首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Developing a fast and reliable soil testing method is critical for improving soil testing efficiency and ensuring reliable fertilizer recommendation. The objectives of this study were to evaluate Mehlich-3 (M-3) as a replacement for ammonium bicarbonate-diethylenetriaminepentaacetic acid (AB-DTPA) to extract phosphorus (P) and potassium (K) and to determinate the relationships between extractable P and K and their uptakes by crop in calcareous soils. M-3 and AB-DTPA were compared by using two approaches. In the first approach, the amounts of extracted P and K were compared by analyzing soil samples collected from agricultural production areas; in the second approach, snap beans (Phaseolus vulgaris) were grown in pot to determine the P and K uptakes by crop. There were significant correlations between M-3 and AB-DTPA for both soil test P and K based on soils collected from the agricultural field and the pot study. Soil test P and K by both extractants were significantly correlated with their uptakes by snap bean. The critical value of M-3-P regarding snap bean uptake was 47 mg kg?1 and was higher than that (18 mg kg?1) for AB-DTPA-P, whereas critical soil test K levels were similar between M-3 and AB-DTPA. M-3 was identified as an alternate improved extraction method instead of AB-DTPA in calcareous soils based on this study. However, more work will be needed to identify the correlation of the two extractants and crop responses under a field condition.  相似文献   

2.
In this study, complexation extractants ammonium bicarbonate diethylene triamine pentaacetic acid (AB-DTPA), diethylene triamine pentaacetic acid (DTPA), and ethylene diamine tetraacetic acid (EDTA) and mild cation-exchange extractants calcium chloride (CaCl2) and ammonium nitrate (NH4NO3) were used to evaluate the bioavailability of soil cadmium (Cd) to cacao in the field. Among the five extractants, the extractable Cd generally followed the order EDTA > DTPA > AB-DTPA > CaCl2 > NH4NO3. Correlation analysis was done between the extractable Cd in soil and total Cd content of cacao tissues (nibs, shells, leaves, and pods). The Cd extracted by CaCl2 and NH4NO3 was significantly (P < 0.05) correlated with some of the tissues but their Pearson correlation coefficients were weak. In contrast, extractants AB-DTPA, DTPA, and EDTA showed stronger, significant correlations to the Cd concentration in all four tissues. Overall, regression analysis demonstrated that AB-DTPA, DTPA, or EDTA can be used to predict bioavailable Cd in soils for cacao. Of these, AB-DTPA and DTPA both showed the strongest correlations compared to EDTA. However, the ease of preparation and the superior shelf-life of DTPA over AB-DPTA make it the preferred reagent for Cd bioavailability extractions from cacao soils and is currently being used to develop cost-effective soil treatments to reduce bioavailable Cd to cacao plants.  相似文献   

3.
Twenty surface (0–15 cm) samples of acidic soils were analyzed for water soluble (WS), exchangeable (EX), lead displaceable (Pb-disp.), acid soluble (AS), manganese (Mn) oxide occluded (MnOX), organically bound (OB), amorphous Fe oxide occluded (AFeOX), crystalline iron (Fe) oxide occluded (CFeOX) and residual (RES) fractions of Mn, and also for extractable Mn in some common soil extractants: (diethylenetriaminepentaacetic acid (DTPA) (pH 7.3), DTPA (pH 5.3), AB-DTPA (pH 7.6), Mehlich-3 (pH 2.0), Modified Olsen, 0.005 M calcium chloride (CaCl2), 1 M magnesium chloride (MgCl2) and ion exchange resins. The WS-Mn fraction showed a significant and positive correlation with Mn extractable in DTPA (pH 5.3) and AB-DTPA (pH 7.6), while both WS-Mn and EX-Mn fractions correlated significantly and positively with Mn concentration and uptake by maize plants grown in these soils. The AB-DTPA (pH 7.6) and DTPA (pH 5.3) appeared suitable to assess the availability of Mn in acidic soils.  相似文献   

