首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Abstract. Natural secondary succession, forest planting and agricultural practices after deforestation affect soil properties in many ways. During the last 50 years, land uses have greatly changed in the mountainous areas in southwestern China as the result of deforestation and cultivation. A study was initiated in Wolong Nature Reserve, Sichuan province to elucidate the complex relationships in a humid mountainous region. Soil properties under six typical land use types (natural forest, grassland, shrub, secondary forest, cultivated land and reforested land) were compared. Significant differences between land uses were found for soil bulk density (BD), total nitrogen (TN), soil organic carbon (SOC), available phosphorus (AP) and available potassium (AK). Cultivated land had the lowest levels for most soil properties compared to other land uses and shrubland had a higher SOC, TN and available nitrogen (AN) than other land uses. Soils under grassland and shrub contained the greatest carbon mass (TC). Further studies on reforested land indicated that soil properties could be changed by length of reforestation. The SOC and TN in particular showed a linear relationship with years since reforestation. The results suggested that in an area of China where the climate favours secondary succession, 'leave nature as it is' is a better choice than the policy 'change farmland to forest land ', especially for the mountainous regions where there is lack of labour and financial support.  相似文献   

2.
以河北坝上地区实施退耕还林还草18年后的耕地、林地、灌丛和草地为研究对象,通过测定土壤理化性质并结合氯仿熏蒸浸提法和高通量测序技术,分析了坝上地区退耕还林还草措施对土壤微生物生物量、细菌多样性和群落结构特征的影响.结果发现:林地的土壤含水量有微弱下降趋势,但不同植被恢复类型下土壤中的碳、氮、磷、钾等元素含量无显著差异....  相似文献   

3.
黄土丘陵区天然和人工植被类型对土壤理化性质的影响   总被引:8,自引:2,他引:6  
不同植被类型对黄土高原土壤质量的改善作用存在较大差异。研究天然和人工植被类型对土壤性状的影响差异对于深入认识黄土高原植被恢复与土壤环境演化的关系,准确评价不同植被恢复模式生态环境效益具有重要意义。该研究以黄土丘陵区燕沟流域为例,选择研究区广泛分布的11种天然和人工植被类型为研究对象,系统分析了该区天然和人工植被类型对土壤性状的影响。结果表明:天然和人工植被类型对土壤性状的影响差异明显。200cm土层土壤含水率大小为农田>天然草地>人工乔木林地>果园>人工灌木林地>天然灌木林地。与农田相比,天然灌木林地和天然草地土壤体积质量降低最为明显,人工乔木林地、人工灌木林地和果园土壤体积质量下降差别不明显。天然灌木林地、天然草地和人工灌木林地土壤有机质、全氮都有明显提高,人工乔木林地和果园土壤有机质和全氮提高不明显。不同植被类型土壤有机质、全氮总体随土层加深呈下降趋势,农田、果园和人工乔木林地土壤有机质和全氮垂直变化较小,而天然灌木林地、天然草地和人工灌木林地变化较大。不同植被类型土壤全磷含量差异较小,且垂直变化不明显。总体看来,天然植被类型对该区土壤性状改善作用优于人工植被类型,而人工灌木林的改善作用优于人工乔木林。  相似文献   

4.
郭绍义  王红新  刘文彬  陈云 《土壤》2022,54(6):1132-1137
为探讨升金湖沿湖不同土地利用方式土壤养分含量特征,以林地、农田、菜地和草地为研究对象,测定土壤有机质、pH值、C/N值以及氮磷钾等元素的含量。结果表明:(1)四种土地利用方式下,土壤 pH 值大小顺序为:农田>草地>林地>菜地,菜地和林地pH 值均为弱酸性;(2)土壤有机质含量顺序为:菜地>林地>农田>草地,菜地和林地有机质含量丰富,农田和草地稍欠缺。菜地C/N最高,农田C/N最低。(3)土壤全氮含量顺序为:菜地>林地>农田>草地。全磷、全钾含量没有明显差异,土地利用方式对二者影响不大。菜地中碱解氮和速效钾含量最高,农田中有效磷含量最高。本研究结果可为升金湖湖区土地资源的合理利用、保持和提高土壤肥力以及区域生态协调提供科学参考。  相似文献   

