硬件设计,并选择北方典型的日光温室作为试验研究环境,通过改变无线收发距离,对780、433和2 400 MHz频段的无线传感器网络节点的接收信号强度值(RSSI,received signal strength index)和平均丢包率(PLR,packet loss rate)进行了测试与分析。试验结果表明,3种不同频段的无线收发模块的接收信号强度值RSSI都随着收发距离的增大而减小。在温室内测试,收发距离小于20 m时,3种无线模块的RSSI值相近;收发距离为40~90 m时,7803 MHz模块比433 MHz模块的RSSI值略大,2.4 GHz的RSSI值最小。在温室内收发距离小于90 m的范围内,780 MHz模块和433 MHz模块的丢包率均为0,2.4 GHz模块的最高丢包率不超过5%。在温室间测试,收发距离为50~90 m时,780 MHz模块和433 MHz模块的RSSI值相近;收发距离大于90 m时,780 MHz模块比433 MHz模块的RSSI值大;2.4 GHz模块在温室间收发距离为50~140 m时的RSSI值均小于433、780 MHz。2.4 GHz模块在收发距离大于70 m时出现丢包现象,收发距离大于135 m时丢包率达到100%;温室间收发距离为140 m时,433 MHz模块的最大丢包率为11%,780 MHz的最大丢包率不超过6%。因此,在温室环境监测的应用中,780 MHz频段的无线传感器网络的传输性能表现最佳,且与433 MHz都明显优于2.4 GHz。  相似文献   

5.
在面向农业应用的无线传感器网络中,用于裸地和草地的直接序列扩频收发器能否适应农田环境,需要进一步的研究探索。该文用Simulink 仿真了915MHz直接序列扩频系统与农田环境下的无线信道,多径衰落模型根据 Saleh-Valenzuela模型修改而得,路径损耗模型是根据成熟期玉米地实地测量得到的数据分析拟合而得。仿真结果表明,小尺度多径衰落对系统性能的影响较大,直接序列扩频系统可以在一定程度上补偿多径衰落的影响,但在多径现象严重的玉米田环境中,补偿能力非常有限,仅在很短的传输范围内(<80 m)系统性能良好,很难满足面向广域空间农田信息采集的无线传感器网络的要求。扩频技术虽然在无线传感器节点设计中被广泛应用,但在传输环境恶劣的农田环境中,并不是一个最优的解决方案。  相似文献   

6.
小麦田中天线高度对2.4GHz无线信道传播特性的影响   总被引:9,自引:8,他引:1  
探索农田环境下无线信道传播特性,将为无线传感器网络部署与功率控制方面的研究打下基础。该研究在小麦田地中实地测试了不同生育期 2.4GHz 无线信号的功率衰减情况和丢包率,进而得出传输范围及路径损耗,并用MATLAB对路径损耗进行了回归分析。研究表明,小麦田中,信号衰减的速度随天线高度的变化单调递减,而传输距离随天线高度的变化单调递增,因此,天线的较优位置应略高于成熟植株(1.2 m左右)。同一天线高度下,小麦生长后期无线信号的衰减大于前期。2.4GHz 无线信号的衰减情况可用对数距离路径损耗模型来预测,理论值与测量值的相关系数在0.961~0.996之间。路径损耗指数与天线高度呈现对数衰减趋势;在同一天线高度下,路径损耗指数随着小麦的生长而增大。  相似文献   

7.
为解决橘园中无线传感器网络(WSN)规划和快速部署问题,该文基于无线射频信号的传播特性,研究了橘园中WSN射频信号与影响因素间的关系。试验中选取433 MHz载波频率,基于连续无线电波分析了WSN射频信号受植被深度、天线高度和通信距离等因素联合作用下射频信号在橘园的衰减情况,建立了橘园中不同影响因素作用下,433 MHz无线射频信号接收强度与环境传播因子及通信距离间的线性模型,拟合曲线的R2最低为0.797,最高为0.980,验证了此模型用来预测橘园中影响因素对接收信号强度衰减趋势的可行性;得到了基于无线射频信号接收强度指示下不同植被深度、天线高度和通信距离变化联合作用下的最佳天线高度分布表,为无线传感器网络在橘园中的节点部署提供指导。  相似文献   