4.
Total Zn in alluvial and calcareous soils (average 138 and 70 ppm respectively) was significantly related to their contents of CaCO3 (negatively), O.M. and clay (positively). Extracting Zn by Na2EDTA gave the highest values for both soil types. Total Cu contents varied widely from 26 to 111 ppm in alluvial and from 15 to 30 ppm in calcareous soils. They were negatively correlated with the CaCO3 contents. The pot experiments showed that EDTA(NH4)2CO3, Na2EDTA and DTPA are reasonable extractants for available Zn from both soil types. DTPA was efficient for all soils investigated, while Na2 EDTA and EDTA-citrate were specific for extracting Cu from calcareous soils.  相似文献   

5.
采用外源硒加入土壤中得到硒污染土壤,6种有效硒的浸提剂NaHCO3、KH2PO4、K2SO4、EDTA、AB-DTPA和DTPA+TEA+CaCl2的最佳浸提时间和土液比进行了筛选,并通过盆栽试验对所选择的土壤有效硒浸提剂进行生物学校验,以找出石灰性土壤有效硒提取适宜的浸提剂及其浸提条件。结果表明,NaHCO3、KH2PO4、K2SO4、EDTA、AB-DTPA和DTPA+TEA+CaCl26种浸提剂有效硒浸提量都随着浸提土液比的减小而增大,且随浸提时间的增长而增大。其中NaHCO3和KH2PO4最佳土液比为1/15,振荡时间90min;K2SO4和AB-DTPA的最佳土液比为1/15,振荡时间60min;EDTA和DTPA+TEA+CaCl2的最佳土液比则为1/20,振荡时间30min。6种浸提剂在各自最佳的提取条件下提取的土壤有效硒量与白菜地上部分硒含量达极显著正相关,但土壤有效硒的提取量以DTPA+TEA+CaCl2及K2SO4最少,只占KH2PO4、AB-DTPA及EDTA提取量的14%~48%,故不适用于作为石灰性土壤有效硒的提取剂。NaHCO3适用于土壤硒含量高于5mg·kg^-1的石灰性土壤有效硒提取。KH2PO4、AB-DTPA及EDTA3种浸提剂既可提取土壤中水溶态硒,亦可提取部分的吸附态硒,提取硒数量较多,过程简单,重复性好,都可作为石灰性土壤有效硒提取的浸提剂。  相似文献   

6.
The evaluation of different extractants for boron (B) estimation and the study of different boron pools is of utmost importance for the effective use of native and soil applied B. For evaluation of different extractants in diverse soils, twenty-one soil samples varying in soil properties were analyzed to estimate chemical pools of B and available B by using extractants (NH4OAc, AB-DTPA, hot and cold CaCl2, tartaric acid, HCl, mannitol, and hot water soluble). Available B extracted by the most commonly used method (HWS-B) was significantly and positively correlated with that extracted by other reagents (r = 0.772** to 0.905**) and the maximum value was observed with HCC-B (r = 0.917**) followed by Mann-B (0.905**). The amount of B in readily soluble, specifically adsorbed, oxide bound, organically bound and residual mineral fraction varied from 0.17 to 2.71, 0.14 to 1.77, 0.31 to 5.88, 0.56 to 7.42 and 0.17 to 2.71% of total B in soils, respectively. Thus, HCC and Mann methods can be used as extracting reagent of B in alkaline calcareous soils instead of HWS.  相似文献   

7.
ABSTRACT

The efficient use of phosphorus (P) fertilizers is very important in South Florida so that the environmental impact is minimal while meeting crop demand. To ensure that this is accomplished, an updated soil test P calibration is needed for sugarcane (Saccharum spp.) grown on Florida mineral soils, which accounts for almost 30% of the total sugarcane planted in the state. An outdoor pot experiment was conducted with the objective of evaluating four soil extractants for potential use in soil test P calibrations. Sugarcane cultivar CL 88–4730 was grown in 26L pots in a randomized complete block design with four replications of four P fertilizer rates (0, 38, 76, and 152 mg P L?1 soil) and four soil series (2 Spodosols, 1 Entisol, and 1 Alfisol). Sugarcane biomass was significantly increased with P fertilizer application and extractable soil P significantly increased with increasing P fertilizer rate. Strongest relationships of extractable soil P with relative fresh weight yield were determined with the water, acetic acid, and ammonium acetate extractants. All extractants tested, including Mehlich 3, had significant relationships with relative yield and leaf P concentration and so all these extractants should be considered in further field calibration studies with sugarcane on Florida mineral soils.

