首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
This experiment was conducted at Zahak Agricultural Research Station in the Sistan region in southeast Iran. A factorial design with three replications was used to determine the effects of zinc (Zn), iron (Fe), and manganese (Mn) applications on wheat yield, Zn, Fe, and Mn uptakes and concentrations in grains. Four levels of Zn [soil applications of 0, 40, and 80 kg ha?1 and foliar application of 0.5% zinc sulfate (ZnSO4) solution], two levels of iron sulfate (FeSO4; 0 and 1%) as foliar application, and two levels of Mn (0 and 0.5%) also as foliar application were used in this study. Results showed that the interactive effects of Zn and Mn were significant on the number of grains in each spike. The highest number of grains resulted from the application of 80 kg ZnSO4 ha?1 and foliar Mn. The interactive effects of Zn and Fe were significant on weight of 1000 grains. The highest weight of 1000 grains resulted from application of 80 kg Zn and foliar Fe. Application of 80 kg ZnSO4 ha?1 alone and 80 kg ZnSO4 ha?1 with foliar application of Mn significantly increased grain yield in 2003. The 2‐year results showed that foliar application of Zn increased Zn concentration and Fe concentration in grains 99% and 8%, respectively. Foliar application of Fe resulted in a 21% increase in Fe concentration and a 13% increase in Zn concentration in grains. The foliar application of Mn resulted in a 7% increased in Mn concentration in grains.  相似文献   

2.
Effects of varied irrigation and zinc (Zn) fertilization (0, 7, 14, 21 kg Zn ha‐1 as ZnSO47.H2O) on grain yield and concentration and content of Zn were studied in two bread wheat (Triticum aestivum), two durum wheat (Triticum durum), two barley (Hordeum vulgare), two triticale (xTriticosecale Wittmark), one rye (Secale cereale), and one oat (Avena sativa) cultivars grown in a Zn‐deficient soil (DTPA‐extractable Zn: 0.09 mg kg‐1) under rainfed and irrigated field conditions. Only minor or no yield reduction occurred in rye as a result of Zn deficiency. The highest reduction in plant growth and grain yield due to Zn deficiency was observed in durum wheats, followed by oat, barley, bread wheat and triticale. These decreases in yield due to Zn deficiency became more pronounced under rainfed conditions. Although highly significant differences in grain yield were found between treatments with and without Zn, no significant difference was obtained between the Zn doses applied (7–21 kg ha‐1), indicating that 7 kg Zn ha‐1 would be sufficient to overcome Zn deficiency. Increasing doses of Zn application resulted in significant increases in concentration and content of Zn in shoot and grain. The sensitivity of various cereals to Zn deficiency was different and closely related to Zn content in the shoot but not to Zn amount per unit dry weight. Irrigation was effective in increasing both shoot Zn content and Zn efficiency of cultivars. The results demonstrate the existence of a large genotypic variation in Zn efficiency among and within cereals and suggest that plants become more sensitive to Zn deficiency under rainfed than irrigated conditions.  相似文献   

3.
A greenhouse experiment was conducted with three doses of boron (0, 1, and 10 mg B kg?1 in the form of boric acid (H3BO3). Durum wheat (Triticum durum L. cv: Çakmak-79) and bread wheat (Triticum aestivum L. cv: Gerek-79) cultivars were used as plant material. B toxicity symptoms strongly appeared in durum wheat compared to bread wheat. Applications of B at 1.0 mg B kg?1 stimulated and increased the dry weights of both the cultivars, while high level B application (i.e., 10 mg B kg?1) depressed and decreased the dry weights significantly. B concentration and uptake in the leaf tip were increased with an increase in B application, whereas calcium (Ca) concentration and uptake were decreased in both the cultivars. It was observed that a substantial amount of B was accumulated in the plant cell wall. As similar to leaf tips, B concentrations in the cell wall also increased with B application, whereas Ca concentration was decreased.  相似文献   

