首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 559 毫秒
1.
We studied the combined effects of reduced tillage and animal manure on soil structure and hydraulic conductivity (K) in the 2–10 and 12–20 cm layers in a loamy soil. The study was performed at the end of a 7‐yr field trial and included three tillage treatments (mouldboard ploughing until 25 cm depth: MP, shallow tillage until 12 cm depth: ST, no‐till: NT) and two fertilizer application treatments (mineral or poultry manure). Soil structure was assessed through bulk density (ρb), micromorphological and macropore‐space characteristics. K was measured in situ at ?0.6, ?0.2 and ?0.05 kPa. Untilled layers had a vermicular microstructure resulting from earthworm activity, whereas tilled layers displayed a mixture of crumb and channel microstructures. Untilled layers had the highest ρb and twice as much lower total macroporosity area (pores > 240 μm in equivalent diameter) than tilled layers, reflected by the smallest area of macropores 310–2000 μm in diameter and the smallest area of large complex macropores. K under untilled layers was 12–62% lower than that under tilled layers, but differences were statistically significant only at ?0.05 kPa in the 2–10 cm. No significant interaction between tillage and nutrient application treatments was detected for all properties. Compared with mineral fertilizer, poultry manure resulted in a similar ρb but 20% greater total macroporosity area and 30% higher K at ?0.2 kPa. Overall, the sensitivity of soil structure and K to poultry manure were relatively small compared with tillage. We suggest that cultivation practices other than animal manure application are needed to improve physical properties under reduced tillage.  相似文献   

2.
In addition to various positive aspects, long‐term reduced tillage may cause disadvantages such as increased weed pressure and soil compaction. Thus, single inversion tillage is customarily used for overcoming these drawbacks; however, the effects on the enhanced soil functions are unknown. The main objective of this study was therefore to assess whether improved soil physical properties following long‐term reduced tillage remain after one‐time inversion tillage by mouldboard plough. The study was undertaken on a silt loam field in Lower Saxony, Germany. Since 1996, this field has been subdivided into three treatments; one was managed conventionally using a mouldboard plough (CT), while on the others a chisel plough (RT1) and a disc harrow (RT2) were employed. In October 2014, the entire field was mouldboard ploughed. The following year, four field campaigns were conducted to compare the soil physical properties of the continuously conventional tilled plot with those affected by one‐time inversion tillage (RT1 and RT2). Dry bulk density (DBD), saturated hydraulic conductivity (Ks) and infiltration rate [K(h)] were analysed in untrafficked and trafficked areas in each plot. There were clear differences between CT and RT. At all sampling dates, both RT plots had higher Ks and K(h) compared with CT. These differences also occurred to some extent on the trafficked areas. This suggests that improved soil hydraulic properties remained after one‐time inversion tillage of a long‐term reduced tilled field. Thus, one‐time inversion tillage may offer a suitable measure for overcoming some of the main disadvantages associated with long‐term reduced tillage, while preserving the positive effects on soil physical properties.  相似文献   

3.
Attention is being paid to the use of different tillage regimes as a means of retaining soil organic carbon (SOC) and sequestering more SOC. Alongside earlier measurements of total SOC stocks under different tillage regimes, we have examined the distribution of nitrogen (N), microbial activity and the structure of the soil bacterial community from differently tilled plots under continuous barley. The plots were established 5 yr before sampling and have been maintained annually under conventional tillage (CT; moldboard ploughing to 20 cm and disking), deep ploughing (DP; ploughing to 40 cm and disking), minimum tillage (MT; disking to 7 cm) or zero tillage (ZT). Our earlier work showed there was no difference in SOC contents down to 60‐cm depth between the treatments, but now we report that there were significant differences in the total N and active microbial biomass (substrate‐induced respiration) contents of the same soils. The N contents of the CT, DP and MT treatments were not significantly different, but the ZT contained significantly more N, indicating either greater N retention under the ZT treatment or preferential loss from the more intensively tilled treatments, or a combination of both. The microbial biomass content was greater for the CT and DP treatments than for the MT and ZT treatments, indicating greater sensitivity to treatment effects of the microbial biomass pool than the total C pool, consistent with its more dynamic nature. Terminal restriction fragment length polymorphism (T‐RFLP) analyses of the soil bacteria DNA (a method of assessing the bacterial community structure) enabled the samples to be distinguished both according to SOC content, which is to be expected, and to tillage regime with the greatest differences in community structure occurring in the ZT treatment and the least in DP and CT treatments, reflecting the degree of homogenization or disturbance resulting from tillage.  相似文献   