Abbreviations: EAA: Everglades Agricultural Area; EREC: Everglades Research and Education Center; OM: organic matter; TSP: Triple superphosphate  相似文献   

8.
The aim of this paper was to compare the concentration of P in soil extracts prepared with water and a ‘soil solution proxy’ (‘SSP’, that is, a salt solution similar in ionic composition and strength to the actual soil solution) with that in 0.01 m CaCl2 extracts, which is usually taken as a measure of soil P intensity. Seventy widely ranging agricultural soils from the Mediterranean part of Spain were used. Soil/solution ratio was 1:10 and extraction time 3 days. For 0.01 m CaCl2, a short extraction time of 30 min was also used as the reference method. CaCl2‐P(3 days) and CaCl2‐P(30 min) were not significantly different for the 40 noncalcareous soils group, but CaCl2‐P(3 days) was significantly larger than CaCl2‐P(30 min) for the 30 calcareous soils group. The Water‐P/CaCl2‐P(30 min) ratio was not significantly related to any soil property, its mean being 6.3 for the noncalcareous and 5.8 for the calcareous soils group. The mean SSP‐P/CaCl2‐P(30 min) ratio was 2.6 for the noncalcareous and 3.1 for the calcareous soils group, and decreased slightly with increasing ionic strength of the soil solution in the noncalcareous soils group. These results are consistent with the promoting influence of the Ca ion and ionic strength on P adsorption by permanent‐charge soils. The fact that extraction with 0.01 m CaCl2 generally results in underestimation of the actual concentration of P in the soil solution should be considered when CaCl2‐P is used as a soil P test.  相似文献   

9.
Abstract

Various soil tests are used to estimate phosphorus (P) availability for both crop uptake and potential loss to water. Conversion equations may provide a basis for comparison between different tests and regions, although the extent to which information can be interchanged is uncertain. The objective was to determine and quantify relationships between specific soil test extractants for samples taken annually in October and February over 4 years from four sites in each of eight soil series under grassland. The extractants comprised Mehlich‐3, Morgan, Olsen, Bray‐1, lactate–acetate, CaCl2 (1∶2 and 1∶10 soil–solution ratios), and resin. The results showed distinct relationships for each soil series, for which individual lines regression models (different intercepts and slopes) were superior to a single conversion equation across all soils. The ensuing difference between soils was large and ranged from 1.9 to 8.0 and 9.2 to 15.6 mg kg?1 P for Morgan and Olsen, respectively, at 20 mg kg?1 Mehlich‐3 P. Generally, the environmentally oriented tests CaCl2 and resin correlated best with Morgan. Some soil‐specific limitations were also observed. CaCl2 was less efficient than Morgan, and Morgan less efficient than Mehlich‐3 on a high Fe–P soil derived from Ordovician‐shale diamicton, compared with the general trend for other soils. This finding suggests that further disparity may arise where evaluation of critical, or other, limits across regions involves even a limited sequence of tests.  相似文献   

10.
In greenhouse studies, corn (Zea mays L.) growth increased with Zn fertilization of two alkaline calcareous soils. Zinc concentration and total uptake increased with Zn application. Very high correlations were recorded between plant tissue Zn concentration, total Zn uptake and soil Zn levels determined by DTPA and AB-DTPA soil tests. Correlation between Zn concentration in plants and relative yield was poor. However, close relationships were revealed between extractable soil Zn and relative yield. Near maximum dry matter yield of corn was associated with a fertilizer rate of 2 mg Zn/kg soil. Plant tissue Zn-requirement was 27 mg/kg in 15 days old plants and 32 mg/kg in corn shoots of 40 day age. Critical soil test Zn level was 1.2 mg/kg by DTPA and 1.7 mg/kg by AB-DTPA method. Use of AB-DTPA soil test is suggested for evaluating Zn status of calcareous soils.  相似文献   