5.
采用野外调查和室内分析相结合的方法,对贵州省长顺县冗雷河小流域坡耕地、人工草地和天然草地3种地类的全氮和碱解氮,全磷和有效磷,全钾和有效钾,酸碱度,有机质进行了研究,以层次分析法进行肥力综合评价,揭示冗雷河小流域草地治理模式下对土壤肥力的影响。结果表明:坡耕地实施人工种草措施后,土壤全氮含量相对增加42.64%,碱解氮增加50.86%,中层和下层(20—30 cm)土壤碱解氮改善最为明显;土壤全磷含量相对增加45.24%,有效磷降低23.58%,坡耕地相比草地在全磷含量上相对较为匮乏,但用于作物吸收的有效磷素却高于人工草地;土壤全钾和有效钾含量降低,pH值无变化,其中全钾含量相对降低43.28%,有效钾降低37.32%;土壤有机质含量相对增加77.24%,其中表层(0—10 cm)、中层和下层土壤有机质含量分别提升48.06%,85.58%和107.78%,中层和下层土壤有机质含量改善幅度大。天然草地综合肥力指数最大,坡耕地最小,天然草地综合肥力指数是人工草地的1.09倍,是坡耕地的1.14倍,人工草地是坡耕地的1.05倍。土壤肥力整体水平上得到提升。  相似文献   

6.
Knowledge of soil moisture spatial variation with land use along the precipitation gradient is necessary to improve land management and guide restoration practice in the water‐limited Chinese Loess Plateau. This study selected 45 sampling points at 11 sites across the north–south transect of the Loess Plateau based on the precipitation gradient and land use. Results showed that the vertical profiles of soil moisture revealed large variations with the precipitation gradient changing, especially in the surface layer (0–100 cm). Significant linear correlation existed between the average soil moisture of the profile and the mean annual precipitation (MAP) for each land use type (p < 0·05). Hereinto, the soil moisture under the grassland was affected more greatly by precipitation. The soil moisture under each land use commonly revealed the trend as farmland > grassland > shrubland > woodland, while it might be higher under the woodland than the shrubland in the surface layer in regions with MAP <500 mm. The soil moisture of woodland or shrubland at the selected points was below or approximate to the permanent wilting point in regions with MAP <520 mm. Covariance analysis confirmed the effects of land use and MAP on the soil moisture in depth of 100–300 cm, and it showed land use did not pose significant effects in the surface layer. In addition, our study indicated that it is necessary to reconsider and re‐evaluate the current vegetation restoration strategy in the perspective of vegetation sustainability and soil water availability, in which woodland and shrubland were selected on a large scale in the arid and semi‐arid regions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
[目的]探究砒砂岩不同类型区及不同土地利用方式对土壤水分、有机碳和全氮含量的影响,对于砒砂岩区进一步发展具有重要指导作用。[方法]以内蒙古准格尔旗砒砂岩覆土区的13年生沙棘林地、6年生沙棘林地、天然草地及砒砂岩裸露区草地和砒砂岩覆沙区的天然草地、柠条林地、农地、退耕5年地共8个样地为研究对象,通过测定0—100 cm深度不同土层土壤含水量、有机碳和全氮含量,研究和比较了不同土层土壤水分、有机碳和全氮含量与变化规律。[结果](1)覆土区(13年生沙棘林地152.36 mm、6年生沙棘林地165.16 mm、天然草地160.97 mm)0—100 cm土层土壤储水量均高于覆沙区(天然草地73.03 mm、柠条林地66.56 mm、农地79.70 mm、退耕5年地107.03 mm)。(2)裸露区草地土壤有机碳含量均低于覆土区和覆沙区,0—100 cm土壤有机碳储量(1.97 kg/m2)分别比覆土区天然草地、6年生沙棘林地、13年生沙棘林地和覆沙区天然草地、柠条林地、农地、退耕5年地分别低了2.24 kg/m2,2.36 kg/m2  相似文献   