8.
温室无线传感器网络节点发射功率自适应控制算法   总被引:1,自引:1,他引:0  
为了提高无线数据传输的可靠性,基于无线传感器网络(wireless sensor network,WSN)的温室环境数据采集系统,采用试验的方法研究温室中不同环境下WSN节点之间通信的可靠性。在通信距离为5~40 m,存在作物、温室设施等遮挡影响,相对湿度为35%~80%的情况下,对丢包率和接收信号强度指示(received signal strength indication,RSSI)的关系进行研究,通过RSSI对节点间通信可靠性进行评价。在此基础上,提出WSN节点发射功率自适应控制算法。该算法以RSSI作为通信质量的评价因子,通过增大节点的发射功率来提高通信可靠性。测试结果表明,该算法能够根据当前通信状况,自适应地设置节点的发射功率,以尽可能小的发射功率将丢包率维持在1%左右。该算法对WSN在温室中的应用具有实用价值。  相似文献   

9.
研究基于ZigBee协议的无线传感器网络技术,结合嵌入式处理器开发了无线传感器网络节点和汇聚节点。网络节点规则分布在被监测区域,负责采集土壤水分信息,并自组成网,将信息发送给汇聚节点,实现对信息的动态显示和大容量存储;节点天线分别在0.5、1.0、1.5和2.0 m 4个高度下,对小麦苗期、拔节期和抽穗期3个典型的生长时期进行试验,得出无线电信号在小麦不同生长时期,最佳天线高度下的有效传输距离,为无线传感器网络在农业中的应用提供技术支持。  相似文献   

10.
基于GPS和PDA的移动智能农田信息采集系统开发   总被引:4,自引:4,他引:0  
根据精细农业发展的需要,开发了移动智能农田信息采集系统。系统以掌上电脑(PDA)为平台,集成了ZigBee协调器模块、GPS OEM模块和GPRS模块。ZigBee协调器模块用于管理农田无线传感器网络,通过农田无线传感器网络采集农田信息,应用无线节点进行数据的采集;GPS模块用于采集并管理各采样点的位置信息,并通过虚拟差分站VRS接收GPS位置的差分信息以提高定位精度;GPRS模块用于在申请差分信息和与上位机通讯时建立远程无限网络连接。使用VC语言开发了嵌入式应用模块,实现了无线传感器的农田信息、GPS的  相似文献   

11.
针对传统温室环境监测系统布线繁杂、成本较高、监测灵活性差及以往无线传感器网络(wireless sensor network, WSN)能耗较高等问题,设计了一种基于WSN的温室环境参数监测系统。利用CC2530无线传感网络芯片和外围接口搭建了系统硬件,使用Z-Stack协议栈编制了系统底层软件,基于VB软件平台开发了的温室环境监测系统上位机软件,并验证分析了CC2530芯片的传输特性。结果表明,节点在距地表1.5 m时的有效传输距离为60 m,单个节点使用2节5号电池能够持续进行温室环境参数数据采集工作45 d,能较为准确的对温室环境温湿度及作物土壤体积含水率进行监测,系统具有较高的实用性与可靠性。  相似文献   

12.
多路径下桃园射频信号传输特性   总被引:1,自引:0,他引:1  
为解决无线传感器网络在桃园中的快速部署问题,该文研究了2.4 GHz无线射频信号在桃园中的传播特性。依据角度选取4条传输路径,在3种(0.5、1.5、2.5 m)典型的天线高度,同时测量丢包率和路径损耗情况,分析表明两者具有明显的相关性,天线高度和通信距离是路径损耗的主要影响因素。在天线高度为0.5和1.5 m时,可靠传输距离为6个行距(27 m);在天线高度为2.5 m时,可靠传输距离大于14个行距(63 m),因此冠层顶部为布设天线的最佳位置。对路径损耗数据进行回归分析,发现其在每种天线高度,每条传输路径下对数模型最适合作为路径损耗模型,模型的R2最大为0.945,最小为0.732。为研究节点部署于桃园任意位置时的路径损耗情况,便于节点快速灵活地部署,在3种天线高度下对路径损耗数据进行对数回归分析,R2最大为0.976,最小为0.939。最后对2组模型进行了验证,表明模型可以预测射频信号在桃园中的路径损耗情况,该文研究结果为无线传感器网络在桃园中的部署提供了参考。  相似文献   

