首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
高寒地区寒冻雏形土的持水特性   总被引:7,自引:0,他引:7  
曹广民  李英年  鲍新奎 《土壤》1998,30(1):27-30,46
讨论了高寒地区寒冻雏形土两个主要土类草毡寒冻雏形土和暗沃寒冻雏形土的持水特性及影响因子。寒冻雏形土具有较高的持水能力,共植物根系分布层饱和含水量为79.8-143.7%,田间持水量可达33.7-99.6%,且暗沃寒冻雏形土的持水能力高于草毡寒冻雏形土。  相似文献   

2.
在海拔高度相同、距离相近的纤维正常有机土与草毡寒冻雏形土地区,虽然区域气候一致,但二者地温具有显著的分布差异。从不同类型土壤40~80cm层次地温分布特征来看,草毡寒冻雏形土区域地温年平均3.0℃,变化剧烈,年较差大,0℃等值线可延伸至很深处。纤维正常有机土地温年平均1.4℃,变化较为平稳,0℃等值线只延至80~90cm左右。二类型地区地温随深度变化也有很大的不一致性。  相似文献   

3.
退化草地暗沃寒冻雏形土CO_2释放的日变化和季节动态   总被引:14,自引:0,他引:14       下载免费PDF全文
采用CI-301PS红外CO2分析仪,测定了退化草地暗沃寒冻雏形土CO2排放速率。研究结果表明:(1)CO2排放速率具有明显的日变化,日最大排放速率在12:00~14:00时出现,最低值出现于凌晨4:00~8:00。白天大于夜晚。(2)植物生长季,CO2释放速率有明显的季节变化和物候变化,日平均释放速率为(320.86±130.49)mg/m2·h,CO2释放速率的物候变异为草盛期>草枯黄期>草返青期。(3)CO2释放速率的日变化进程主要受气温和地表温度制约,而季节动态与气温及0~30cm地温均呈极显著正相关关系。(4)退化草地上CO2释放速率较低。  相似文献   

4.
天山中段冰川环境变迁与高山土壤的形成演化   总被引:2,自引:0,他引:2       下载免费PDF全文
天山中段乌鲁木齐河河源区,经历多次冰川作用,冰碛物自冰川末端外延12km。其上土壤发育与生物发展同步进行。在光秃的冰碛石表面,首先出现微生物群落和藻类群落,继之生长地衣和苔藓,最后演化为高山和亚高山草甸植被。与植物同步进化的原始土、新成土、寒冻雏形土,(A)-C型在先,A-C型继后,最终发育成A-(B)-C型。这些土壤具有负温和含冰的土体,土壤冻结-融化-冻结,常发生冰-水-冰的相态变化,表土产生冻胀丘、石环、A层呈鳞片状结构,土壤腐殖化程度低,矿物分解弱,粗骨性强。剖面分异状况由弱到强,原始土壤无发育层次,寒冻正常新成土腐殖层明显,草毡寒冻雏形土的A层和B层发育较为完善。  相似文献   

5.
淮北平原四种土地利用类型非生长季土壤呼吸速率   总被引:1,自引:0,他引:1  
为了探讨杨树人工林撂荒地、农耕地、农林复合模式的林地和农林复合小麦地的4种土地利用方式对温室气体CO2增长及其通量的影响,利用Licor-8100土壤碳通量测定系统对以上4种不同土地利用的土壤呼吸速率变化进行了研究。结果表明:4种土地利用类型的土壤呼吸速率在非生长季冬季的月内变化和日变化不明显,都保持在低的CO2释放水平;不同土地利用类型土壤呼吸速率表现出明显的空间异质性;农林复合小麦地土壤呼吸速率在非生长季与其影响因素的关系在2009年12月份的关系不明显,2010年1月份和2月份随着气温的升高,土壤呼吸速率与温度的相关性逐渐增大,与其他因子的相关性也变大,但增加的幅度较小;4种土地利用类型中,农林复合冬小麦地的CO2平均通量为最小,CO2的释放量比例最小,为22.55%,比农田小麦地、撂荒地和农林复合隔离带林地分别减少3.02%、0.85%和6.00%的CO2释放。农林复合模式的CO2释放量比农田小麦地多释放2.85%,与人工林撂荒地的土壤呼吸速率相同。  相似文献   