8.
Severe soil and water loss has lead to widespread land degradation in China's loess plateau. During the past decades, a great deal of effort was made on vegetation restoration to reduce soil and water loss in the loess plateau. However, due to water shortage the efficiency of vegetation restoration was not as satisfactory as expected. As part of a vegetation restoration project, we conducted research aiming to understand the relationship between vegetation pattern and soil water dynamics. The goal was to find vegetation types appropriate for the loess plateau with scarce water resources. In 1986, fifteen plots of land were planted with five vegetation types: pine woodland, shrubland, sloping cropland, alfalfa and semi-natural grassland. Soil water content, runoff, soil erosion were measured for each plot. Environmental variables, such as rainfall, evaporation and temperature, were recorded simultaneously by an automated meteorological station. The relationship between land cover pattern and soil water dynamic was evaluated by using statistical models. We found that: (1) soil water loss occurred during the growing season, and it reached the maximum in the second half of July; (2) soil water was not fully replenished from rainfall during the rainy season; (3) pine woodland induced the largest water loss to surface runoff, followed by sloping cropland, alfalfa, semi-natural grassland and shrubland; the poor capability of pine woodland for water conservation may be attributed to soil compaction and poor ground coverage under the tree; (4) in most cases, soil water of the five vegetation types was low except for shrubland and semi-natural grassland where it was moderate-high during a few periods. These conditions inhibit sustainable vegetation growth in the semi-arid loess hilly area of the loess plateau, China.  相似文献   

9.
植被重建下露天煤矿排土场边坡土壤碳储量变化   总被引:5,自引:0,他引:5  
植被重建是治理排土场边坡水土流失最直接也是最有效的生物措施,研究不同植被重建模式下土壤有机碳(SOC)和全氮(TN)含量的空间分布规律是筛选适宜排土场边坡生长的植被模式的重要条件。选取内蒙古黑岱沟露天煤矿治理15年的排土场边坡中4种植被重建模式(自然恢复地、草地、灌木林、乔木林),采集270个土壤剖面(0~100 cm)样品,研究不同重建模式下SOC储量的变化。结果表明:(1)植被重建模式显著影响剖面SOC、TN含量及分布(p0.05),0~10 cm和10~20 cm SOC、TN均呈草地灌木乔木自然恢复地,20 cm以下各土层SOC、TN虽然也表现相似的特征,但差异随土层深度增加越来越小。(2)剖面SOC密度和储量表现为原地貌区治理排土场新建排土场。经15年植被重建后,排土场边坡表现出巨大的固碳能力,1 m深度的林地和草地碳储量分别增加了5.38、11.85 t hm-2,但仅原地貌水平的1/2和3/5。(3)林地和草地的固碳速率分别为35.87、79.01 g m-2a-1,草地的固碳速率是林地的2.2倍,从土壤固碳及水土流失防治的角度考虑,建议矿区排土场边坡植被重建优先选择草地,其次灌木。  相似文献   

10.
生态系统自我修复是黄土高原植被恢复的重要途径。以永久性天然草地和三龄沙打旺人工草地为对照,在对黄土丘陵区坡地退耕植被自然恢复过程群落演替、地上部分生物量的增长及其组成动态变化特征调查的基础上,定量分析了不同恢复阶段主要群落下土壤的入渗能力。研究表明,随着植被演替的进展,群落生物量逐步增加,土壤入渗能力显著改善。退耕草地土壤表层0-20cm土壤渗透能力(K10℃)每年可提高0.10mm。植被改善土壤入渗能力的有效深度达40cm。说明黄土丘陵区通过坡地退耕还林还草恢复植被可以改善土壤渗透性能,强化降雨就地入渗,减少水土流失。  相似文献   

11.
Abstract. Since the 1980s, land use in rural areas of China has changed greatly as the result of political initiatives. These changes have caused soil nutrient changes which are examined in this paper for Zunhua County, northern China from 1980 to 1999. The areas of farmland, grassland, and paddy decreased greatly and were replaced by increases in forest and residential land. The soils under forest in 1999 transformed from farmland in 1980 increased in organic matter by 21%, total nitrogen by 18%, available nitrogen by 65%, available phosphorus by 17% and available potassium by 17%. Similarly, in the area which was converted from farmland in 1980 to grassland in 1999, soil organic matter, total nitrogen, available nitrogen, available phosphorus, and available potassium increased by 38%, 37%, 71%, 2% and 28%, respectively. Changes from farmland to forest and grassland not only changed land cover but also improved soil fertility and probably reduced soil nutrient losses.  相似文献   