11.
Abstract

The recovery of applied zinc (Zn) by plants is relatively small. Coupled with lack of leaching, this leads to accumulation of Zn in topsoil which may result in unfavorable growth conditions for the subsequent plants. Different extractants may be used for assessing the Zn status of soils previously treated with Zn sources. The extractability of retained Zn is influenced by soil properties. This experiment was conducted to study the influence of selected properties of calcareous soils on extractability of Zn by three popular Zn soil tests. Twenty samples from surface horizons (0–20 cm) of highly calcareous soils of southern Iran (pH 7.9 to 8.5; calcium carbonate equivalent 16 to 58%) previously treated with three levels of Zn (0, 10, and 20 mg Zn kg‐1 soil as ZnSO4#lb7H2O) in triplicate and under one crop of corn (Zea mays L.) were extracted with DTPA, EDTA‐(NH4)2CO3 and Na2‐EDTA. Extractability (EXT) in a particular extractant was defined as the slope of the regression line, relating extractable Zn of each soil to the rate of applied Zn, multiplied by 100. The EXT values of soils ranged from 24.9 to 73.0% for DTPA, 47.2 to 84.4% for EDTA‐(NH4)2CO3, and 28.2 to 56.7% for Na2‐EDTA. Stepwise regression equations showed that cation exchange capacity (CEC) and calcium carbonate equivalent (CCE) followed by clay content were the most influential soil properties in EXT of retained Zn of highly calcareous soils. The EXT values decreased with increase in CEC, and CCE but increased with increase in clay.  相似文献   

12.
Abstract

Surface samples of 78 soils from the continental U.S. and Puerto Rico were obtained from the U.S. Soil Conservation Service National Soil Survey Laboratory. Phosphorus was extracted by the Bray PI (0.03N NH4F in 0.025N HCl), Mehlich No. 1 (0.05N HCl in 0.025N H2SO4), and Olsen bicarbonate (0.5N NaHCO3) tests. Soil chemical, physical, and taxonomic data were obtained from the National Soil Survey Laboratory. On the basis of soil taxonomy and weathering, soils were divided into calcareous, slightly weathered, and highly weathered groups. Linear regression analysis was used to compare obtained soil P test values. Coefficients of determination (r2) ranged from 0.30 to 0.89. The lower coefficients were obtained between Mehlich No.l and Olsen bicarbonate tests, as these extractants were developed for differing soil types. Using independent data sets, the regression equations provided accurate estimates of soil test P by one method from another.  相似文献   

13.
Reports of sugarcane yield responses to silicon (Si), coupled with mounting evidence that elevated crop Si levels reduce both biotic and abiotic stresses, account for the interest in the Si nutrition of this crop. In terms of managing Si supplies to sugarcane in South Africa, uncertainties exist regarding, first, the reserves of plant-available Si in soils, and second, the reliability of soil-test methods for predicting Si availability. In this study, extractable Si was measured in 112 soils collected from sugarcane-producing fields in South Africa. Soils were selected on the basis of dominant soil types and included Inceptisols, Alfisols, Mollisols, Vertisols, Oxisols, Entisols, and Ultisols, varying widely in chemical properties, texture, and extent of weathering. Extractants employed were 0.01 M calcium chloride (CaCl2) and 0.02 N sulfuric acid (H2SO4). Silicon extracted with 0.02 N H2SO4 ranged from 2 to 293 mg kg?1, whereas with 0.01 M CaCl2 the range was 5 to 123 mg kg?1. With both extractants, extractable Si decreased significantly with decreasing pH, exchangeable calcium (Ca), and total cations. In soils with potassium chloride (KCl)–extractable Al+H levels of greater than 0.5 cmolcL?1, extractable Si levels were consistently low, suggesting that soluble Al is implicated in reducing plant-available Si levels. Extractable Si levels were not related to the Bache and Williams P-sorption indices of soils. In the second part of the investigation, sugarcane leaf Si concentrations from 28 sites were related to soil extractable Si levels. The CaCl2 soil test proved markedly superior to H2SO4 as a predictive test for leaf Si levels.  相似文献   

14.
Abstract

Different chemical reagents are used to assess plant‐available nutrients from soils with similar properties. The use of different extractants is a serious limitation when comparing results between different soil‐testing laboratories, often leading to large differences in fertilizer recommendations for similar crops.