6.
秦岭北坡土壤发生特性与系统分类   总被引:10,自引:2,他引:10  
常庆瑞  雷梅  冯立孝  闫湘 《土壤学报》2002,39(2):227-235
根据野外调查资料和典型土壤剖面理化性质 ,包括室内化验数据综合分析表明 :秦岭北坡土壤的主要发生特性随海拔高度呈有规律的变化 ,依照《中国土壤系统分类 (修订方案 )》检索 ,土壤垂直带谱结构为 :土垫旱耕人为土—简育干润淋溶土—简育湿润淋溶土—酸性湿润雏形土—暗沃寒冻雏形土—暗瘠寒冻雏形土  相似文献   

7.
西安黄绵土碳释放规律研究   总被引:1,自引:1,他引:1  
张晓龙  赵景波  马润花 《土壤》2004,36(4):398-404,411
采用碱溶液吸收法。1999 年 9 月~2001 年 8 月 2 年的观测资料显示,西安黄绵土 CO2释放与前人在其他地区的研究不同,表现为白昼释放量低于夜间。西安土壤 CO2释放量的日变化从当日清晨至次日晨,呈现由高变低再变高的变化规律。土壤 CO2释放量的变化趋势大体与温度的变化一致,但在时间上有一定的滞后性。随着季节的变化,西安黄绵土 CO2释放量有明显的增减,夏季日释放量最多,秋季次之,冬季最少。不同植被条件下,土壤 CO2 释放量有差异。一般说来,裸地有较高的释放量,林地和草地释放量较低。裸露地表土壤 CO2的释放量变化较大,地表覆盖良好,CO2释放较为稳定。  相似文献   

8.
植被和大气之间CO2通量的观测有助于理解陆地生态系统的碳循环及其控制机理。以中国北方典型草原克氏针茅草原为研究对象,以涡度相关法为主要技术手段,探讨了2008年生长季内克氏针茅草原净生态系统碳交换(NEE)的变化特征。结果表明,克氏针茅草原生态系统CO2通量的日变化进程可以依据高峰出现的时间分为两种,一种具有一个吸收高峰,出现在11:00左右,另一种则具有两个吸收高峰,在正午前后出现碳释放现象。2008年克氏针茅草原生态系统最大的CO2吸收速率为-0.4mg·m^-2·s^-1。克氏针茅草原在4月和10月的NEE昼夜变化比较平缓,在5—9月日间CO2吸收量和夜间CO2排放量都开始增大,出现了明显的CO2日吸收峰值,但各月的日动态格局差异较大。2008年生长季中7—9月白天碳吸收活动最强,6—9月夜间CO2释放量较大。克氏针茅草原碳通量日累积量在2008年出现了3个明显的碳吸收峰;NEE的日最大累积吸收量和最大累积释放量分别为-2.38和1.47gC·m^-2·d^-1,并且出现在植被生长最旺盛的7、8月份。研究表明,温度和水分是影响克氏针茅草原生态系统碳通量变化的重要因子。  相似文献   

9.
采用Li-6400便携式光合作用测量系统连接Li-6400-09土壤呼吸室,在2013年生长季节对黑河流域高山草甸湿地土壤CO2通量进行了野外定位试验,统计分析了水热因子对高山草甸湿地土壤CO2通量特征的影响。结果表明,高山草甸湿地区不同层次土壤的日平均温度差值由土壤表层(0cm)的14.5℃骤降到土壤20cm层的5.8℃,对土壤呼吸有较大的影响;土壤CO2通量日变化特征明显,早晨8:00—10:00维持在较低水平,土壤CO2通量在0.81~1.10μmol/(m2·s),在11:00开始升高,13:00达到峰值,峰值为3.26μmol/(m2·s),18:00开始下降,整个过程呈单峰曲线;高山草甸湿地区土壤CO2通量与10cm土壤温度、土壤含水量存在不同程度的正相关关系,表明土壤CO2通量的变化受温度和水分所控制。  相似文献   

