首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
以吉林省农业科学院黑土有机培肥定位试验基地为平台,研究了不同种类有机肥(堆腐肥、鸡粪、牛粪和猪粪)施用对土壤及不同粒级团聚体中有机碳和腐殖质组成的影响。结果表明:与不施肥(CK)和单施化肥(NPK)相比,有机肥配施化肥显著(P0.05)增加了土壤有机碳、胡敏酸碳(HAC)和胡敏素碳(HUC)含量;同时,有机肥配施化肥也增加了不同粒级团聚体中有机碳和腐殖质碳含量,其中施用堆腐肥显著增加了各粒级团聚体中有机碳、HAC和HUC含量。不同种类有机肥相比,施用堆腐肥处理的土壤有机碳、HAC和HUC含量均高于其他有机肥处理,并与牛粪处理之间差异显著;施用堆腐肥和牛粪后,0.25mm粒级团聚体有机碳含量高于其他有机肥处理,且2~0.25mm粒级团聚体有机碳含量显著高于鸡粪处理;从不同粒级团聚体中腐殖质组分的分布来看,施用堆腐肥后,2~0.25mm粒级团聚体中HAC和HUC含量显著高于猪粪处理,而0.25~0.053,0.053mm粒级团聚体中HAC含量显著低于鸡粪处理。上述结果说明,有机肥配施化肥提高了土壤团聚体中有机碳和腐殖质碳含量,但不同有机肥的效应不同。  相似文献   

2.
为了比较等氮水平下不同有机肥及其与无机肥配施对土壤重金属的钝化效果,通过在0.2 g·kg-1氮水平下单施商品有机肥、猪粪、牛粪、鸡粪和花生麸,及5种有机肥分别与无机肥(尿素+磷酸二氢钙+硫酸钾)配施(N∶N=1∶1)的盆栽试验,研究它们对重金属污染土壤上生菜(Lactuca sativa)生长及其Cd、Pb含量的影响。结果表明,与CK相比,有机肥可提高生菜的生物量(商品有机肥单施除外),有机肥单施时,鸡粪处理生菜的鲜重最高,配施时牛粪和鸡粪处理生菜的生物量最大。无论单施或配施,花生麸和鸡粪处理降低生菜地上部Cd含量的效果最好,且鸡粪较好地降低了生菜地上部Pb含量。牛粪和花生麸配施的Pb含量显著低于单施,猪粪和商品有机肥单施的Pb含量显著低于配施,其余单施和配施之间没有显著差异。因此,鸡粪是5种有机肥中较适合施用于重金属污染菜地土壤的有机肥。  相似文献   

3.
In recent years, organic agriculture has been receiving greater attention because of the various problems like deterioration in soil health and environmental quality under conventional chemical‐intensive agriculture. However, little information is available on the comparative study related to the impact of use of mineral fertilizers and organic manures on the soil quality and productivity. A long‐term field experiment was initiated in 2001 to monitor some of the important soil‐quality parameters and productivity under soybean–wheat crop rotation. The treatments consisted of 0, 30, and 45 kg N ha–1 for soybean and of 0, 120, and 180 kg N ha–1 for wheat. The entire amount of N was supplied to both the crops through urea and farmyard manure (FYM) alone or in combination at 1:1 ratio. Results indicated that Walkley‐and‐Black C (WBC; chromic acid–oxidizable) exhibited a marginal increase under only organic treatments as compared to control treatment (without fertilizers and manure) after completion of five cropping cycles. In case of labile‐C (KMnO4‐oxidizable) content in soil, relatively larger positive changes were recorded under organic, mixed inputs (integrated) and mineral fertilizers as compared to WBC. Maximum improvement in the values of C‐management index (CMI), a measure of soil quality was recorded under organic (348–362), followed by mixed inputs (268–322) and mineral fertilizers (198–199) as compared to the control treatment after completion of five cropping cycles. Similarly there was a substantial increase in KCl‐extractable N; in Olsen‐P; as well as in DTPA‐extractable Zn, Fe, and Mn under organic treatments. Although labile soil C positively contributed to the available N, P, K, Zn, Fe, and Mn contents in soil, it did not show any relationship with the grain yield of wheat. After completion of the sixth cropping cycle, organic treatments produced 23% and 39% lower grain yield of wheat as compared to that under urea‐treated plots. Relatively higher amount of mineral N in soil at critical growth stages and elevated N content in plant under mineral‐fertilizer treatments compared to FYM treatments were responsible for higher yield of wheat under mineral fertilizers.  相似文献   