4.
Chisel ploughing is considered to be a potential conservation tillage method to replace mouldboard ploughing for annual crops in the cool-humid climate of eastern Canada. To assess possible changes in some soil physical and biological properties due to differences in annual primary tillage, a study was conducted for 9 years in Prince Edward Island on a Tignish loam, a well-drained Podzoluvisol, to characterize several mouldboard and chisel ploughing systems (at 25 cm), under conditions of similar crop productivity. The influence of primary tillage on the degree of soil loosening, soil permeability, and both organic matter distribution throughout the soil profile and organic matter content in soil particle size fractions was determined. At the time of tillage, chisel ploughing provided a coarser soil macrostructure than mouldboard ploughing. Mouldboard ploughing increased soil loosening at the lower depth of the tillage zone compared to chisel ploughing. These transient differences between primary tillage treatments had little effect on overall soil profile permeability and hydraulic properties of the tilled/non-tilled interface at the 15–30 cm soil depth. Although soil microbial biomass, on a volume basis, was increased by 30% at the 0–10 cm soil depth under chisel ploughing, no differences were evident between tillage systems over the total tillage depth. Mouldboard ploughing increased total orgainc carbon by 43% at the 20–30 cm soil depth, and the carbon and nitrogen in the organic matter fraction ≤ 53 μm by 18–44% at the 10–30 cm soil depth, compared to chisel ploughing.  相似文献   

5.
耕作方式对土壤水动态变化及夏玉米产量的影响   总被引:32,自引:2,他引:30  
一个连续2年的田间耕作试验在夏玉米生长期内完成,分析对比3种不同耕作方式对土壤水动态变化过程及对作物产量的影响。耕作扰动对土壤水动态变化的影响是明显的,夏玉米生长初期免耕下的表层土壤持有较高的水分,这归因于土壤非耕扰动、冬小麦残茬覆盖以及耕层土壤孔隙尺度分布的变化;另一方面,深松土壤受到耕作活动的强烈干扰,苗期耕层土壤蓄水明显小于传统耕作。耕作方式对土壤水差异的影响伴随着作物的生长发育过程显著减弱。深松耕作对作物根系生长发育状况及作物增产效果的作用是十分显见的。  相似文献   

6.
The larger the bulk density of the soil, the smaller the saturated hydraulic conductivity (Ks), however, the relationship between Ks and dry bulk density for tilled and untilled conditions is different. Ks is lower in tilled soil than in untilled soil with the same texture at the same bulk density. The purpose of this study was to compare different models for the prediction of Ks for two soil textures under both tilled and non-tilled conditions. We compred two models based on the non-similar media concept (NSMC-0, NSMC-1), a model based on the similar media concept (SMC) and a model based on the Kozeny equation and Poiseuille law for prediction of Ks (KC-1 and KC-2). This study was conducted at two areas with loam and silty clay loam soils under tilled and untilled conditions. It is concluded that the SMC model is not able to predict Ks under either tilled or untilled conditions. Further, the NSMC-0 model, along with an equation to estimate the shape factor, was able to predict Ks versus dry bulk density for tilled soils. According to our study, under untilled conditions, the KC-1 and NSMC-1 models, and under tilled conditions, the NSMC-1 and NSMC-0 models, predicted Ks accurately. It is concluded that the NSMC models together with the optimized Kozeny–Carman models could reliably be used to predict Ks in different soil textures.  相似文献   