In this study, 80 samples from acid soils from Galicia (Spain) were used to compare several soil nutrient extractants. Traditional and tested extractants for acid soil such as Bray 2 and ammonium acetate were used to evaluate multielement extractants such as ethylenediaminetetraacetic acid–ammonium acetate (EDTA‐aa), ammonium bicarbonate–diethylenetriaminepentaacetic acid (AB‐DTPA), and Mehlich 3.

Linear regression analyses were performed to relate the amount of each nutrient obtained by traditional soil extractants to the amount obtained by multielement extractants. Strong correlation was found between extractable Bray 2 P and Mehlich 3 P (r2=0.97, slope=0.87, and intercept=?0.48). The slope of the regression line between EDTA‐aa‐extractable calcium (Ca) and that from ammonium acetate (Aa) approached 1∶1 (r2=0.86). Similar results were obtained for magnesium (Mg) (r2=0.99). Soil zinc (Zn) concentrations extracted by Mehlich 3 and EDTA‐aa were similar; slope of the regression line was 0.95 (r2=0.88). With regard to copper (Cu), Mehlich 3 extracted approximately 20% more Cu than EDTA‐aa.

The results showed that Mehlich 3 and EDTA‐aa are suitable for assessment of plant available phosphorus (P), potassium (K), Ca, Mg, Cu, Zn, and iron (Fe) in acid soils.  相似文献   

15.
Abstract

A recently described soil testing procedure for simultaneous estimation of plant‐available phosphorus (P) and potassium (K) in soil uses an aqueous solution containing ammonium fluoride, ammonium acetate, and acetic acid (the “modified Kelowna”; or KM extract). Before adopting a KM method at our laboratory (in 1988) for routine soil testing, we compared its ability to predict crop response to phosphate fertilizer using data from field sites on a wide range of soils in Alberta and Saskatchewan with that of the Olsen and the Miller‐Axley (Bray‐type) soil testing methods. All three methods were unable to predict with great accuracy actual optimum rates of phosphate fertilizer in these trials, but they predicted the likely crop yield response to phosphate reasonably well. The main advantages of the KM test over the others are its analytical convenience and its applicability to calcareous soils.  相似文献   

16.
Saline–sodic and sodic soils are characterized by the occurrence of sodium (Na+) to levels that can adversely affect several soil properties and growth of most crops. As a potential substitute of cost‐intensive chemical amelioration, phytoremediation of such soils has emerged as an efficient and low‐cost strategy. This plant‐assisted amelioration involves cultivation of certain plant species that can withstand ambient soil salinity and sodicity levels. It relies on enhanced dissolution of native calcite within the root zone to provide adequate Ca2+ for the Na+ Ca2+ exchange at the cation exchange sites. There is a lack of information for the Na+ balance in terms of removal from saline–sodic soils through plant uptake and leaching during the phytoremediation process. We carried out a lysimeter experiment on a calcareous saline–sodic soil [pH of saturated soil paste (pHs) = 7.2, electrical conductivity of the saturated paste extract (ECe) = 4.9 dS m−1, sodium adsorption ratio (SAR) = 15.9, CaCO3 = 50 g kg−1]. There were three treatments: (1) control (without application of a chemical amendment or crop cultivation), (2) soil application of gypsum according to the gypsum requirement of the soil and (3) planting of alfalfa (Medicago sativa L.) as a phytoremediation crop. The efficiency of treatments for soluble salt and Na+ removal from the soil was in the order: gypsum ≈ alfalfa > control. In the phytoremediation treatment, the amount of Na+ removed from the soil through leaching was found to be the principal cause of reduction in salinity and sodicity. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
Liming is one of the key agronomic practices to improve crop yields in acid soils because, among other things, it reduces aluminum toxicity and creates favorable conditions for crop growth. For an effective liming program, the methods to determine lime requirement should be as precise as possible. This paper reviews the existing lime requirement methods and discusses the potential of a new one suitable for routine use in the laboratory to test most agricultural soils. The most widely used lime requirement methods can be categorized into four groups: titration, incubation, buffer, and field methods. Other methods such as spectroscopy method or the use of empirical equations have also been adopted. Although some methods are highly reliable, they are not optimal for routine use because they are inconvenient during the laboratory procedures or cannot be validated for all conditions. Based on the linearity between soil pH and the added base in the pH range from 4.5–6.5 in most agricultural soils, a titration-based method on 1:1 soil:0.01 M CaCl2 slurry of a single sample appears to be a promising candidate for routine use. In further studies, this generally applicable method should be evaluated to provide a better comparison to established methods for lime requirement determination.  相似文献   