4.
不同施肥管理对红壤性水稻土有机碳、氮形态的影响   总被引:4,自引:0,他引:4  
A long-term experiment beginning in 1981 in Jinxian County of Jiangxi Province, subtropical China, was conducted in a paddy field under a double rice cropping system with four different fertilization regimes, including 1) no fertilizer as control (CK), 2) balanced chemical N, P, and K fertilizers (NPK), 3) organic manure using milk vetch and pig manure in the early and late rice growing season, respectively (OM), and 4) balanced chemical fertilizers combined with organic manure (NPKM). Samples (0-17 cm) of the paddy field soil, which was derived from Quaternary red clay, were collected after the late rice harvest in November 2003 for determination of total organic carbon (TOC) and total nitrogen (TN) and fractions of organic C and N. Results showed that TOC and TN in the NPKM and OM treatments were significantly higher than those in other two treatments (CK and NPK). Application of organic manure with or without chemical fertilizers significantly increased the contents of all fractions of organic C and N, whereas chemical fertilizer application only increased the contents of occluded particulate organic C (oPOC) and amino acid N. In addition, application of organic manure significantly enhanced the proportions of free particulate organic carbon (fPOC) and oPOC in total C, and those of amino sugar N and amino acid N (P < 0.01) in total N. In contrast, chemical fertilizer application only increased the proportions of oPOC and amino acid N (P < 0.05). There were no significant differences in either contents or proportions of soil organic C and organic N fractions between the NPKM and OM treatments. These indicated that organic manure application with or without chemical fertilizers played the most significant role in enhancing soil organic C and N quantity and quality in the paddy field studied.  相似文献   

5.
通过在黄棕壤上开展的 14年田间定位试验研究稻 -麦水旱轮作下长期施用有机肥对土壤及不同粒级中有机磷的影响。结果表明 :与不施肥的对照和单施化肥相比 ,有机肥与化肥长期配合施用能显著增加土壤有机磷总量 ;就有机磷的形态而言 ,长期施肥主要增加中等活性有机磷的含量。土壤不同粒级中总有机磷的含量顺序为 :0~ 2 μm >2~ 10 μm >5 0~ 10 0 μm >10~ 5 0 μm。从分配系数上看 ,土壤有机磷各形态中以对植物有效性较高的中等活性有机磷占绝对优势 ,对植物有效性最高的活性有机磷仅占 3 %左右。长期施用有机肥后使分配在活性、中等活性组分中有机磷的比例增加 ,而稳定性有机磷中的比例下降。  相似文献   

6.
In a field experiment, the effect of combination of different organic manures on the productivity of crops and soil quality were evaluated in deep vertisols of central India. Combinations of cattle dung manure (CDM), poultry manure (PM), and vermicompost (VC) vis‐à‐vis mineral fertilizers were tested in four cropping systems involving soybean (Glycine max L.), durum wheat (Triticum durum Desf.), mustard (Brassica juncea L.), chickpea (Cicer arietinum L.), and isabgol (Plantago ovata Forsk). The organic manures were applied based on the N‐equivalent basis and nutrient requirement of individual crop. The grain yields of durum wheat and isabgol were higher in the treatment that received a combination of CDM + VC + PM whereas in mustard, CDM + PM and in chickpea, CDM + VC recorded the higher yields. The yield levels in these organic‐manure combinations were similar to the yields obtained with mineral fertilizers. Among the cropping systems, soybean–durum wheat and among the nutrient sources, the combination of CDM + VC + PM recorded the highest total productivity. At the end of the 3‐year cropping cycle, application of organic manures improved the soil‐quality parameters viz., soil organic carbon (SOC), soil available nutrients (N, P, and K), soil enzymes (dehydrogenase and alkaline phosphatase), and microbial biomass C in the top 0–15 cm soil. Bulk density and mean weight diameter of the soil were not affected by the treatments. Among the cropping systems, soybean–durum wheat recorded the highest SOC and accumulated higher soil available N, P, and K. In conclusion, the study clearly demonstrated that the manures applied in different combinations improved the soil quality and produced the grain yields which are at par with mineral fertilizers.  相似文献   