12.
于路加  王翠平  马海军  杨怀秋 《土壤》2024,56(1):202-213
为阐明银川市黄河滩地土壤性质的空间分布特征,分析不同用地类型(荒地、林地、耕地、退耕地)之间土壤性质的差异,通过均匀取样法实地采集银川市黄河滩地耕层土壤样品92份,采用地统计学和模糊数学法对土壤容重、孔隙度、田间持水量等物理性质和pH、电导率、可溶性盐、有机质、全氮、全磷、全钾、碱解氮、有效磷、速效钾、硝态氮、铵态氮等化学性质的空间分布特征进行了分析和综合评价。结果表明:银川市黄河滩地表层土壤容重在1.07~1.52 g/cm3,田间持水量为18.18%~31.16%,总孔隙度介于33.60%~49.83%,毛管孔隙度在26.67%~36.43%,非毛管孔隙度为5.6%~17.00%;土壤均为盐碱土,氮、磷元素含量偏低,其余养分含量处于中等水平;不同用地类型之间,林地的物理特征表现最优,退耕地土壤pH显著高于耕地(P<0.05),电导率、可溶性盐和铵态氮含量均表现为退耕地显著高于其他3种用地类型(P<0.05),全磷含量表现为林地显著低于其他3种用地类型(P<0.05),有效磷含量表现为耕地和退耕地显著高于林地和荒地(P<0.05),其余理...  相似文献   

13.
Large areas of traditional slope cropland were recently converted to other land‐use types in the semiarid Loess Plateau of China. In this study, we selected four representative conversion options of slope croplands, i.e., pastureland rotated with cropland (cultivated with Medicago sativa L. and rotated with Triticum aestivum L.), shrubland and woodland (afforested with Hippophae rhamnoides L. and Pinus tabulaeformis), and grassland (native herbage Stipa breviflora) to study the effect of land‐use conversion by comparing with traditional cropland. Compared with slope cropland, the relative effects of different conversion options on surface runoff and soil erosion were assessed over a 14‐year measurement period. Observations showed that distinct features and consequences of vegetation succession were found among the conversion options. Plots of shrubland had the highest vegetation coverage with dense undergrowth; natural herbaceous and subshrub species gradually spread into plots of grassland resulting in higher vegetation cover. Neither bushes nor herbs colonized the plots of Pinus tabulaeformis, which resulted in a higher percentage of bare soil. Significant differences in runoff generation, sediment yield and conservation efficiencies among the selected conversion options were detected through an analyses of variance (ANOVA). Compared with cropland, total runoff and sediment decreased by 65 per cent and 95 per cent in shrubland, 41 per cent and 92·5 per cent in grassland, 18 per cent and 77 per cent in woodland, and 12 per cent and 58 per cent in pastureland, respectively. The ranking of soil and water conservation efficiencies was shrubland > grassland > woodland > pastureland > cropland. Based on the effectiveness of soil and water conservation, shrubland and grassland are highly recommended as promising options for cropland conversion projects. However, pastureland and woodland are not suggested as potential options for slope‐cropland conversion because of low soil and water conservation in the long term. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
用显微CT研究不同植被恢复模式的土壤团聚体微结构特征   总被引:7,自引:4,他引:3  
为了更好了解不同植被恢复模式对土壤团聚体微结构的影响,该研究采用显微CT技术扫描3~5 mm土壤团聚体,获取了3.25μm分辨率的二维图像,并应用数字图像处理软件对团聚体孔隙结构进行三维重建,定量研究了黄土丘陵区不同植被恢复模式下(自然草地、人工灌木和坡耕地)土壤团聚体微结构特征。结果表明,两种植被恢复模式均显著提高了土壤有机碳含量和团聚体水稳性(P0.05),降低了土壤容重。与坡耕地处理相比,自然草地土壤团聚体总孔隙度、大孔隙度(100μm)、瘦长型孔隙度分别增加了20%、23%和24%,而分形维数和连通性指数欧拉特征值分别降低了2%和75%,且各指标二者间差异均显著(P0.05)。人工灌木土壤团聚体的上述各项孔隙参数均优于自然草地(较坡耕地分别增加了70%、88%和43%以及降低了4%和92%),且除欧拉特征值外,差异均显著(P0.05)。分形维数和连通性对土壤结构变化的响应相当敏感,可作为该地区植被恢复过程中土壤质量评价的指标,研究结果可为黄土高原土壤质量评价提供科学参考。  相似文献   