7.
Understanding of tillage effects on soil chemical properties and cations in soil solution dynamics is essential for making appropriate land-management decisions. Measurements were made after more than 25 years of different tillage treatments: conventional tillage (CT) and conservation tillage, which includes no-till (NT) and minimum tillage (MT). pH and bulk density did not show important changes but exchangeable cations and cations in soil solution were affected by depth and different tillage. The highest concentration of exchangeable Ca2+ and Mg2+ was found in NT, decreased in MT and the lowest concentration was found in CT (mean values were 26.0, 24.4 and 23.3 cmolc kg?1 for exchangeable Ca2+ and 4.2, 3.7 and 3.3 cmolc kg?1 for exchangeable Mg2+ in NT, MT and CT, respectively). In addition, the highest concentration of exchangeable Na+ was found in NT, decreased in CT and the lowest concentration was found in MT. However, the highest concentration of exchangeable K+ was found in MT. A significant depth effect was observed for cations in soil solution: Na+ increased with depth whereas K+ and Ca2+ decreased with depth. This study aims to demonstrate the effect of tillage on the distribution and concentration of certain chemical soil properties.  相似文献   

8.
In rainfed semi‐arid agroecosystems, soil organic carbon (SOC) may increase with the adoption of alternative tillage systems (e.g. no‐tillage, NT). This study evaluated the effect of two tillage systems (conventional tillage, CT vs. NT) on total SOC content, SOC concentration, water stable aggregate‐size distribution and aggregate carbon concentration from 0 to 40 cm soil depth. Three tillage experiments were chosen, all located in northeast Spain and using contrasting tillage types but with different lengths of time since their establishment (20, 17, and 1‐yr). In the two fields with mouldboard ploughing as CT, NT sequestered more SOC in the 0–5 cm layer compared with CT. However, despite there being no significant differences, SOC tended to accumulate under CT compared with NT in the 20–30 and 30–40 cm depths in the AG‐17 field with 25–50% higher SOC content in CT compared with NT. Greater amounts of large and small macroaggregates under NT compared with CT were measured at 0–5 cm depth in AG‐17 and at 5–10 cm in both AG‐1 and AG‐17. Differences in macroaggregate C concentration between tillage treatments were only found in the AG‐17 field at the soil surface with 19.5 and 11.6 g C/kg macroaggregates in NT and CT, respectively. After 17 yr of experiment, CT with mouldboard ploughing resulted in a greater total SOC concentration and macroaggregate C concentration below 20 cm depth, but similar macroaggregate content compared with NT. This study emphasizes the need for adopting whole‐soil profile approaches when studying the suitability of NT versus CT for SOC sequestration and CO2 offsetting.  相似文献   