7.
肥料重金属含量状况及施肥对土壤和作物重金属富集的影响   总被引:61,自引:5,他引:56  
本文对肥料中重金属的含量状况以及施肥对土壤和农作物重金属累积影响的研究进展进行了系统分析和总结。过磷酸钙中锌(Zn)、 铜(Cu)、 镉(Cd)、 铅(Pb)含量高于氮肥、 钾肥和三元复合肥,有机-无机复混肥料中的Pb含量高于其他化肥。有机肥如畜禽粪便、 污泥及其堆肥中的重金属含量高于化肥,猪粪中的Cu、 Zn、 砷(As)、 Cd含量明显高于其他有机废弃物,鸡粪中铬(Cr)含量高;污泥和垃圾堆肥中Pb或汞(Hg)含量高。商品有机肥Zn、 Pb和镍(Ni)含量高于堆肥,Hg含量高于畜禽粪便。多数研究表明,氮磷钾配施与不施肥相比土壤Cd和Pb含量增加,施用有机肥比不施肥提高土壤Cu、 Zn、 Pb、 Cd含量。施用化肥对农作物重金属富集的影响不明确,而施用有机肥可提高作物可食部位Cu、 Zn、 Cd、 Pb 的含量,影响大小与有机肥种类、 用量、 土壤类型和pH以及作物种类等有很大关系。在今后的研究中应着重以下几个方面, 1)典型种植体系下土壤重金属的投入/产出平衡; 2)不同种植体系下长期不同施肥措施对土壤重金属含量、 有效性影响的动态趋势; 3)典型种植体系和施肥措施下土壤对重金属的最高承载年限; 4)现有施肥措施下肥料中重金属的最高限量标准。  相似文献   

8.
长期施肥对土黑碳积累的影响   总被引:1,自引:0,他引:1  
通过长期定位试验,探讨了20年不施肥(CK)、 单施化肥(NPK)、 秸秆和化肥配施(SNPK)、 常量有机肥和化肥配施(M1NPK)以及高量有机肥和化肥配施(M2NPK)5个施肥处理对土中黑碳含量及积累的影响。结果表明: 与CK处理相比,NKP处理对黑碳含量和积累没有明显影响; 有机肥和化肥配施(M1NPK、 M2NPK)对耕层(020 cm)土壤黑碳含量的影响较大,与CK处理相比,在土壤表层(05 cm),M1NPK、 M2NPK分别提高了黑碳含量的108%和134%, 510 cm土层中黑碳含量增幅最高,分别提高164%和176%,在整个土层,M1NPK、 M2NPK处理分别增加了1.51和1.55倍; 秸秆和化肥配施(SNPK)下表层黑碳含量也有所增加,但增加幅度相对施用有机肥来说明明显较小。施肥对黑碳含量的影响主要发生在土壤表层,深层土壤黑碳受施肥影响较小。  相似文献   