10.
农田改为农林(草)复合系统对红壤CO2和N2O排放的影响   总被引:1,自引:0,他引:1  
以鄂南玉米地、紫穗槐/玉米地、香根草/玉米地、紫穗槐林地、香根草草地与撂荒地6种土地利用类型为研究对象,利用静态箱法,对夏玉米生长期间土壤CO2和N2O通量及影响因子进行了测定,研究我国北亚热带丘陵红壤区农田改变为林(草)地和农林(草)复合系统后土壤CO2和N2O排放特征。研究结果表明:(1)土地利用方式改变后,撂荒地土壤CO2排放量明显低于其他5种土地利用类型,但紫穗槐/玉米地、单作玉米地、香根草/玉米地、紫穗槐林地、香根草草地5种土地利用类型之间土壤CO2排放量差异不显著。(2)玉米生长期间,6种不同土地利用方式下,土壤N2O排放总量从高到低依次为紫穗槐/玉米地(508 g·hm-2·a-1)、紫穗槐林地(470 g·hm-2·a-1)、撂荒地(390 g·hm-2·a-1)、香根草/玉米地(373 g·hm-2·a-1)、香根草草地(372 g·hm-2·a-1)、单作玉米地(285 g·hm-2·a-1)。(3)土壤CO2通量与土壤有机碳、土壤微生物生物量碳和土壤含水量无显著相关关系;土壤N2O通量与土壤氮素净矿化率呈显著线性相关,但与土壤无机氮和土壤含水量无显著相关关系。农田改变为农林(草)复合系统可能潜在地增加土壤CO2和N2O排放;农田改变为林(草)地可能潜在地减少土壤CO2排放,增加土壤N2O排放。  相似文献   

11.
Soil-surface CO2 efflux (FS; ‘soil respiration’) accounts for ≥50% of the CO2 released annually by the terrestrial biosphere to the atmosphere, and the magnitude and variability of this flux are likely to be sensitive to climate change. We measured FS in nine permanent plots along a 5.2 °C mean annual temperature (MAT) gradient (13-18.2 °C) in Hawaiian tropical montane wet forests where substrate type and age, soil type, soil water balance, disturbance history, and canopy vegetation are constant. The objectives of this study were to quantify how the (i) magnitude, (ii) plot-level spatial variability, and (iii) plot-level diel variability of FS vary with MAT. To address the first objective, annual FS budgets were constructed by measuring instantaneous FS monthly in all plots for one year. For the second objective, we compared plot-level mean instantaneous FS in six plots derived from 8 versus 16 measurements, and conducted a power analysis to determine adequate sample sizes. For the third objective, we measured instantaneous FS hourly for 24 h in three plots (cool, intermediate and warm MATs). The magnitude of annual FS and the spatial variability of plot-level instantaneous FS increased linearly with MAT, likely due to concomitant increases in stand productivity. Mean plot-level instantaneous FS from 8 versus 16 measurements per plot yielded statistically similar patterns. The number of samples required to estimate plot-level instantaneous FS within 10% and 20% of the actual mean increased with MAT. In two of three plots examined, diel variability in instantaneous FS was significantly correlated with soil temperature but minimal diel fluctuations in soil temperature (<0.6 °C) resulted in minimal diel variability in FS. Our results suggest that as MAT increases in tropical montane wet forests, FS will increase and become more spatially variable if ecosystem characteristics and functioning undergo concurrent changes as measured along this gradient. However, diel variation in FS will remain a minor component of overall plot-level variation.  相似文献   