4.
ABSTRACT

Zinc (Zn) and iron (Fe) deficiency-related health problems in humans may be solved by improving their concentration in edible grains. The study, conducted in 2015–16 and 2016–17, investigated the effects of soil and foliar application of Zn and foliar application of urea on grain Zn and Fe accumulation of chickpea grains. Soil application of ZnSO4 @ 25 kg ha?1 + foliar spray of ZnSO4 @ 0.5% at flowering and pod formation stages resulted in the highest Zn (45.06 & 44.69 mg Zn kg?1 grain in the first and second year of study) and Fe (59.74 & 62.88 mg Fe kg?1 grain) content. Urea application @ 2% at flowering and pod formation stages also resulted in the highest grain Zn (41.12 & 40.26 mg Zn kg?1 grain) and Fe (58.95 & 61.95 mg Fe kg?1 grain) content. Grain yield and protein content were significantly increased over control with these treatments. As compared to the sole application of Zn, the combined use of Zn and urea improved the grain Zn and Fe contents. Zinc and urea can be applied to improve Zn and Fe content in chickpea grains and, therefore, can help in ameliorating malnutrition in burgeoning human population.  相似文献   

5.
施锌对小麦开花后氮、磷、钾、锌积累和运转的影响   总被引:32,自引:7,他引:25  
为明确大田条件下施锌对小麦地上部器官氮、磷、钾、锌的积累量和转移量的影响,2001~2002年开展了田间试验。试验以专用强筋小麦(8901-11)和普通小麦(4185)两个冬小麦品种为材料,包括4个施锌水平(分别为施ZnSO4.7H2O.0、11.25、22.5和33.75.kg/hm2)。结果表明,各器官中Zn的含量变化在4.14~54.18.mg/kg,刚开花时及灌浆前期的含量以子粒>穗壳>叶片>茎秆,至接近成熟时则以子粒>叶片>穗壳>茎秆。每生产100.kg小麦子粒需要吸收Zn的范围在4.40~5.20.g之间。小麦成熟时吸收的Zn约为N或K2O的1/800~1/700,为P2O5的1/500~1/300。施锌后小麦各器官氮、磷、钾、锌的积累量及开花后向子粒的运转量增加,但施锌过多,这些营养元素的吸收、积累和运转反而受到抑制。4185开花前吸收氮和磷的能力较强,而8901-11开花后吸收氮和磷的能力较强;而吸收钾和锌的能力与吸收氮和磷的情况相反。8901-11氮、磷、钾、锌的积累量基本随施锌量增加而提高,以施硫酸锌22.5~33.75.kg/hm2的积累量最高;而4185以施硫酸锌11.25.kg/hm2的积累量最高。因此,在施用大量元素的基础上,普通小麦以施硫酸锌11.25.kg/hm2为宜,而强筋小麦以施硫酸锌22.5~33.75.kg/hm2为宜。  相似文献   

6.
The application of zinc (Zn) fertilizer to lentil is an agronomic strategy that has the potential to improve yield and enhance grain Zn concentration. A pot study was conducted to determine if Zn fertilizer applied to three popular Saskatchewan lentil cultivars could increase yield and concentration of Zn in the grain. The effects of soil and foliar applied Zn forms, including ZnSO4, Zn chelated with EDTA, Zn lignosulphonate, and a control were evaluated. Forms of Zn were not found to significantly increase yield (P = 0.828) or grain Zn concentration (P = 0.708) in any of the lentil cultivars tested. Fertilization with soil applied ZnSO4 resulted in significantly (P < 0.0001) higher amounts of residual available Zn in the soil relative to other Zn treatments. Soil fertilized with ZnSO4 had 1.13 mg kg?1 diethylenetriaminepentaacetic acid (DTPA)-extractable Zn compared to 0.84 mg Zn kg?1 and 0.77 mg Zn kg?1 in the soil and foliar applied chelated Zn, respectively.  相似文献   

7.
A pot culture experiment was conducted to study the effect of zinc (Zn) on biofortification of 10 wheat (Triticum aestivum L.) varieties in the Zn-deficient soil of Lucknow. Treatments consisted of 0 and 20 mg Zn kg?1 as a basal dose and 20 mg Zn kg?1 basal dose with two foliar sprays of zinc sulfate (ZnSO4) 0.5%. Foliar sprays of Zn were applied twice at the preflowering stage and 7 days after flowering. Results from the present study revealed that poor growth of plants grown in soil without Zn applications (0 mg Zn kg?1) were improved by applications of Zn (20 mg Zn kg?1) more when Zn was applied with two foliar sprays. Application of Zn (20 mg Zn kg?1) with two foliar sprays also proved beneficial for maximizing Zn concentrations of grains and other plant parts. Wheat varieties NW 1076, K 3827, NW 2036, and UP 262 appeared highly responsive to the treatments.  相似文献   