9.
Tillage modifies soil structure and has been suggested as a practice to improve physical, hydrological and chemical properties of compacted soils. But little is known about effect of long‐term tillage on physicochemical soil properties and crop yield on sodic soils in India. Our objective was to investigate the effect of different tillage regimes on crop yield (wheat and paddy rice) and physicochemical properties of sodic soils. Two sodic sites under conventional tillage for 5 (5‐YT; 5‐year tillage) and 9 (9‐YT; 9‐year tillage) years were selected for this study. Changes in crop yield and physicochemical soil properties were compared with a control, sodic land without any till history, that is, 0‐year tillage/untilled (0‐YT). Five replicated samples at 0‐ to 10‐cm and 10‐ to 20‐cm soils depths were analysed from each site. In the top, 0‐ to 10‐cm soil depth 5‐YT and 9‐YT sites had higher particle density (Pd), porosity, water holding capacity, hydraulic conductivity, organic carbon, total nitrogen (Nt), available nitrogen (Navail), phosphorus (Pavail) and exchangeable calcium (Exch. Ca++) than 0‐YT, whereas bulk density (Bd), C : N ratio and CaCO3 were significantly lower. Bd, pH, EC and CaCO3 increased significantly with depth in all the lands, whereas Pd, porosity, water holding capacity, hydraulic conductivity, organic carbon, Nt, Navail, Pavail and Exch. Ca++ decreased. We conclude that continuous tillage and cropping can be useful for physical and chemical restoration of sodic soils. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Integrated evaluation of soil physical properties using the least limiting water range (LLWR) approach may allow a better knowledge of soil water availability. We determined the LLWR for four tillage practices consisted of conventional tillage (CT), reduced tillage (RT), no-tillage (NT) and fallow no-tillage (NTf). In addition, LLWR was determined for abandoned soils (i.e. control), compacted soils, ploughed compacted soils and abandoned soils with super absorbent polymers (SAPs) application. Soil water retention, penetration resistance (PR), air-filled porosity and bulk density were determined for the 0–5 and 0–25-cm depths. Mean LLWR (0.07–0.08 cm3 cm?3) was lower in compacted soils than the soils under CT, NT, NTf, RT, tilled, abandoned and SAP practices but it was not different among tillage practices. The values of LLWR were 0.12 cm3 cm?3 for NT and CT. LLWR for tilled plots (0.12 cm3 cm?3) became greater than compacted soils by 1.3 times. Analysis of the lower and upper limits of the LLWR further indicated that PR was the only limiting factor for soil water content, but aeration was not a limiting factor. The LLWR was more dependent on soil water content at permanent wilting point and at PR.  相似文献   

11.
Soil changes induced by crop rotations and soil management need to be quantified to clarify their impact on yield and soil quality. The objective of this study was to investigate the effect of continuous oat (Avena sativa L.) and a lupin (Lupinus albus L.)‐oat rotation with and without tillage on soil enzymes, crop biomass and other soil properties In year 1, oat and lupin were grown in undisturbed plots or in plots subjected to disc tillage. Crop residues were incorporated before oat was sown in year 2 in the disc‐tilled plots or remained on the soil surface of untilled plots. Soil samples were collected regularly and analysed for pH, organic C, Kjeldahl‐N, mineral N, extractable P, and the enzyme activities of β‐glucosidase, cellulases, acid phosphatase, proteases, urease, and culturable bacteria and fungi. The main crop and tillage effects on soil parameters were: β‐glucosidase activity was greater after lupin than after oat, and the opposite was true for the number of culturable fungi. Organic carbon, phosphatase, cellulase and protease were greater in tilled soil than in the absence of tillage. Associations between variables that were stable over the 2 yr were those for mineral N and urease activity, cellulase activity and pH, and that of phosphatase activity and organic C. Our results contrast with most of the previous information on the effect of tillage on soil enzymes, where the activities were reported to be unchanged or decreased following tillage. This difference may be related to the small organic C content of the soil and to the fact that it was under fallow prior to the start of the experiment. In consequence, incorporation of residues would provide new sources of labile organic C for soil microbes, and result in increased enzymatic activity. The results obtained suggest that in coarse‐textured soils poor in organic matter, tillage with residue conservation after a period of fallow rapidly improves several soil characteristics and should be carried out even if it were to be followed by a no‐till system in the following years. This should be taken into consideration by land managers and technical advisers.  相似文献   