15.
Changes in vegetation and soil properties because of agricultural abandonment may affect soil nitrogen (N) and associated processes. We investigated soil N (total N: TN, inorganic N: NH4–N and NO3–N) and denitrification potential in cropland, pine plantations and abandoned agricultural land along a secondary succession sequence (grassland→shrubland→secondary forest) in a headwater catchment in the Qinling Mountains, northwest China. The results show that the soil denitrification potential differed significantly among the five land‐use types with the highest potential in the secondary forest, followed by grassland, shrubland, cropland and plantations. The denitrification potential of the 20‐ to 40‐cm layer was significantly lower compared with the topsoil (0–20 cm) across all land‐use types. TN, soil organic matter (SOM) and NH4–N increased significantly with stand age, whereas there was an opposite trend in soil pH. However, the denitrification potential did not relate to stand age in a linear manner. We conclude that changes in soil TN, SOM and pH during vegetation succession following agricultural abandonment are critical controls on the denitrification potential.  相似文献   

16.
探究施肥对旱作区新修梯田土壤理化性质和作物产量的影响,对中低产田地力提升具有重要意义。利用2019年设置在定西市安定区新修梯田的定位试验,分析不施肥(CK)、施氮磷钾肥(NPK)、氮磷钾肥配施有机肥(NPKM)、氮磷钾肥配施有机肥再增施土壤调理剂(NPKMF)对土壤理化性质和马铃薯产量的影响,以评价施肥对新修梯田土壤的培肥效果。结果表明,与不施肥(CK)相比,各施肥处理均降低了新修梯田挖方部位和填方部位的土壤容重,提高了土壤总孔隙度和田间持水量,增加了土壤有机质、碱解氮、有效磷和速效钾含量,挖方部部位和填方部位马铃薯产量分别提高21.79%~66.13%和24.91%~32.28%。与施氮磷钾肥相比,氮磷钾肥配施有机肥再增施土壤调理剂降低了挖方部位和填方部位的土壤容重,提高了土壤总孔隙度和田间持水量,且对挖方部位的改善效果更显著;但土壤有机质、有效磷和速效钾含量差异均不显著,挖方部部位和填方部位碱解氮含量分别显著提高9.98%和10.00%,马铃薯产量分别提高了36.40%和5.90%。综上可知,氮磷钾化肥配施有机肥再增施土壤调理剂可降低土壤容重,提高土壤总孔隙度和田间持水量,提升土壤养分含量,增加马铃薯产量,是旱作区新修梯田地力提升的有效措施。  相似文献   

17.
在黄土高原丘陵沟壑区第三副区典型流域选取林地、耕地、果园、撂荒地和草地5种土地利用方式,进行土壤水分物理性质的对比研究。结果表明:林地、耕地和撂荒地的土壤含水量显著大于果园和草地。耕地和果园的饱和持水量显著大于草地。各土地利用类型下土壤水分物理因子基本具有一致性,其变异系数均属于中等变异。水平方向上各个土壤水分物理性质较为均一,土壤饱和导水率和土壤含水量平均为0.84 mm/min和19.18%,土壤容重平均为1.34 g/cm3,但毛管孔隙度均在10%以下,表层土壤通气透水性能较差。近年来虽大面积新修梯田、发展经济林,表土水分物理性质得到改良,但从整体性能上来看,还是较差,今后需进一步改善土壤环境。  相似文献   