8.
Field experiments were conducted to evaluate the effects of zinc (Zn) fertilization on yield potentiality and quality of promising wheat varieties during winter seasons of 2013–14 and 2014–15 at the research farm of the Indian Agricultural Research Institute, New Delhi. Among genotypes, HD 2967 genotype proved as best in realizing the highest grain yield (4.89 Mg ha?1), net returns and benefit–cost ratio besides increased protein (13.4%) and wet gluten (29.4%) content in grain. Highest grain Zn concentration and recovery efficiency (RE) recorded in HD 2851 and HD 2687, respectively. HD 2932 registered lowest grain hardiness index (GHI) followed by PBW 343, indicating their better bread-making quality. With respect to Zn fertilization, application of 1.25 kg Zn Zn–ethylene diamine tetra acetic acid (Zn–EDTA) + 0.5% foliar spray at maximum tillering and booting stages resulted in the highest yields, grain Zn concentration and RE followed by 2.5 kg Zn (ZnSO4·7H2O) + 0.5% foliar spray at both stages. These treatments are also superior most with respect to grain quality parameters such as protein, wet gluten and starch content. From profitability viewpoint, 2.5 kg Zn (ZnSO4·7H2O) + 0.5% two foliar sprays were most remunerative with maximum net returns and benefit–cost ratio.  相似文献   

9.
Abstract

The efficacy of seed priming and foliar application of zinc-amino acid chelates including zinc-histidine [Zn(His)2] and zinc-methionine [Zn(Met)2] in comparison with zinc sulfate (ZnSO4) on yield and grain nutritional quality of two common bean cultivars (Phaseolus vulgaris L., cvs Talash and Sadri) was investigated in a severely Zn-deficient calcareous soil (DTPA-Zn: 0.38?mg kg?1 soil) in a pot experiment. Bean response to Zn application varied depending on the Zn fertilizer, application method and cultivar. In ‘Talash’, seed priming with [Zn(His)2] and [Zn(Met)2] led to 24.1 and 11.6% increase in the grain yield of bean in comparison with ZnSO4 treatment, respectively. In both cultivars, foliar application of [Zn(His)2] led to significant increase in the grain yield in comparison with ZnSO4. The highest grain Zn concentration was obtained by seed priming with [Zn(Met)2] in ‘Sadri’ and [Zn(His)2] in ‘Talash’, respectively. For Zn-amino acid chelates, seed priming was more effective than foliar application in increasing grain yield and Zn concentration. Foliar application of [Zn(His)2] and [Zn(Met)2] in ‘Sadri’ and [Zn(Met)2] in ‘Talash’ resulted in higher protein content in bean grain as compared with ZnSO4. In both cultivars, foliar application of [Zn(Met)2] was the more effective than seed priming to increase grain protein content. The highest water-soluble carbohydrates concentration of grain was obtained by seed priming with [Zn(Met)2] and [Zn(His)2] in ‘Sadri’ and ‘Talash’ cultivars, respectively. Therefore, seed priming with [Zn(His)2] and ZnSO4 in ‘Sadri’ and [Zn(Met)2] in ‘Talash’ can effectively be used for improving yield of common bean in Zn-deficient calcareous soils.  相似文献   

10.
An experiment was conducted to assess the zinc (Zn) availability to wheat in alkaline soils during Rabi 2009–2010. Wheat seedlings in pots having 2 kg alkaline sandy soil per pot were treated with 5, 10 and 15 kg Zn ha?1 as soil and with 0.5 and 1.0% zinc sulfate (ZnSO4) as foliar application. Results showed that Zn increasing levels in soil helped in phosphorus uptake up to boot stage but its conversion to grain portion lacked in Zn treated plants. Potassium (K) uptake also increased up to 6.24% in boot stage with treatment of 10 kg Zn ha?1 + 1.0% ZnSO4 foliar spray. Zinc (Zn) concentration increased in plant tissues with the increasing level of Zn application but this disturbed the phosphorus (P)-Zn interaction and, thus, both of the nutrients were found in lesser quantities in grains compared to the control. Despite of the apparent sufficient Zn level in soil (1.95 mg kg?1), improvement in growth and yield parameters with Zn application indicate that the soil was Zn deplete in terms of plant available Zn. The above findings suggest that the figure Zn sufficiency in alkaline soil (1.0 mg kg?1) should be revised in accordance to the nature and type of soils. Furthermore, foliar application of Zn up to 1.0% progressively increased yield but not significantly; and it was recommended that higher concentrations might be used to confirm foliar application of Zn as a successful strategy for increasing plant zinc levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号