12.
Differences in the mechanisms of storage and decomposition of organic matter (OM) between minimum tillage (MT) and conventional tillage (CT) are generally attributed to differences in the physical impact through tillage, but less is known about the effects of residue location. We conducted an incubation experiment at a water content of 60% of the maximum water‐holding capacity and 15°C with soils from CT (0–25 cm tillage depth) and MT fields (0–5 cm tillage depth) with 15N‐labeled maize straw incorporated to different depths (CT simulations: 0–15 cm; MT simulations: 0–5 cm) for 28 d in order to determine the effects of the tillage simulation on (1) mineralization of recently added residues, (2) the dynamics of macroaggregate formation and physical protection of OM, and (3) the partitioning of maize‐derived C and N within soil OM fractions. The MT simulations showed lower relative C losses, and the amount of maize‐C mineralized after 28 d of incubation was slightly but significantly lower in the MT simulations with maize added (MTmaize) than in the respective CT (CTmaize) simulations. The formation of new water‐stable macroaggregates occurred during the phase of the highest microbial activity, with a maximum peak 8 d after the start of incubation. The newly formed macroaggregates were an important location for the short‐term stabilization of C and N with a higher importance for MTmaize than for CTmaize simulations. In conclusion, our results suggest that a higher amount of OM in MT surface soils compared with CT surface soils may not only result from decreased macroaggregate destruction under reduced tillage but also from a higher efficiency of C retention due to a more concentrated residue input.  相似文献   

13.
Abstract

Earthworms influence soil fertility, and their population is known to be influenced by fertilization. The objective of this study is to characterize the abundance of earthworms under three different kinds of rotation-crops (Rotation: cereals–legumes for green manure-cotton), three tillage systems (Conventional Tillage CT, Minimum Tillage MT, & No-Tillage NT) and fertilization (NP: inorganic and FYM: farmyard manure-organic). Significantly higher populations of earthworms were found under the legumes and NT system in contrast to the lowest abundance determined under the cotton and CT system. Earthworm populations benefited more from organic fertilization than from NP. Our study showed that the most important factors for earthworm abundance are the macropores and Corg under Mediterranean conditions. No-till management considerably influenced the improvement of the physical and chemical soil properties and increased the earthworm abundance.  相似文献   

14.
耕翻和秸秆还田深度对东北黑土物理性质的影响   总被引:6,自引:4,他引:2  
为了明确耕翻和秸秆还田深度对土壤物理性质的影响,在东北黑土区中部进行了6 a的耕翻和秸秆还田定位试验,设置了免耕(D0)、浅耕翻(0~20 cm)(D20)、浅耕翻+秸秆(D20S)、深耕翻(0~35 cm)(D35)、深耕翻+秸秆(D35S)、超深耕翻(0~50 cm)(D50)和超深耕翻+秸秆(D50S)7个处理开展研究,秸秆还田处理将10 000 kg/hm2秸秆均匀地还入相应的耕翻土层。结果表明,耕翻和秸秆还田深度是影响土壤物理性质的重要农艺措施。与初始土壤相比,免耕显著增加了0~20cm土层土壤容重,减少了孔隙度、持水量、饱和导水率和0.25mm水稳性团聚体的含量(WAS0.25)(P0.05),而对20~50 cm土层没有显著影响(P0.05)。在0~20 cm土层,除了D50处理显著降低了WAS0.25含量以外,D20,D35和D50处理对各项土壤物理指标均没有显著影响;而D20S和D35S处理则显著改善了该层各项土壤物理指标。在20~35 cm土层,D35、D35S、D50和D50S处理显著改善了该土层各项土壤物理指标(除了2014年的容重)。在35~50cm土层,D50和D50S处理对各项土壤物理指标改善效果显著,特别是相应土层通气孔隙度和饱和导水率显著增加。研究结果表明耕翻配合秸秆对土壤物理指标的改善效果优于仅耕翻处理。综合评分结果也表明D35S和D50S处理分别对20~35 cm和35~50 cm土层土壤物理性质的改善效果最好,说明在质地黏重的黑土上深翻耕或者超深翻耕配合秸秆还田通过土层翻转秸秆全层混合施用能够显著改善全耕作层土壤的物理性质,增加耕层厚度,扩充土壤的水分库容,提高黑土的水分调节能力。  相似文献   