13.
钾肥生产原卤井无线传感器网络监测系统   总被引:1,自引:1,他引:0  
针对钾肥生产中原卤井位置分散、人工巡检不及时、工作环境恶劣和采卤泵故障率高的现状,设计了基于无线传感器网络(wireless sensor network,WSN)的钾肥生产原卤井监测系统。系统包括集成CC2530和传感器构成的采集终端,结合ZigBee与GPRS技术完成数据汇总和远距离传输的汇聚终端和利用PHP与My Sql开发的用于数据接收、存储、显示,管理和决策支持的远程管理系统。系统测试表明监测系统能够可靠地监测采卤井,准确地反映采卤泵运行状态和采卤井液位。可靠性测试表明传感器节点有13.5个月的有效生存时间;在30 m通信范围内,发射功率大于1 d Bm时,节点丢包率小于3.6%,具有较高的通信可靠性。  相似文献   

14.
柿园无线传感器网络信号传输损耗研究   总被引:1,自引:1,他引:0  
为探究柿园无线传感器网络信号传输特性,该文研究了在2.4 GHz无线信道下柿树处于萌芽期、幼叶期和花期3种时期时无线网络信号传输的衰减情况。试验中分别在柿子树萌芽期、幼叶期和花期3个生长时期下选择一列长势均匀的柿树,通过调节子节点和汇聚节点装置的高度和距离测量柿子树从距离地面3个高度冠层底部(0.8 m)、冠层最密部(1.8 m)和冠层顶部(2.8 m)处各8个距离点的链路质量指示值(link quality indicator,LQI),并对试验数据进行分析。结果表明LQI值随着距离的变化呈正弦曲线式衰减趋势。萌芽期时子节点和汇聚节点的高度均位于冠层顶部时,节点间距38 m时是最佳位置;幼叶期时子节点和汇聚节点的高度均位于冠层顶部,节点间距32 m时是最佳位置;花期时子节点和汇聚节点的高度均位于冠层顶部时,节点间距26 m时是最佳位置。通过对3次数据进行曲线拟合分析分别建立了在2.4 GHz信道下信号衰减模型,其中3种生长时期下均是三次多项式模型决定系数R2最大,为最适模型。果园中无线传感器网络信号传输损耗的研究为在果园中无线传感器网络节点部署提供了技术基础。  相似文献   

15.
生猪养殖场无线传感器网络路径损耗模型的建立与验证   总被引:4,自引:4,他引:0  
研究无线信号在生猪养殖环境中的传播特性,可以对无线传感器网络的路径损耗进行预测,从而为网络的部署奠定基础。研究采用ZigBee无线传感网络技术,通过在生猪养殖场中实际测试了有障碍物情况下,无线信号的丢包率和接收信号的功率强度,进而得出路径损耗值,以及障碍物的衰减因子,并进行了回归分析。研究表明,墙体衰减因子随墙壁数量增加而增大,植株衰减因子随天线架设高度升高而减小。最终模型的路径损耗参数为2.02,路径损耗的基础损耗为63.602,以混凝土墙为障碍物时,其衰减因子大小为2.64。将障碍物的衰减因子综合添加在经验模型中,可以有效的预测路径损耗值。  相似文献   

16.
针对海岛环境中水产养殖区域分散、工作环境恶劣、人工巡检不便等问题,设计了基于低功耗广域物联网的海岛养殖环境监测系统。系统包括集成Arduino和传感器的终端采集节点,通过LoRa技术实现数据汇总和远距离传输的汇聚网关,利用Python与PostgreSQL开发用于数据接收、存储、处理、访问和控制的后台监测系统。通过对网络拓扑复杂度、能耗等方面的评估,表明在海岛环境下部署水产养殖环境监测系统,相比传统Zigbee多跳无线传感网,采用LoRaWAN,其单跳节点覆盖范围更大,而网络复杂度、能耗等更优。测试表明该系统能以较低功耗实现整片区域内远距离数据采集,有效传输养殖区水体环境数据。网络生存期与传输可靠性测试表明,当传感器节点采用3.7 V/4 200 mAh锂电池,上传周期为30 min时,监测网络的有效生存期理论上可达2.4 a;在800 m通信范围内,发射功率为20 mW时,节点丢包率小于3.6%,具有较高的通信可靠性。该研究可为水产养殖生产和物联网应用研究提供有效参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号