12.
Abstract

To evaluate the carbon budget in soils under different cropping systems, the carbon dioxide (CO2) flux from soils was measured in a total of 11 upland crop fields within a small watershed in central Hokkaido over the no snow cover months for 3 years. The CO2 flux was measured using a closed chamber method at bare plots established in each field to estimate soil organic matter decomposition. Temporal variation in instantaneous soil CO2 fluxes within the sites was mainly controlled by soil temperature and moisture. Annual mean CO2 fluxes and cumulative CO2 emissions had no significant relationship with soil temperature and moisture (P > 0.2). However, there was a significant quadratic relationship between annual mean CO2 flux or cumulative CO2 emission and soil clay plus silt content (%) (R2 = 0.72~0.74, P < 0.0003). According to this relationship, the optimum condition for soil CO2 emission is at a clay plus silt content of 63%. The cumulative CO2 emission during the no snow cover season within each year varied from 1,159 to 7,349 kg C ha?1 at the different sites. The amount of crop residue carbon retained in the soils following a cropping season was not enough to offset the CO2 emission from soil organic matter decomposition at all sites. As a consequence, the calculation of the soil carbon budget (i.e. the difference between the carbon added as crop residues and compost and the carbon lost as CO2 from organic matter decomposition) ranged from –7,349 to –785 kg C ha?1, except for a wheat site where a positive value of 4,901 kg C ha?1 was observed because of a large input of organic carbon with compost. The negative values of the soil carbon budget indicate that these cropping systems were net sources of atmospheric CO2.  相似文献   

13.
Soil carbon dioxide (CO2) flux is an integrative measure of ecosystem functioning representing both biotic and physical controls over carbon (C) balance. In the McMurdo Dry Valleys of Antarctica, soil CO2 fluxes (approximately −0.1-0.15 μmol m−2 s−1) are generally low, and negative fluxes (uptake of CO2) are sometimes observed. A combination of biological respiration and physical mechanisms, driven by temperature and mediated by soil moisture and mineralogy, determine CO2 flux and, therefore, soil organic C balance. The physical factors important to CO2 flux are being altered with climate variability in many ecosystems including arid forms such as the Antarctic terrestrial ecosystems, making it critical to understand how climate factors interact with biotic drivers to control soil CO2 fluxes and C balances. We measured soil CO2 flux in experimental field manipulations, microcosm incubations and across natural environmental gradients of soil moisture to estimate biotic soil respiration and abiotic sources of CO2 flux in soils over a range of physical and biotic conditions. We determined that temperature fluctuations were the most important factor influencing diel variation in CO2 flux. Variation within these diel CO2 cycles was explained by differences in soil moisture. Increased temperature (as opposed to temperature fluctuations) had little or no effect on CO2 flux if moisture was not also increased. We conclude that CO2 flux in dry valley soils is driven primarily by physical factors such as soil temperature and moisture, indicating that future climate change may alter the dry valley soil C cycle. Negative CO2 fluxes in arid soils have recently been identified as potential net C sinks. We demonstrate the potential for arid polar soils to take up CO2, driven largely by abiotic factors associated with climate change. The low levels of CO2 absorption into soils we observed may not constitute a significant sink of atmospheric CO2, but will influence the interpretation of CO2 flux for the dry valley soil C cycle and possibly other arid environments where biotic controls over C cycling are secondary to physical drivers.  相似文献   

14.
The analysis of daily, seasonal, and annual dynamics of CO2 emission from soils under different stands of monsoon tropical tall-tree forest was performed on the basis of field observations conducted at the Russian-Vietnamese Tropical Research and Technology Center of the Russian Academy of Sciences. Under a tropical climate, the main factors responsible for the rate of carbon dioxide emission from the soils are shown to be the soil type and the topographic position of the area studied along with the type of vegetation. Depending on these factors, the rate of CO2 emission from the soils was 65–178 mg C/(m2 h) during the dry season and 123–259 mg C/(m2 h) during the wet season. The daily dynamics of CO2 emissions from the soils of the tropical zone was weakly pronounced in both the wet and the dry season owing to the insignificant diurnal fluctuations of soil temperature. The investigations carried out allowed making an expert evaluation of the annual CO2 fluxes from the soils under different stands of monsoon tropical tall-tree forest in southern Vietnam. They amounted to 900–2000 g C/(m2 yr) depending on the forest type.  相似文献   