15.
Several previous field studies in temperate regions have shown decreased soil respiration after conventional tillage compared with reduced or no‐tillage treatments. Whether this decrease is due to differences in plant residue distribution or changes in soil structure following tillage remains an open question. This study investigated (1) the effects of residue management and incorporation depth on soil respiration and (2) biological activity in different post‐tillage aggregates representing the actual size and distribution of aggregates observed in the tilled layer. The study was conducted within a long‐term tillage experiment on a clay soil (Eutric Cambisol) in Uppsala, Sweden. After 38 y, four replicate plots in two long‐term treatments (moldboard plowing (MP) and shallow tillage (ST)) were split into three subplots. These were then used for a short‐term trial in which crop residues were either removed, left on the surface or incorporated to about 6 cm depth (ST) or at 20 cm depth (MP). Soil respiration, soil temperature, and water content were monitored during a 10‐d period after tillage treatment. Respiration from aggregates of different sizes produced by ST and MP was also measured at constant water potential and temperature in the laboratory. The results showed that MP decreased short‐term soil respiration compared with ST or no tillage. Small aggregates (< 16 mm) were biologically most active, irrespective of tillage method, but due to their low proportion of total soil mass they contributed < 1.5% to total respiration from the tilled layer. Differences in respiration between tillage treatments were found to be attributable to indirect effects on soil moisture and temperature profiles and the depth distribution of crop residues, rather than to physical disturbance of the soil.  相似文献   

16.
One of the key issues to increase soil productivity in the Sahel is to ensure water infiltration and storage in the soil. We hypothesised that reducing tillage from annual to biennial ploughing and the use of organic matter, like compost, would better sustain soil hydraulic properties. The study had the objective to propose sustainable soil fertility management techniques in the cotton–maize cropping systems. The effects of reduced tillage (RT) and annual ploughing (AP) combined with compost application (Co) on soil infiltration parameters were assessed on two soil types. Topsoil mean saturated hydraulic conductivities (Ks) were between 9 and 48 mm h−1 in the Luvisol, while in the Lixisol they were between 18 and 275 mm h−1. In the two soil types compost additions with reduced tillage or with annual ploughing had the largest effect on Ks. Soil hydraulic behaviour was in reasonable agreement with soil pore size distribution (mean values varied from 19.5 to 237 μm) modified by tillage frequency and organo-mineral fertilization. Already the first 3 years of this study showed that use of organic matter, improved soil infiltration characteristics when annual ploughing was used. Also biennial ploughing showed promising results and may be a useful strategy for smallholders to manage these soils.  相似文献   

17.
Soil structure and the effect of management practices   总被引:7,自引:0,他引:7  
To evaluate the impact of management practices on the soil environment, it is necessary to quantify the modifications to the soil structure. Soil structure conditions were evaluated by characterizing porosity using a combination of mercury intrusion porosimetry, image analysis and micromorphological observations. Saturated hydraulic conductivity and aggregate stability were also analysed.

In soils tilled by alternative tillage systems, like ripper subsoiling, the macroporosity was generally higher and homogeneously distributed through the profile while the conventional tillage systems, like the mouldboard ploughing, showed a significant reduction of porosity both in the surface layer (0–100 mm) and at the lower cultivation depth (400–500 mm). The higher macroporosity in soils under alternative tillage systems was due to a larger number of elongated transmission pores. Also, the microporosity within the aggregates, measured by mercury intrusion porosimetry, increased in the soil tilled by ripper subsoiling and disc harrow (minimum tillage). The resulting soil structure was more open and more homogeneous, thus allowing better water movement, as confirmed by the higher hydraulic conductivity in the soil tilled by ripper subsoiling. Aggregates were less stable in ploughed soils and this resulted in a more pronounced tendency to form surface crust compared with soils under minimum tillage and ripper subsoiling.

The application of compost and manure improved the soil porosity and the soil aggregation. A better aggregation indicated that the addition of organic materials plays an important role in preventing soil crust formation.