9.
 Soil organic matter level, mineralizable C and N, microbial biomass C and dehydrogenase, urease and alkaline phosphatase activities were studied in soils from a field experiment under a pearl millet-wheat cropping sequence receiving inorganic fertilizers and a combination of inorganic fertilizers and organic amendments for the last 11 years. The amounts of soil organic matter and mineralizable C and N increased with the application of inorganic fertilizers. However, there were greater increases of these parameters when farmyard manure, wheat straw or Sesbania bispinosa green manure was applied along with inorganic fertilizers. Microbial biomass C increased from 147 mg kg–1 soil in unfertilized soil to 423 mg kg–1 soil in soil amended with wheat straw and inorganic fertilizers. The urease and alkaline phosphatase activities of soils increased significantly with a combination of inorganic fertilizers and organic amendments. The results indicate that soil organic matter level and soil microbial activities, vital for the nutrient turnover and long-term productivity of the soil, are enhanced by use of organic amendments along with inorganic fertilizers. Received: 6 May 1998  相似文献   

10.
以浙江省水网平原水稻主产区土壤为对象,通过定位试验,研究了连续13年的不同施肥处理对麦稻产量、土壤养分状况和物理性状的影响。结果表明,化肥配施有机肥可显著提高麦、稻产量; 不同施肥处理的长期定位试验土壤有机质含量和全氮均呈上升趋势,增幅依次为: 栏肥+NPK秸秆+NPKNPK秸秆栏肥CK处理; 土壤碱解氮和速效磷也呈增加趋势,以栏肥+NPK处理的增幅最为明显。土壤物理性状的分析表明,长期施肥均能明显增加土壤水稳性团粒含量和土壤孔隙度。经土壤养分平衡分析,栏肥+NPK、秸秆+NPK和NPK处理的氮和磷呈现盈余,秸秆和CK处理氮和磷亏缺; 栏肥+NPK和秸秆+NPK处理钾基本平衡,NPK、秸秆、栏肥和CK处理钾严重亏缺。长期定位试验进一步证明有机肥与氮、磷、钾化肥长期配合施用可实现当地农作物持续稳产,农田施肥管理要注意适当减少氮、磷投入,增加钾肥施用量,保持农田土壤养分平衡。  相似文献   

11.
The effects of different types of organic fertilizers on the chemical and enzymatic properties of an Oxisol were studied after being fertilized for four consecutive years (26 crops) in a greenhouse under intensive cultivation of vegetables. Seven treatments, consisting of five types of organic fertilizer treatments, one "sequential application" (SA) treatment, and a chemical fertilizer treated plot were compared. The organic fertilizers used were dairy cattle dung compost (DCDC), hog dung compost (HDC), chicken dung compost (CDC), pea residue compost (PRC) and soybean meal (SBM). After 4 years of cultivation, the soils were analyzed for their chemical properties and enzymatic activities. The microbial carbon (C) and nitrogen (N), basal respiration and nitrification rate were also measured. The results showed that the SBM significantly lowered the soil pH, and that the HDC and DCDC raised the soil pH. The SBM and CDC resulted in the lowest soil electrical conductivity. The SBM had no significant effect on soil organic C and total N contents when compared with the CF plot. However, the DCDC resulted in the highest contents of soil organic C and total N. The organic fertilizers applied did not significantly affect the soil available copper, zinc, cadmium, lead and nickel. The effects of the different organic fertilizers on soil enzymatic activities depended on the types of organic fertilizers applied. The SBM and CDC often resulted in a lower microbial C (or N) and respiration rate, while in contrast DCDC and PRC resulted in high measurements. Most of the measured soil enzymatic activities in the SBM treatment, except for acid phosphatase, were the lowest. Differing contents of different heavy metals in the organic fertilizers resulted in different Mehlich III extractable heavy metal contents in the soils. From the point of view of the soil chemical and enzymatic properties, SBM is not an appropriate organic fertilizer for continuous application to an Oxisol.  相似文献   