18.
Abstract

A new soil extractant (H3A) with the ability to extract NH4, NO3, and P from soil was developed and tested against 32 soils, which varied greatly in clay content, organic carbon (C), and soil pH. The extractant (H3A) eliminates the need for separate phosphorus (P) extractants for acid and calcareous soils and maintains the extract pH, on average, within one unit of the soil pH. The extractant is composed of organic root exudates, lithium citrate, and two synthetic chelators (DTPA, EDTA). The new soil extractant was tested against Mehlich 3, Olsen, and water for extractable P, and 1 M KCl and water‐extractable NH4 and NO2/NO3. The pH of the extractant after adding soil, shaking, and filtration was measured for each soil sample (5 extractants×2 reps×32 soils=320 samples) and was shown to be highly influential on extractable P but has no effect on extractable NH4 or NO2/NO3. H3A was highly correlated with soil‐extractable inorganic N (NH4, NO2/NO3) from both water (r=0.98) and 1 M KCl (r=0.97), as well as being significantly correlated with water (r=0.71), Mehlich 3 (r=0.83), and Olsen (r=0.84) for extractable P.  相似文献   

19.
Abstract

Soil phosphorus (P) extractants are often selected according to the correlation or regression between test values and crop performance (e.g., P uptake and/ or yield). Although this criterion is an essential determinant of extractant performance, it is often inadequate for evaluating whether extractants accurately discriminate between P‐deficient and P‐sufficient soils, or whether they produce reliable critical level estimates or repeatable soil P measurements. Four supplementary indices were evaluated that may provide a more direct assessment of extractant performance. The potential use and reliability of the indices were investigated in an evaluation of four soil P extractants, Modified Truog, Mehlich 3, Olsen, and ion‐exchange resin, using data from a greenhouse experiment. Coefficients of determination between relative dry matter yield and extractable P failed to identify differences among the extractants, ranging from 0.95 to 0.97. Coefficients of determination between extractable P and P added ranged from 0.96 to 0.97 except for one method at 0.83. The proposed indices, however, produced a ranking of the extractants related to their performance. The Kappa efficiency (K EFF) index indicated that Mehlich 3 provided better detection of P‐sufficient and P‐deficient soils than either Olsen or Truog (K FFF values of 0.92, 0.83, and 0.68, respectively). These index values reflect that the extradants correctly detected P deficiency in 17 of 18, 17 of 18, and 15 of 18 soils. The slight superiority of Mehlich 3 over Olsen was due to its correct detection of 9 of 9 P‐sufficient soils while the Olsen and Truog extradants correctly detected 8 of 9 P‐sufficient soils. Further studies are needed, especially field studies, to determine whether these indices accurately reflect the reliability of the extradants for use in diagnosis and recommendation. Because these indices directly assess success in identifying deficient and sufficient conditions, their use in extractant evaluations should provide more specific, purposeful evaluations than methods based solely on correlation and regression.  相似文献   

20.
酸性土壤磷分级新方法建立与生物学评价   总被引:10,自引:0,他引:10  
雷宏军  刘鑫  朱端卫 《土壤学报》2007,44(5):860-866
土壤磷分级方法可用于估算土壤有效磷数量、不同土壤磷组分库数量及其对土壤有效磷的补充能力。以云南赤红壤、黄红壤及湖北棕红壤为供试材料,运用张守敬方法、蒋柏藩方法及本文提出的新方法,对三种酸性土壤和其石灰改良后的土壤磷进行分级研究,探讨石灰改良对酸性土壤磷组分数量及其生物有效性的影响。结果表明:Ca2-P、Al-P和Fe-P是酸性土壤主要的有效磷源,O-P(闭蓄态磷)也是潜在有效磷源,土壤中活性有机磷库相对比较稳定,可转化为高活性有效磷源供植物吸收利用。与两种经典磷分级方法相比,新方法将O-P划分为O-Al-P和O-Fe-P,O-Fe-P较好地反映了石灰处理与对照之间的土壤磷植物有效性差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号