These results confirm that it is possible to adopt alternative tillage systems to prevent soil physical degradation and that the application of organic materials is essential to improve the soil structure quality.  相似文献   


18.
The objective of this study was to determine the influence of tillage methods (conventional tillage (CT) and minimum tillage (MT)) and N rates (0, 50, 150, 250 kg N ha?1) on crop yield, N uptake and soil organic carbon (SOC), bulk density (BD), total N (TN), electrical conductivity (EC), pH and soil nutrient contents on a clay-loam near Hashtgerd, Iran. A successive corn-based rotation (2012–2014) was conducted as a split-plot in a randomized complete block design in which tillage methods were considered as main plots, and N rates as subplots. Tillage had no significant effect on corn 2012 and canola 2012–2013 grain yields. CT and MT systems showed different critical N rates to reach their maximum grain yield in corn (2013) and wheat (2013–2014). MT system required more N application to reach its maximum grain yield. Tillage × N rate effect on none of the soil properties was significant. Tillage had no significant (P ≤ 0.05) effect on soil pH, BD, TN and SOC. However, soil EC of 0–5 cm depth in MT system was higher than CT system by 64%. MT system under higher N application could increase corn grain yield, but on the other hand probably adversely changes soil chemical properties.  相似文献   

19.
A new empirical-based scaling method is introduced to predict saturated hydraulic conductivity (K s ) of compacted soils. This method is an improvement of the former non-similar media concept (NSMC) model that is generalized for tilled and untilled conditions. In this method, geometric mean particle size diameter (dg ), geometric standard deviation (σ g ) and saturated soil water content (total porosity) are successfully incorporated in the empirical-based scaling factor of K s . Results showed that the scaled model overestimated K s by ~18%, whereas the NSMC model underestimated K s by ~21%. However, the scaled model based on the similar media concept (SMC) failed to predict K s . Because of the complexity and high uncertainty in determining the shape factor parameter in the NSMC model, it is suggested that the new scaled model might be used reliably in practical cases to predict K s in the various layers of compacted soils irrespective of the tillage condition. Further assessment of the new scaling model in other areas, in which new collected data are available, is recommended.  相似文献   

20.
Diffusion coefficients (D) of CO2 at 0–10 cm layers in undisturbed and tilled soil conditions were estimated using the Penman (Penman HL. 1940. Gas and vapor movement in soil, 1. The diffusion of vapours through porous solids. J Agric Sci. 30:437–463), Millington–Quirk (Millington RJ, Quirk JP. 1960. Transport in porous media. In: Van Baren FA, editor. Transactions of the 7th International Congress of Soil Science. Vol. 1. Amsterdam: Elsevier. p. 97–106), Ridgwell et al. (Ridgwell AJ, Marshall SJ, Gregson K. 1999. Consumption of atmospheric methane by soils: A process-based model. Global Biogeochem Cy. 13:59–70), Troeh et al. (Troeh FR, Jabro JD, Kirkham D. 1982. Gaseous diffusion equations for porous materials. Geoderma. 27:239–258) and Moldrup et al. (Moldrup P, Kruse CW, Rolston DE, Yamaguchi T. 1996. Modeling diffusion and reaction in soils: III. Predicting gas diffusivity from the Campbell soil–water retention model. Soil Sci. 161:366–375) models. Soil bulk density and volumetric soil water content (θv) at 0–10 cm were measured on 14 April, 2 June and 12 July 2005 at 0–10 cm depth in no-till (NT) and conventional till (CT) malt barley and undisturbed soil grass–alfalfa (UGA) systems. Air-filled porosity (ε) was calculated from total soil porosity and θv measurements. Both soil air porosity and estimated CO2 diffusivity at the 0–10 cm depth were significantly affected by tillage. Results of CO2 diffusion coefficients in the soil followed trends similar to those for soil ε data. The CT tended to have significantly greater estimated soil CO2 diffusion coefficients than the NT and UGA treatments. The relationship between D/D 0, and air-filled porosity was well described by a power (R 2 = 0.985) function. The model is useful for predicting CO2 gas-diffusion coefficients in undisturbed and tilled soils at various ranges of ε where actual gas D measurements are time-consuming, costly and infeasible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号