12.
陈贵  张红梅  沈亚强  程旺大 《土壤》2018,50(1):59-65
采用连续5年田间定位试验,研究了等量单独施用猪粪或牛粪有机肥以及有机肥与化学肥料配施对水稻产量、氮磷钾养分吸收累积及利用效率、土壤养分含量及其与产量等关系的影响。结果表明:猪粪有机肥施用(7.5t/hm~2+常量化肥、15 t/hm~2+1/2常量化肥和30 t/hm~2+无化肥)时水稻产量、干物质累积、氮磷累积及生理利用效率与常量化肥处理相比无显著差异;牛粪有机肥与化肥减量配施和单独施用时,尽管氮、磷和钾生理利用效率有所提高,但水稻产量、地上部氮、磷和钾累积量均有不同程度下降,且以单独施用时尤为明显。等量猪粪有机肥对土壤全氮、碱解氮、有效磷和速效钾含量以及pH的提升程度大于牛粪有机肥,有机质含量无明显差异;与猪粪有机肥相比,牛粪有机肥施用时土壤养分各指标与水稻产量、干物质累积量、氮磷钾累积量以及利用效率间的相关性更为明显,其中与产量、干物质累积量和氮磷钾累积量极显著负相关,与氮磷钾生理利用效率显著正相关。因此,等量猪粪有机肥和牛粪有机肥的肥效存在较大差异,在实际生产中应根据不同源有机肥特性进行调节施用。  相似文献   

13.
盆栽和大田试验表明,作物根系显著影响土壤微生物体氮的含量。在田间试验条件下,根际土壤微生物体氮比非根际土壤平均高出N54.7μg/g;盆栽试验中,根际土壤微生物体氮平均含量为N77.1±13.6μg/g,而非根际土壤为N65.2±17.0μg/g,差异达显著水平,根际微生物体氮含量为非际根际土壤的1.10~2.04倍。施肥能明显增加土壤微生物体氮含量,但影响程度因肥料种类而不同。秸秆和富含有机物质的厩肥对土壤微生物体氮的影响远大于化学肥料,而且土壤微生物体氮含量随秸秆施用量增加而增加。在红油土上进行的20年长期田间定位试验结果表明,对不施肥和施氮磷处理,0—20cm土层的微生物体氮分别是N102.2和110.4μg/g;在施氮磷的基础上,每公顷配施新鲜玉米秸秆9375kg、18750kg、37500kg和厩肥37500kg时,相应土层微生物体氮分别是N147.5、163.2、286.4和265.3μg/g。培养条件下,当有效能源物质缺乏时,微生物对NH4+-N的同化固定能力远大于NO3--N,但在加入有效能源物质葡萄糖后,微生物对2种形态氮的固定量大幅度增加,且对2种形态氮的固定量趋于一致。  相似文献   

14.
Continuous cultivation has been known to decrease soil organic matter content. Application of organic matter to cultivated soil is an important practice from the point of view of maintaining an adequate amount of soil organic matter. Soil organic matter content significantly affects soil microbial activity, which is an important index of soil quality. In this study, a field experiment was conducted to examine the long-term effects of different kinds of organic matter in combination with inorganic nitrogen (N) fertilizer on chemical and biological properties of soils. There were seven treatments, namely (1) CK (without fertilization), (2) Chem-N (applying chemical N fertilizer only), (3) Comp (applying compost with the same rate of N as the Chem-N treatment), (4) Comp + l/3 N (applying compost complemented with 33% of the chemical N fertilizer of the Chem-N treatment), (5) Comp + 2/3 N (applying compost complemented with 66% of the chemical N fertilizer of the Chem-N treatment), (6) GM + 1/3 N (applying green manure complemented with 33% of the chemical N fertilizer of the Chem-N treatment) and (7) Peat + 1/3 N (applying peat complemented with 33% of the chemical N fertilizer of the Chem-N treatment). After continuous treatment for 12 years and with cultivation of 24 crops on the same area, soils were sampled for analyses of chemical and biological properties, enzymatic activities and phospholipid fatty acid (PLFA) profiles. The results showed that compared with CK and Chem-N treatments, applications of compost and peat increased soil organic carbon (SOC) content and altered microbial activities and microbial community structure. However, application of green manure for 12 years had no effect on SOC content. Both microbial activities and PLFA profiles were clearly dependent on the characteristics of the applied organic amendments. In summary, a peat application led to the highest increase in SOC content compared to compost and green manure; however, compost-treated soil had a higher microbial population and higher microbial and enzyme activities, while the effects of both green manure and chemical N fertilizer on soil properties were similar.  相似文献   