18.
L. M. MARAFA  K. C. CHAU 《土壤圈》2005,15(2):181-188
This research examined nitrogen mineralization in the top 10 cm of soils with a vegetation gradient in Hong Kong at sites where fire has been absent for 0, 1, 3, 6 and 17 years (at the time of the study), and the relationships between N mineralization and successional development of vegetation in the absence of fire. The sites including a newly burnt area (S1), short grassland (S2), tall grassland (S3), mixed tall grassland and shrubland (S4), and woodland (S5) were selected, with the in situ core incubation method used to estimate nitrogen mineralization. Throughout the 60-day incubation in four periods, more nitrogen was mineralized at the S3 and S4 sites, the predominantly grassland sites, which contained the highest levels of soil organic matter (SOM) and total Kjeldahl nitrogen (TKN), than the S1 site, while immobilization occurred at the S2 and S5 sites. Leaching loss decreased with successional development of the vegetation, in the order of S1 > S2 > S3 > S4 > S5. The pattern of nitrogen uptake with ecological succession was less conspicuous, being complicated by the immediate effect of fire and possibly the ability of the woodland species to extract nitrogen from the deeper ground. In the absence of fire for 3 to 6 years, the build-up of SOM and TKN was accompanied by active mineralization, thus paving the way for the invasion of shrub and tree species. A close relationship existed between nitrogen mineralization and ecological succession with this vegetation gradient. Inherent mechanisms to preserve nitrogen in a fire-prone environment including immobilization and uptake and the practical relevance of nitrogen mineralization to reforestation are discussed.  相似文献   

19.
Understanding the effects of land use change on soil properties is important for soil quality improvement and sustainable land use. In this study, six land use types including wasteland (WLD), cropland (CLD), abandoned land (ABD), artificial grassland (AGD), shrubland (SLD) and woodland (WOD) were selected to analyse the effects of land use types on soil nutrient in the Anjiapo catchment in the western part of the Loess Plateau in China. Significant differences were found in soil organic matter (SOM), total nitrogen (TN) and nitrate nitrogen (NON) (P < 0.01) between the six land use types. Our study also showed that land use types have different effects on soil nutrient storage, and vegetation restoration may improve soil nutrients and soil quality. While crop plantation can significantly decrease soil fertility, the trend can be reversed by cropland abandonment and afforestation. It is recommended that more C input, alternative cultivation practices, vegetation restoration and education and techniques training of local farmers could be used to improve soil conditions and to advance the sustainable land use and local development in the loess hilly area in the Loess Plateau of China. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
人工与自然恢复方式对流动沙地土壤与植被特征的影响   总被引:3,自引:0,他引:3  
[目的]分析不同固沙措施对土壤—植被系统恢复的生态效应,为该地区沙化草地选取合理的固沙措施、草场管理与利用以及沙漠化治理提供依据。[方法]以宁夏地区盐池沙地围封自然恢复草地和灌丛人工固沙林地为研究对象,以周围流动沙地为对照,对不同处理措施样地土壤性质和地表植被特征进行调查。[结果](1)两种恢复措施均能够显著增加土壤黏粉粒含量、土壤有机碳和全氮含量(p0.001),降低土壤温度、容重和含水量(p0.05),并显著提高草本植物丰富度、个体数和平均高度(p0.05)。(2)自然围封草地土壤黏粉粒含量、草本植物个体数和丰度分别是人工灌丛林地的2.1,2.8,1.4倍;而其土壤含水量下降幅度是人工灌丛固沙林地的1.7倍。人工灌丛固沙林地土壤有机碳、全氮含量以及草本植物平均高度分别是自然恢复草地的2.1,2.0,2.2倍;而其土壤容重下降幅度是自然恢复草地的2.5倍。(3)随着流动沙地固定和草本植被恢复,植物群落以一年生草本植物为特征逐渐演替到以一年生草本植物为主且伴生有多年生植物的草地生态系统。但一年生和多年生植物个体数和物种数自然恢复草地均明显高于人工灌丛固沙林地。[结论]围封自然恢复对于宁夏地区盐池沙地土壤质地与植被系统稳定性的恢复质量优于灌丛人工恢复措施,人工灌丛固沙因其能够有效改良土壤营养条件亦可作为重要辅助恢复手段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号