15.
Research information from a systematic planned study on the effects of vehicular passages and axle load on soil carbon dioxide (CO2) fluxes and soil carbon (C) sequestration under long‐term NT farming is scanty. Therefore, the present study was conducted on an on‐going 20‐year experiment to assess the impacts of variable vehicular passages of a low axle load on soil CO2 emission and soil C sequestration from a no‐till (NT) managed corn (Zea mays L.)–soybean (Glycine max Linneo) rotation in comparison with that a soil under woodlots (soils under natural wooded plantation). The experimental treatment consisted of an empty wagon [0 Mg load for compaction (C‐0; control)] compared with 2 (C‐2) and 4 (C‐4) passages of 2.5 Mg water wagon axle load, applied to the entire plot every year during April/May for 20 consecutive years. Soil samples were obtained in November 2016 to determine the effects of various vehicular passages on C and nitrogen (N) contents and CO2 emissions. Soil CO2 fluxes were measured from November 16, 2016, to May 30, 2017, on the bi‐weekly (November to December and April to May) and monthly (January to March) basis by using high‐density polyvinyl chloride static gas chambers. The soil CO2 fluxes ranged from –1.05 to 9.03 g CO2 m?2 d?1. The lowest soil CO2 fluxes were observed in December coinciding with the minimum soil temperature. In general, daily soil CO2 fluxes were higher under C‐0 than those under other treatments. Vehicular traffic and axle load reduced the cumulative emission of CO2 by 22.6 and 29.8% under C‐2 and C‐4, respectively, compared with that under C‐0 (6.09 Mg ha?1). Soil and air temperatures had a significant positive correlation with the diurnal fluxes of soil CO2 in all the treatments except that under C‐4. Electrical conductivity, soil C and N contents and pools did not differ significantly among the treatments. Further, 2 to 4 passages of vehicles with 2.5 Mg of axle load decreased the soil CO2 emission on Crosby silt loam under NT as compared to that under the control. Therefore, continuous cultivation of row crops with moderate trafficking under NT and residue retention is recommended, and it also reduces the potential of soil CO2 emission while improving the soil organic C pools of well‐drained soils of Central Ohio.  相似文献   

16.
The stocks of organic carbon and mean rates of the CO2 emission during the growing season (May–September) and the entire year were estimated in a sequence of grass ecosystems along the transect encompassing chestnut and meadow-chestnut steppe soils, marsh and meadow alluvial soils, and a haloxerophytic community on a typical solonchak. The total stocks of organic carbon comprised 6.17–9.70 kg С/m2 in steppe, 7.41–10.04 kg С/m2 in floodplain, and 4.74 kg С/m2 in haloxerophytic ecosystems. The portion of humus carbon in the upper 50-cm-thick soil layer comprised 79–92% of the total carbon stock. The mean daily CO2 emission (С–CO2/(m2 day)) from alluvial soils was moderate (3.3–4.9) or low (1.5–2.5). The dependence of the CO2 emission on the moistening of steppe soils, temperature of alluvial soils, and temperature and moistening of solonchak was revealed. In comparison with the CO2 emission from the zonal chestnut soil, its mean values during the growing season and the entire year were 1.2 times higher for the meadowchestnut soil, 3.3 times higher for the marsh alluvial soil, 2.3 times higher for the meadow alluvial soil, and 1.7 times higher for the solonchak. The portion of the CO2 emission beyond the growing season in the mean annual emission averaged 19.8–24.2% and depended on the type of grass ecosystem and on weather conditions of particular years. The sink of carbon in the grass ecosystems exceeded carbon emission, especially in the steppe ecosystems.  相似文献   

17.
Abstract

Methods used to estimate the CO2 emission from soil commonly measure the total CO2 flux. To be able to quantify the net CO2 emission from cultivated peat soils there is a need to distinguish between soil organic matter-derived CO2 respiration and plant-derived respiration. In this investigation we used the root exclusion method to separate the plant-derived respiration from total CO2 emission. The plant-derived contribution was estimated to be between 27 and 63% of total CO2 emission depending on soil type and season. We also found a relationship between soil temperature, biomass growth and CO2 efflux, which can be used to estimate plant-derived respiration. Due to the priming effect the root exclusion method is less reliable late in the season.  相似文献   