15.
长期有机培肥模式下黑土碳与氮变化及氮素矿化特征   总被引:21,自引:3,他引:18  
土壤氮的矿化是土壤氮素肥力的重要指标,是影响作物产量至关重要的因素。本研究依托黑土长期定位试验,通过取样分析研究了32 a不同培肥模式下黑土碳、 氮及主要活性组分的变化,采用淹水培养法研究了不同施肥模式下黑土氮素的矿化特征。结果表明,施肥显著提高黑土可溶性碳(DOC)、 氮(DON)的含量及其比例。在氮、 磷、 钾化肥的基础上配施有机肥,显著降低了土壤微生物量氮(SMBN)占土壤总氮的比例,提高了土壤微生物量的C/N比值(SMBC/SMBN),促进了土壤氮的生物固持。施肥32 a后,单施常量和高量有机肥处理的土壤氮的矿化量(Nt)显著提高,分别相当于不施肥的8.2倍和10.2倍,而单施氮或氮磷钾化肥对黑土氮素矿化量无明显影响。施用有机肥显著提高了土壤氮素的矿化率(Nt/TN),但有机肥配施化肥(氮或氮磷钾)的处理与单施有机肥相比,黑土氮的矿化率显著降低,降低幅度分别为23.5%~32.1% 和14.1%~17.8%。土壤氮素矿化量与土壤有机质、 全氮储量、 活性碳、 氮组分均呈极显著线性相关,但氮素的矿化率随着有机质和全氮含量的提高而提高至0.4% 后基本稳定。表明尽管土壤氮的矿化与有机质的含量直接相关,但土壤有机质的品质同样决定着土壤氮素的矿化能力。施有机氮是提高土壤供氮能力的重要途径。  相似文献   

16.
长期不同施肥对塿土大团聚体中有机碳组分特征的影响   总被引:1,自引:0,他引:1  
【目的】研究长期施肥对土大团聚体中有机碳组分特征的影响,揭示不同施肥方式下土壤有机碳的固持机制,为合理施肥提供理论依据。【方法】采集土35年长期肥料定位试验不同施肥处理0—10 cm和10—20 cm土样,分析其大团聚体中各组分有机碳含量的变化。试验处理为:不施肥(CK)、单施化肥(NP)、单施有机肥(M)和有机肥配施化肥(MNP)。【结果】与CK相比,长期NP处理对大团聚体中粗颗粒有机碳(cPOC)、细颗粒有机碳(fPOC)、大团聚体中微团聚体内颗粒有机碳(iPOC)以及矿质结合态有机碳(MOC)组分的有机碳(OC)含量均无显著影响;而M处理以及MNP处理可显著提高两土层cPOC和iPOC组分的OC含量以及0—10 cm土层MOC组分的OC含量,其中,cPOC含量增幅分别为174%~338%和215%~245%,iPOC含量增幅分别为127%~241%和106%~130%,MOC含量增幅达28.9%~34.6%。MNP处理显著提高了0—10 cm土层fPOC组分的OC含量,增幅达482.1%。累积碳投入量与大团聚体中各组分的OC含量呈显著线性相关,尤其是iPOC含量,表明长期施肥过程中土有机碳在大团聚体中固存的差异主要受物理保护的颗粒有机碳组分的影响。【结论】关中地区土长期施化肥对大团聚体中各组分OC含量没有显著影响,而长期单施有机肥能进一步增加大团聚体中各组分OC含量,有机肥配施化肥能显著增加团聚体中各组分OC含量,特别是大团聚体中微团聚体内颗粒有机碳组分的含量,进而增加土的有机碳固持。因此,有机肥配施化肥是提高土有机碳含量的有效措施。  相似文献   

17.
Long‐term applications of inorganic fertilizers and farmyard manure influence organic matter as well as other soil‐quality parameters, but the magnitude of change depends on soil‐climatic conditions. Effects of 22 annual applications (1982–2003) of N, P, and K inorganic fertilizers and farmyard manure (M) on total organic carbon (TOC) and nitrogen (TON), light‐fraction organic C (LFOC) and N (LFON), microbial‐biomass C (MB‐C) and N (MB‐N), total and extractable P, total and exchangeable K, and pH in 0–20 cm soil, nitrate‐N (NO ‐N) in 0–210 cm soil, and N, P, and K balance sheets were determined using a field experiment established in 1982 on a calcareous desert soil (Orthic Anthrosol) at Zhangye, Gansu, China. A rotation of irrigated wheat (Triticum aestivum L.)‐wheat‐corn (Zea mays L.) was used to compare the control, N, NP, NPK, M, MN, MNP, and MNPK treatments. Annual additions of inorganic fertilizers for 22 y increased mass of LFON, MB‐N, total P, extractable P, and exchangeable K in topsoil. This effect was generally enhanced with manure application. Application of manure also increased mass of TOC and MB‐C in soil, and tended to increase LFOC, TON, and MB‐N. There was no noticeable effect of fertilizer and manure application on soil pH. There was a close relationship between some soil‐quality parameters and the amount of C or N in straw that was returned to the soil. The N fertilizer alone resulted in accumulation of large amounts of NO ‐N at the 0–210 cm soil depth, accounting for 6% of the total applied N, but had the lowest recovery of applied N in the crop (34%). Manure alone resulted in higher NO ‐N in the soil profile compared with the control, and the MN treatment had the highest amount of NO ‐N in the soil profile. Application of N in combination with P and/or K fertilizers in both manured and unmanured treatments usually reduced NO ‐N accumulation in the soil profile compared with N alone and increased the N recovery in the crop as much as 66%. The N that was unaccounted for, as a percentage of applied N, was highest in the N‐alone treatment (60%) and lowest in the NPK treatment (30%). In the manure + chemical fertilizer treatments, the unaccounted N ranged from 35% to 43%. Long‐term P fertilization resulted in accumulation of extractable P in the surface soil. Compared to the control, the amount of P in soil‐plant system was surplus in plots that received P as fertilizer and/or manure, and the unaccounted P as percentage of applied P ranged from 64% to 80%. In the no‐manure plots, the unaccounted P decreased from 72% in NP to 64% in NPK treatment from increased P uptake due to balanced fertilization. Compared to the control, the amount of K in soil‐plant system was deficit in NPK treatment, i.e., the recovery of K in soil + plant was more than the amount of applied K. In manure treatments, the recovery of applied K in crop increased from 26% in M to 61% in MNPK treatment, but the unaccounted K decreased from 72% in M to 37% in MNPK treatment. The findings indicated that integrated application of N, P, and K fertilizers and manure is an important strategy to maintain or increase soil organic C and N, improve soil fertility, maintain nutrients balance, and minimize damage to the environment, while also improving crop yield.  相似文献   

18.
长期施肥的作物产量和土壤肥力变化   总被引:76,自引:8,他引:76  
本文是全国化肥试验网1981年以来进行的70个长期肥料试验的总结。主要研究在不同种植制中长期施用化肥或有机肥或两者配合施用条件下作物的产量、肥料效应和土壤肥力变化。结果表明,化肥只有氮磷钾配合时,才能获得高产,稳产;化肥与有机肥配合可进一步提高产量。氮肥肥效普遍较高,磷钾肥肥效因地区和作物有较大差异和变化;有机肥有叠加效应,肥效逐年上升。从土壤理、化和生物性状测定结果看出,有机肥能明显提高土壤肥力,氮磷钾化肥配合也能提高土壤肥力。根据养分平衡及产量、肥力的变化,提出了合理的肥料结构。  相似文献   