18.
中国农业温室气体排放量测算及影响因素研究   总被引:3,自引:0,他引:3  
农业生产过程所产生的温室气体在全球生产活动温室气体排放总量中占有很大比例,因此对农业温室气体的排放量进行测算并分析其影响因素,对实现农业节能减排有重要意义。本文基于1993―2011年中国农业生产的相关统计数据,借鉴前人关于农业生产中各种温室气体排放源排放系数的研究成果,测算了中国农业生产过程中的CH4、N2O和CO2排放量,并分析了影响因素。结果表明,CH4排放量基本平稳波动不大,N2O排放量从1993年的93.21万t波动增加到2011年的120.51万t,农业生产资料CO2排放量由15 626.98万t增加到31 258.10万t。种植业CO2排放主要分为土壤排放和生产资料排放,土壤CO2排放与大气温度、土壤温度、地表温度和土壤水分有关,生产资料CO2排放主要是由化肥和农药造成的;种植业CH4、N2O排放原因较为复杂,还有待进一步研究;动物肠道发酵CH4、N2O排放的影响因素主要取决于动物种类、饲料特性、饲养方式和粪便管理方式等。  相似文献   

19.
设施菜田土壤呼吸速率日变化特征分析   总被引:4,自引:1,他引:3  
研究设施菜田土壤呼吸速率日变化特征对于了解CO2排放对环境和作物生长的影响十分重要。本研究采用CO2红外分析仪 动态箱法在2009年秋冬季和2010年冬春季监测了不同有机肥和氮肥处理下设施菜田土壤呼吸速率的日变化特征。结果表明: 施用有机肥和秸秆明显提高设施菜田土壤呼吸速率, 尤其是在高氮投入下, 鸡粪和小麦秸秆混施土壤呼吸速率明显高于其他处理; 不同季节各处理土壤呼吸速率的日变化特征基本一致, 土壤呼吸速率的最大值出现在14:00-17:00; 随着温度升高, 土壤呼吸速率逐渐增加, 但是过高的温度和CO2浓度均会抑制土壤呼吸速率; 上午8:00-11:00测定的土壤呼吸速率值与土壤呼吸速率日平均值基本一致, 可采用上午8:00-11:00土壤呼吸速率的观测值评估设施菜田CO2的排放量; 施肥、温度和温室内近地面CO2浓度是影响不同季节土壤呼吸速率日变化的主要因素, 合理调控对于实现设施蔬菜的可持续发展具有重要意义。  相似文献   

20.
Abstract

Importance of agricultural practices for greenhouse gases mitigation is examined worldwide. However, there is no consensus on CO2 emissions as affected by soil management practices. Deeper understanding of soil CO2 fluxes and drivers under different management practices are needed. The investigation of net CO2 exchange rate as dependent variable and drivers (soil water and temperature, air temperature) as affected by soil type (loam and sandy loam), tillage (conservation and no-tillage) and fertilization are presented.

Soil management practices and weather conditions affected the CO2 flux through effects on soil water and temperature regime. Mean net CO2 exchange rate on sandy loam was 8% higher than on loam. No-tillage, as a moisture-conserving tool, could be an appropriate tool for CO2 emissions mitigation in any weather conditions on sandy loam; however, the advantage of no-tillage on loam was negligible. Mineral NPK fertilizers promoted significantly higher net CO2 exchange rate in both soils, but suppressed it by 15% on sandy loam during a normal year. Effect of soil water content on net CO2 exchange rate was direct in all tillage and fertilization treatments in both loam and sandy loam, whereas this effect was positive only in dry and normal weather conditions. In wet weather conditions, the direct effect of soil water content on net CO2 exchange rate was negative. Soil and air temperature acted indirectly on net CO2 exchange rate. The increase in temperature markedly suppressed the positive direct impact of soil water content on net CO2 exchange rate in dry weather conditions, but did not reduce the direct effect of soil water content in normal weather conditions. In a wet year the negative indirect effect of increased temperature enhanced the negative direct impact of soil water surplus on net CO2 exchange rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号