19.
有机肥替代20%化肥提高黑钙土养分有效性及玉米产量   总被引:6,自引:3,他引:3  
  【目的】  化肥减量并配施有机肥是减少肥料损失、提高化肥利用率的有效途径。研究在秸秆条带还田下化肥减量配施不同有机肥对东北地区黑钙土速效养分和玉米产量的影响,以实现玉米高效和可持续生产。  【方法】  于2018和2019年,连续两年在农安试验基地黑钙土上进行玉米田间试验。本试验在秸秆条状还田下,共设置4个处理,即当地常量施肥 (T1)、化肥减量20% (T2)、化肥减量20%配施鸡粪2988 kg/hm2 (T3) 和化肥减量20%配施牛粪5098 kg/hm2 (T4),T1、T3和T4处理的总氮投入量相同。在玉米拔节期和收获期,分别测定土壤pH、有机碳和速效氮磷钾含量,在收获期测产。  【结果】  与T1处理相比,T2处理连续两年玉米产量均未显著降低,土壤有机碳和速效氮磷钾含量与常量施肥处理大体接近;T3和T4处理显著增加了土壤有机碳和速效养分含量。其中,T3处理2018年土壤有机碳、碱解氮、速效磷、速效钾含量分别较T1增加了15.20%、12.20%、16.70%、7.75%,2019年分别增加了13.0%、18.5%、34.2%、18.5%。玉米产量连续两年均以T4处理效果最优,2018和2019年分别较T1增产5.6%和20.8%,T3处理的增产幅度分别为3.75%和15.40%。  【结论】  在秸秆条状还田下,化肥减量配施有机肥可以增加土壤中有机碳和速效氮、磷、钾含量,可实现玉米增产增收。在黑钙土上配施鸡粪的效果优于牛粪。  相似文献   

20.
本试验以日光温室秋冬茬番茄-冬春茬黄瓜轮作体系为研究对象,采用田间小区试验,研究了5季节水控肥(冬春茬黄瓜和秋冬茬番茄季N-P2O5-K2O总投入量分别为600-300-525 kg/hm2和450-225-600 kg/hm2)有机无机肥配施对 040 cm(根区)土壤硝态氮供应、 40100 cm(根区以外)硝态氮残留和 0100 cm土体不同形态氮素淋失的影响,探索了设施蔬菜生产中节水节肥潜力,为构建设施蔬菜合理水肥管理下土壤肥力培育和土壤质量提升模式提供技术支持。试验结果表明, 1)农民习惯水肥管理节水节肥潜力较大; 节水控肥后0100 cm土体硝态氮积累量、 矿质氮和有机氮渗漏量均明显下降,种植蔬菜经济效益显著增加。2)商品有机肥猪粪与化肥在土壤无机氮供应方面的效果接近; 节水控肥1/41/2 猪粪氮替代1/41/2 化肥氮后,040 cm土体硝态氮供应和40100 cm土体硝态氮残留均无显著变化,但是随着猪粪氮配施比例的增加,土壤溶液渗漏量及养分淋失量呈增加趋势。3)施用秸秆促进了土壤无机氮固持,降低根区土壤硝态氮供应水平,提高土壤养分保蓄能力; 节水控肥1/2秸秆氮替代1/2化肥氮后,040 cm土壤硝态氮供应量平均下降34.3%~56.2%,40100 cm土体硝态氮残留量下降42.5%~87.8%, 0100 cm土体土壤溶液渗漏量下降65.0%,硝态氮淋失量下降 82.0%,而产量和经济收入无显著差异。根据本试验结果,对于新建温室可采用单施化肥、 化肥与猪粪配施方案,能在短时间内提高土壤无机氮供应强度,满足蔬菜氮素需求; 对于种植了一段时间的温室,可采用冬春茬黄瓜季化肥配施猪粪秋冬茬番茄季化肥配施秸秆方案,能固定积累于土壤中的无机氮,提高土壤养分容量,保证根层土壤氮素的稳定供应,降低环境风险,维护设施农业的可持续发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号